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Introduction: The OZI rul
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* The Okubo-Zweig-lizuka (OZI)* rule states that processes with disconnected
quark lines are supressed.

* Production of ¢ should then be allowed only thanks to deviation from ideal
mixing, &y = 3.7°, and be suppressed w.r.t. w production according to

(AB D X)/(AB _)(DX) = tan? 8\/ = 4.2 - 1073**
where A, B and X are non-strange hadrons.

* S. Okubo, Phys. Lett. 5 (1963) 165, G. Zweig, CERN report TH-401 (1964), J. lizuka, Prog. Theor. Suppl. 38 (1966) 21
** H.J. Lipkin, Phys. Lett. B 60 (1976) 371



Introduction: the OZI rule

* The OZI rule is generally well fulfilled*

» Apparent violations have been observed in

-proton-antiproton annihilations at rest
-NN collisions
-reactions near the kinematic threshold.

« Apparent violation are usually interpreted as

- Intermediate gluonic states**
- A polarised strangeness component in the nucleon***

- Features of the meson-nucleon interaction

* V.P. Nomokonov, M.G. Sapozhnikov, Particles and Nuclei 24 (2003) 184
** S. ]. Lindenbaum, Nouvo Cim. 65 A (1981) 222 —

*** J. Ellis et al. Phys. Lett. B 353 (1995) 319, J. Ellis et al. Nucl. Phys. A 673 (2000) 256




Introduction: spin alignment of vector mesons

* Sensitive to the production mechanism”

 Low energy pd experiments show that w is produced arbitrarily aligned ™
whereas ¢ is produced aligned with the incoming beam.™

 The differential cross section of the decay of a vector meson into 2 or 3
pseudoscalaras can be parametrised in terms of spin density matrix element and
angles, a lengthy expression which in the case of unpolarised beam and unpolarised

target reduces to

W (cos6) = % A-p,, + (30, — 1)cos’6)

where p_, is the zeroth element of the spin-density matrix and 0 is the angle between
the analyser and some reference axis.

Analyser:
* the normal of the decay plane in the
3-body case (w—mnn)
* the direction of one of the decay kaons
in the 2-body case (p—KK)
* K. Gottfried & J.D. Jackson, Nuovo Cim. 33 (1964) 302.

Bp Bp ** K. Schonning et al., Phys. Lett. B 668 (2008) 258.
***F Belleman et al., Phys. Rev. C 75 (2007) 015204




~~ The COMPASS experiment

Two-stage magnetic spectrometer:

» Large angular acceptance
* Broad kinematical range E/HCA
e Tracking, calorimetry, particle ID e

SM1
target + RPD

. "

/%

Beam: 190 GeV positive (p, *, K*) or negative (", K- ) hadron beam.

Targets: Liquid H,, Nuclear targets (Pb, Ni, W).
Final states: charged (%, p, ...), neutral (7%, n, 7, ...), ‘
kaonic (K*, K, ...) @
See also: talks by e.g. B. Grube, Y. Bedfer... Fa




"~ The COMPASS experiment

At the COMPASS beam momentum (190 GeV/c) and with the Recoil Proton Detector
Trigger, events produced by mainly three types of mechanisms are selected:

M T
— J."\'
p;[ _\__\_-\_"'M__\__\_ = p T —— T T
bearm - g i N e e .
Pheam™ — p beam e p fast

V Vv to
B _t_ t £ |
Ptarget Precoil Fﬁ;ﬂ rqet - Precail }-—];n-r_{ﬁ.'f _h;}-_!'ff-.’.‘.’,*['-f
Resonant diffractive Non-resonant diffractive Central Production

Concerning the vector meson dynamics, we consider two cases :

1) The vector meson dynamics depends on the exchange Pomeron/Reggeon (central
production and knock-out of a preformed (( state)
2) The vector meson dynamics depends on the intermediate N
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Analysis: Event selection

Common cuts for ¢ / w:

. : £ 016 COMPASS MC
* primary vertex in target volume gomp pp—p TR
* three charged tracks, charge conservation "t J——
* beam proton (tagged with CEDARs) 005t e
* recoil proton (tagged by RPD) 006 (
* exclusivity and coplanarity e
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/ Analysis
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Background subtraction:
A Breit-Wigner function, convoluted with a single (¢) ora
double (w) gaussian and a polynomial background
was fitted to the data in order to extract the ¢ and w yields.

Acceptance corrections:
Event-by-event weighting using a 3D-acceptance matrix
in XF(pfast)? t" M(pfast q))

Overall systematic uncertainty: 12.5% )
ECAL and RICH efficiencies L




/ The M(pg,; V) invariant mass

S 1
g F. ,
R COMPASS 2008/9
D.E_-Q- -+ -
C - Pp—p@p
0.15F -
C e
01 e A\
0.05 T
[ 06<x;<009 .
v e .”'T"“.“.-»
2 25 3 35 4

M(pw) (GeV/c?)

Events

®10°

£ 1 COMPASS 2008/9

- + + ppP—=pop

-'-1-_— +

- 1

3L + ;

"!IE +

i3 +.

1— + 4+

[ +*

0 35 ¥ S—E
M(pt) (GeV/c)

» Clear structures in the M(p,,w) spectrum

» No visible structures in the M(py,,¢) spectrum

* Poor acceptance at low M( Pfast(P)




/ The M(pg,; V) invariant mass
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* The M(py,,,w) spectrum varies with x;

* Structures near 1800 MeV/c?, 2100 MeV/c?> and 2600 MeV/c? )
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R(¢d /w) as a function of x.

/

The cross section ratio

d
df(pp—> P4 p)
R(¢/ w) = dUF
1 (PP pop)
XF

has been calculated in 3 bins in x;.

The OZI violation factor is defined by R(¢p/w)/4.2*103 and varies between 2.9 and 4.5,
depending on xp.
This is consistent with results from SPHINX"

We learned that w mesons in this kinematic region is produced to a large extent via
intermediate baryon resonances.

What if we remove the resonant region? @

* S.V. Golovkin et al., Z. Phys. A 359 (1997) 435.
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%R(cb /w) as a function of x.

The visible resonances are below M(pw) = 3.3 GeV/c>.
This corresponds to a vector meson momentum in the rest system of the

= _ (M3, =(m, +m,)*) (M3, ~(m, ~m,)°*)
= 2M

pVv

—- no cut
- p, > 1GeVic
—h—p, = 14 GeVic

s

of p,, =1.41 GeV/c.

e
=
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Requiring p, > 1.41 GeV/c gives an
OZI violation factor of ~8.

071 violation factor

This is consistent with SPHINX but also

with near threshold pp measurements
from ANKE, DISTO and COSY-TOF.

S = B W Boh N ) oo D
[



The p,, in the helicity frame
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No significant deviation from isotropy.



The pyy w.r.t M(p, V) for w
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» Significant deviation from isotropy.
* Clear dependence of p,,on M(pw)
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The pgo w.r.t x. for ¢

in the exchange particle frame
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» Strong alignment with respect to the exchange Pomeron/Reggeon

* Alignment increases with x;



ﬁpo in the exchange particle frame
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The pyo w.r.t x. for w

e Strong alignment, though weaker than for ¢
* Cutting in p,, gives similar results as for ¢ w)
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Relation between R(®d /w) and the
spin alignment

Pv phel o, P phel ., w pEX o, b pX_,w | OZIviol.
(MeV/ )

0.6-0.7
0.7-0.8
0.8-0.9
0.6-0.7
0.7-0.8
0.8-0.9
0.7-0.8
0.8-0.9

>0
>0
> 1.0
> 1.0
> 1.0
> 1.4

>1.4

0.38+0.03
0.35+0.02

0.3910.04

0.289+0.004
0.330+0.003
0.449+0.003
0.34%0.01
0.306+0.006
0.463+0.003

0.37%0.03

0.51+£0.03
0.58+0.02

0.67£0.04

0.492+0.003
0.582+0.002
0.572+0.002
0.39£0.01
0.527+0.005
0.577%0.002

0.601+£0.005

4.5%0.6
4.0%0.5
2.9+0.4
7.6%1.0
0.0%1.1
4.5+0.6

7.9%1.1
7.6£1.0



What do we learn from this?

The role of baryon resonances is w production is confirmed by the M(pw)
distributions and the spin alignment in the helicity frame.

No evidence for baryon resonances decaying into p¢$ was observed: a
consequence of the OZI rule which supresses N'— p ¢.

The OZI violation (by a factor 2.9-4.5) in the resonant region would then be
caused by other contributing processes.

In the non-resonant region, i.e. p, > 1.41 GeV/c, the OZI violation factor is ~8.

The spin alignment for w and ¢ have the same behaviour in the helicity frame
(isotropic) and in the exchange particle frame (strong alignment that increases
with x;).
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" What do we learn from this?

Possible non-resonant mechanisms:

Bremsstrahlung with subsequent fluctuation into a vector meson : low cross
section and weak sensitivity to the exchange particle

Forbidden due to G-parity conservation!

Central Pomeron-Odderon fusion: completely OZI violating, would give a
much larger OZI violation than the observed one.

Central Reggeon-Pomeron fusion

Knock-out of a preformed (Q state in the beam proton by a Pomeron from
the target

(&)




