COMPASS news on TMD observables

Anna Martin

Trieste University & INFN

on behalf of the COMPASS Collaboration

2nd Workshop on **Probing Strangeness in Hard Processes** Frascati National Laboratories, 11-13 November 2013

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

fixed target experiment at the CERN **SPS**

 data taking since 2002
 nucleon structure (SIDIS) with high energy μ+ beams and polarised targets
 spectroscopy and hadron structure with high energy hadron beams

COMP AS.

Collaboration ~ 230 physicists 24 Institutions of 13 Countries

COMPASS data taking

longitudinally polarised $\,\mu^{*}\,$ beam $\,$ - nucleon structure

near future: Drell-Ya	an, DV	CS & SIDIS	2014-2017
Primakoff		2012	→ DVCS test run
hadron spectroscop	у	2008 – 2009	\rightarrow Drell-Yan test run
190 GeV/c proton (NH ₃)	L	polarisation	2011
proton (NH ₃)	L & 1 T	polarisation polarisation	2007 2010
160 GeV/c deuteron (⁶ LiD)	L & ⁻ L	F polarisation polarisation	2002 – 2004 2006

COMPASS data taking

PSHP 2013

PSHP 2013

Z

PSHP 2013

Transversity

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h F_{UU}^{\cos\phi_h} \right. \\ &+ \varepsilon \cos(2\phi_h) F_{UU}^{\cos2\phi_h} + \lambda_e \sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h F_{LU}^{\sin\phi_h} \\ &+ S_{\parallel} \left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_h F_{UL}^{\sin\phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin2\phi_h} \right] + S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_h F_{LL}^{\cos\phi_h} \right] \\ &+ \left. \left. \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right. \right. \\ &+ \left. \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \right. \\ &+ \left. \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \right] \\ &+ \left. \left| S_{\perp} \right| \lambda_e \left[\sqrt{1-\varepsilon^2}\,\cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_S F_{LT}^{\cos\phi_S} \right. \\ &+ \left. \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\}, \end{split}$$

PSHP 2013

- clear non-zero effects first seen by HERMES on p in 2005
- ~ zero asymmetries measured by COMPASS on d

explained with

$$\mathbf{h}_{1}^{\mathrm{u}} \approx -\mathbf{h}_{1}^{\mathrm{d}} \qquad \mathbf{H}_{1}^{\perp \mathrm{fav}} \approx -\mathbf{H}_{1}^{\perp \mathrm{unf}}$$

still only measurements on d

COMPASS results on proton target (2007, 2010 data)

good agreement with HERMES in the *x* overlap region

same for pions

PSHP 2013

COMPASS results on proton target

charged pions and kaons (2007 data – SPIN2010, 2010 data – SPIN 2012)

PSHP 2013

results on proton

charged kaons

PSHP 2013

PSHP 2013

Transversity

transversity is different from zero and

can be measured in SIDIS thanks to the "Collins effect"

$$\int_0^1 dx [h_1^q(x) - \bar{h}_1^q(x)] = \delta q.$$

more data large and small *x*, p & d / n, PID are needed

M. Anselmino et al., PRD87 (2013) 094019 simultaneous fit of HERMES p, COMPASS p & d, and Belle data very good χ^2

Anna Martin

PSHP 2013

independent channel to access transversity

dihadron asymmetry

independent channel to access transversity

$$\begin{split} \phi_{RS} &= \phi_{R} - \phi_{S'} = \phi_{R} + \phi_{S} - \pi \\ \phi_{R} &= \frac{(\vec{q} \times \vec{l}) \cdot \vec{R}}{|(\vec{q} \times \vec{l}) \cdot \vec{R}|} \operatorname{arccos} \left(\frac{(\vec{q} \times \vec{l}) \cdot (\vec{q} \times \vec{R})}{|\vec{q} \times \vec{l}| |\vec{q} \times \vec{R}|} \right) \\ \vec{R} &= \frac{z_{2}\vec{p}_{1} - z_{1}\vec{p}_{2}}{z_{1} + z_{2}} =: \xi_{2}\vec{p}_{1} - \xi_{1}\vec{p}_{2} \\ 1: h^{+}, 2: h^{-} \\ N(\phi_{RS}) &= N^{0} \cdot \left\{ 1 + f P_{T}D \cdot A_{RS} \cdot \sin \phi_{RS} \right\} \\ \vec{q} \times \vec{R} &= \vec{q} \times \vec{R}_{T} \end{split}$$

PSHP 2013

dihadron asymmetry

independent channel to access transversity

Collins

$$A_{Coll} \approx \frac{\sum_{q} e_{q}^{2} h_{1}^{q} \otimes H_{1}^{\perp q}}{\sum_{q} e_{q}^{2} f_{1}^{q} \otimes D_{q}}$$

"Collins FF" Belle Babar

dihadron

"Interference / Di-hadron FF"

$$\boldsymbol{A_{RS}} \approx \frac{\sum_{q} \boldsymbol{e_{q}}^{2} \boldsymbol{h_{1}}^{q} \cdot \boldsymbol{H_{q}}^{2}}{\sum_{q} \boldsymbol{e_{q}}^{2} \boldsymbol{f_{1}}^{q} \cdot \boldsymbol{D_{q}}^{2h}}$$

Belle Babar

"spin independent di-hadron FF" being measured at COMPASS

dihadron asymmetry

high statistics over a wide x range

remarkable similarity between

 Collins asymmetry for h+ and Collins asymmetry for h-

"mirror symmetry": similar absolute values, opposite sign

 dihadron asymmetry and Collins asymmetries

same sign as Collins h+, only somewhat larger than the mean of Collins h+ and – Collins h- (as expected)

here measured on different hadron samples, ~ the same on the "common" hadron sample

remarkable similarity between

 Collins asymmetry for h+ and Collins asymmetry for h-

"mirror symmetry": similar absolute values, opposite sign

 dihadron asymmetry and Collins asymmetries

same sign as Collins h+, only somewhat larger than the mean of Collins h+ and – Collins h- (as expected)

first investigation:

 correlations between the relevant azimuthal angles and the corresponding asymmetries
 → information on the nature of the fragmentation Collins vs 2h interference mechanisms

х

correlations between the relevant azimuthal angles

the mirror symmetry in the Collins asymmetry

amplitude of $\sin \phi_C$ with $\phi_C = \phi_h + \phi_S - \pi$ suggests that $\phi_{h^+} - \phi_{h^-} \approx \pi$

i.e. that positive and negative hadrons produced in the fragmentation of transversely polarised quarks have antiparallel transverse momenta

same with unpolarised Lepto

PSHP 2013

correlations between the relevant azimuthal angles

if this is true, one can introduce as azimuthal angle of the hadron pair the "mean" of the azimuthal angles of the two hadrons

$$\phi_{2h} = \frac{\phi_{h^+} + (\phi_{h^-} - \pi)}{2}$$

$$\begin{array}{c}
 y \\
 \hat{p}_{h+} \\
 \phi_{h+} \\
 \phi_{h+} \\
 \phi_{2h} \\
 \phi_{h-} \\
 \phi_{h-} \\
 x
\end{array}$$
GNS

$$\phi_{C^{\pm}} = \phi_{h^{\pm}} - \phi_{S'} = \phi_{h^{\pm}} + \phi_{S} - \pi$$
$$\phi_{RS} = \phi_{R} - \phi_{S'} = \phi_{R} + \phi_{S} - \pi$$

$$\phi_{C2h} = \phi_{2h} - \phi_{S'} = [\phi_{h^+} - \phi_{S'} + (\phi_{h^-} - \phi_{S'} - \pi)]/2$$
$$= [\phi_{C+} + (\phi_{C-} - \pi)]/2$$

"mean" of the Collins angles of h+ and h-

correlations between the relevant azimuthal angles and asymmetries

strong correlation between ϕ_{2h} and ϕ_R

asymmetries

the asymmetries are very close, hinting at a common physical origin for the Collins mechanism and the di-hadron fragmentation function

PSHP 2013

Sivers function

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2\left(1-\varepsilon\right)} \left(1+\frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h F_{UU}^{\cos\phi_h} \right. \\ &+ \varepsilon \cos(2\phi_h) F_{UU}^{\cos2\phi_h} + \lambda_e \sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h F_{LU}^{\sin\phi_h} \\ &+ S_{\parallel} \left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_h F_{UL}^{\sin\phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin2\phi_h} \right] + S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_h F_{LL}^{\cos\phi_h} \right] \\ &+ \left(S_{\perp} \right) \left[\frac{f_{\perp}^{\dagger} D}{\sin(\phi_h - \phi_S)} \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right] \\ &+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \\ &+ \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \right] \\ &+ \left| S_{\perp} \right| \lambda_e \left[\sqrt{1-\varepsilon^2}\,\cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_S F_{LT}^{\cos\phi_S} \\ &+ \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\}, \end{split}$$

PSHP 2013

Sivers function

in SIDIS on transversely polarized nucleons it can be accessed via the "Sivers asymmetry"

$$\boldsymbol{A_{Siv}} \approx \frac{\sum_{q} e_{q}^{2} \boldsymbol{f}_{1T}^{\perp q} \otimes \boldsymbol{D}_{1}^{q}}{\sum_{q} e_{q}^{2} \boldsymbol{f}_{1} \otimes \boldsymbol{D}_{1}^{q}}$$

the most famous of the TMD PDFs

correlation between the transverse spin of the nucleon and the transverse momentum of the quark

sensitive to orbital angular momentum

change of sign from SIDIS to Drell - Yan

PSHP 2013

- strong signal seen by HERMES in π^+ production on p in 2005
- no signal seen by COMPASS on d

still only measurements on d

still only measurements on d

- strong signal seen by HERMES in π^+ production on p in 2005
- no signal seen by COMPASS on d
- COMPASS results on proton:
 - clear signal for h+

down to low x, in the previously unmeasured region

COMPASS results on p for pions and kaons

PSHP 2013

PSHP 2013

results on proton for pions

in the overlap x range, agreement with HERMES, but clear indication that the strength decreases

PSHP 2013

Sivers function

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2\left(1-\varepsilon\right)} \left(1+\frac{\gamma^{2}}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h} F_{UU}^{\cos\phi_{h}} \right. \\ &+ \varepsilon \cos(2\phi_{h}) F_{UU}^{\cos 2\phi_{h}} + \lambda_{e} \sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h} F_{LU}^{\sin\phi_{h}} \\ &+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h} F_{UL}^{\sin\phi_{h}} + \varepsilon \sin(2\phi_{h}) F_{UL}^{\sin 2\phi_{h}} \right] + S_{\parallel}\lambda_{e} \left[\sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h} F_{LL}^{\cos\phi_{h}} \right] \\ &\left. + \left(S_{\perp} \right) \left[\sin(\phi_{h} - \phi_{S}) \left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h} - \phi_{S})} \right) \right. \\ &\left. + \varepsilon \sin(\phi_{h} + \phi_{S}) F_{UT}^{\sin(\phi_{h} + \phi_{S})} + \varepsilon \left(\sin(3\phi_{h} - \phi_{S}) \right) F_{UT}^{\sin(3\phi_{h} - \phi_{S})} \right] \\ &\left. + \sqrt{2\varepsilon(1+\varepsilon)} \left(\sin\phi_{S} \right) F_{UT}^{\sin\phi_{S}} + \sqrt{2\varepsilon(1+\varepsilon)} \left(\sin(2\phi_{h} - \phi_{S}) \right) F_{UT}^{\cos\phi_{S}} \right) \\ &\left. + \sqrt{2\varepsilon(1+\varepsilon)} \left(\cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2\varepsilon(1-\varepsilon)} \left(\cos\phi_{S} \right) F_{LT}^{\cos\phi_{S}} \right) \right] \right\}, \end{split}$$

PSHP 2013

different factors D(y) → different statistical errors

due to the small value of θ at COMPASS, this is the only asymmetry which needs to be corrected for the longitudinal component of the nucleon spin

longitudinal spin azimuthal asymmetries

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_h F_{UU}^{\cos\phi_h} \\ &+ \varepsilon\cos(2\phi_h) F_{UU}^{\cos2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_h F_{LU}^{\sin\phi_h} \\ + \left(S_{\parallel}\right) \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_h F_{UL}^{\sin\phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin2\phi_h} \right] + \left(S_{\parallel}\lambda_e \sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_h F_{LL}^{\cos\phi_h} \right) \\ &+ \left|S_{\perp}\right| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)}\right) \\ &+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \\ &+ \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \right] \\ &+ \left|S_{\perp}\right| \lambda_e \left[\sqrt{1-\varepsilon^2}\cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_S F_{LT}^{\cos\phi_S} \\ &+ \sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right], \end{split}$$

PSHP 2013

longitudinal spin azimuthal asymmetries

first measurement on d 2004 data: all compatible with zero

being measured with better statistics on d and on p

PSHP 2013

SIDIS off unpolarised deuteron

combining data taken with oppositely polarised ⁶LiD target COMPASS has measured

azimuthal asymmetries

information on k_{\perp} and p_{\perp}

hadron multiplicities

SIDIS off unpolarised deuteron

combining data taken with oppositely polarised ⁶LiD target COMPASS has measured

- azimuthal asymmetries
- hadron multiplicities

Cahn effect

Boer-Mulders PDF

PSHP 2013

unpolarised deuteron - azimuthal asymmetries

strong z dependence mainly at small x and small p_T

PSHP 2013

unpolarised deuteron - azimuthal asymmetries

PSHP 2013

unpolarised deuteron hadron multiplicities vs p_T^2

PSHP 2013

future COMPASS contribution to TMDs

SIDIS

coming soon, from existing data:

- further investigation of single hadron and dihadron asymmetries
- multidimensional analysis of transverse spin asymmetries

Collins, Sivers, ...

- more d and p results on longitudinal spin azimuthal asymmetries
- more results on azimuthal asymmetries and multiplicities from unpolarised d data (PID)

2016-2017 runs

measurements in parallel with DVCS – LH₂ target

2015, ...

DY process: pion beam, T polarised target

change of sign of the Sivers function

later on

more SIDIS data on transversely polarised d and p ?

PSHP 2013

Thank you

the COMPASS spectrometer

- high energy beams
- large angular acceptance (0 200 mrad)
- broad kinematical range

COMPASS

the polarized target system (>2005)

³He – ⁴He dilution refrigerator (T~50mK)

acceptance > \pm 180 mrad

30, 60, and 30 cm long opposite L or T polarisation

COMPASS

	d (⁶ LiD)	р (NH ₃)
polarization	50%	90%
dilution factor	40%	16%

no evidence for relevant nuclear effects (160 GeV)

Semi-Inclusive Deep Inelastic Scattering

Nucleon Structure

three distribution functions are necessary to describe the structure of the nucleon at LO in the collinear case

taking into account the quark intrinsic transverse momentum k_{T} , at leading order 8 PDFs are needed for a full description of the nucleon

nucleon polarization

at twist-3 more TMD PDF's

not all have a simple interpretation in the framework of the QPM

Semi-Inclusive Deep Inelastic Scattering

PSHP 2013

TRANSVERSITY

one of the main goals of COMPASS

$$h_1^q(\mathbf{x}) \qquad \Delta_T q(\mathbf{x}) = q^{\uparrow\uparrow} - q^{\downarrow\uparrow} : \text{transverse polarization or} \\ \text{transversity distribution}$$

correlation between transverse spin of the nucleon and transverse spin of the quark

different properties than helicity

tensor charge of the N

$$\int_0^1 dx [h_1^q(x) - \bar{h}_1^q(x)] = \delta q.$$

more difficult to measure

- proposed in '77 (Ralston & Soper)
- convincing evidence that it is non zero only recently in SIDIS from the HERMES and the COMPASS experiments

PSHP 2013

hadron multiplicities in SIDIS

hadron pair multiplicities

in M_{inv} , $z=z_1+z_2$, Q^2 bins

Two-hadron asymmetry

from C. Elia PhD thesis (2012), following A. Bacchetta, A. Courtoy, M. Radici PRL 107 (2011) 012001

Collins and two-hadron asymmetries

gluon changes the quark direction, introducing a random error on \mathbf{p}_{T} . At high Q^2 the one-particle Collins effect becomes blurred (see D. Boer, p.258 of [9]). One can avoid this blurring by considering the relative Collins effect between *two* fast particles

$$dN^{(q \to h_1 h_2 + \mathbf{X})} = dZ \, d\xi \, d^2 \mathbf{r}_{\mathrm{T}} \, D(Z, \xi, r_T) \left[1 + A_C(Z, \xi, r_T) \frac{\hat{\mathbf{k}} \times \mathbf{r}_{\mathrm{T}}}{r_T} \cdot \mathbf{S}_{\mathrm{T}}^q \right]$$
$$Z = z_1 + z_2, \ \xi = (z_1 - z_2)/Z \qquad \mathbf{r}_{\mathrm{T}} = \frac{z_2 \mathbf{p}_{1\mathrm{T}} - z_1 \mathbf{p}_{2\mathrm{T}}}{z_1 + z_2}$$

Due to local compensation of transverse momentum, the one-particle Collins effect generates a two-particle effect, and vice-versa.

X. Artru, arXiv:hep-ph/0207309

PSHP 2013

remarkable similarity between

 Collins asymmetry for h+ and Collins asymmetry for h-

"mirror symmetry": similar absolute values, opposite sign

 dihadron asymmetry and Collins asymmetries same sign as Collins h+, only somewhat larger than the mean of Collins h+ and – Collins h- (as expected)

here measured on different hadron samples, ~ the same on the "common" hadron sample

remarkable similarity between dihadron asymmetry and Collins asymmetries

stays ~ the same when the asymmetries are evaluated on a common hadron sample

i.e.

- events which contain at least one positive hadron and at least one negative hadron
- for each event the number of hadrons is the number of h+hpairs, as defined in the two-hadron analysis
- p^{h}_{T} > 0.1 GeV/c and R_{T} > 0.07 GeV/c
- same z_i cut (two sets of data: $z_i > 0.1$ and $z_i > 0.2$)

remarkable similarity between dihadron asymmetry and Collins asymmetries

stays ~ the same when the asymmetries are evaluated on a common hadron sample

h+ / h-

- Collins asymmetry "standard sample"
 - Collins asymmetry "common sample"

h+h-

 dihadron asymmetry "common sample"

somehow larger, as expected

also, from the comparison of the asymmetries

 \rightarrow information on the relative value of the two analyzing powers

PSHP 2013

Collins and two-hadron asymmetries

2. Collins and 2h asymmetries from the same hadron sample

- h+ Collins asymmetry new sample
- h- Collins asymmetry new sample
- 2h asymmetry new sample
- ☆ h- published Collins asymmetry

PSHP 2013

Collins and two-hadron asymmetries

1. correlations between the relevant azimuthal angles and the corresponding asymmetries

... Due to local compensation of transverse momentum, the one-particle Collins effect generates a two-particle effect, and viceversa. ... (X. Artru, arXiv:hep-ph/0207309)

PSHP 2013