Spin dependent structure functions, TMDs and GPDs in COMPASS

Barbara Badelek University of Warsaw

Low x

Rehovot/Eilat, May 30 - June 4, 2013

- COMPASS: experiment, acceptance
- Introduction: nucleon spin structure
- (Semi-) inclusive longitudinal asymmetries and flavour separation
- $oxed{4}$ Direct determination of Δg in the nucleon
- Charged hadron multiplicities
- 6 Measurements on a transversely polarised target
- Generalised Parton Distributions
- 8 Summary

$\text{CO}_{\text{mmon}} \; \text{M}_{\text{uon and}} \; \text{P}_{\text{roton}} \; \text{A}_{\text{pparatus for}} \; \text{S}_{\text{tructure}} \\ \text{and} \; \text{S}_{\text{pectroscopy}}$

NA58, at the CERN SPS

 \sim 250 physicists

 \sim 30 institutes

Muon programme	Hadron programme
Spin dependent structure function g_1 Gluon polarisation in the nucleon Quark polarisation distributions Transversity Vector meson production Λ polarisation	Primakoff effect, π and K polarisabilities Exotic states, glueballs (Double) charmed barions Multiquark states
Future: Drell-Yan on a polarised target and DVCS	

Acceptance of high energy electroproduction experiments

Figure from: N. D'Hose, Villars 2004

- COMPASS: experiment, acceptance
- Introduction: nucleon spin structure
- (Semi-) inclusive longitudinal asymmetries and flavour separation
- 4 Direct determination of Δg in the nucleon
- Charged hadron multiplicities
- 6 Measurements on a transversely polarised target
- Generalised Parton Distributions
- 8 Summary

Nucleon spin structure in the electroproduction

$$\bullet \frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}E'} = \frac{\alpha^2}{2Mq^4} \frac{E'}{E} L_{\mu\nu} W^{\mu\nu}$$

- Symmetric part of $W^{\mu\nu}-$ unpol. DIS, antisymmetric polarised DIS
- $\bullet \text{ Nominally } F_{\scriptscriptstyle 1,2}, \ \ q(x) \longrightarrow g_{\scriptscriptstyle 1,2}, \ \ \Delta q(x) \\ \text{but...}$
- ullet ...anomalous gluon contribution to $g_{_1}(x)$
- $...g_2(x)$ has no interpretation in terms of partons.

Partonic structure of the nucleon; distribution functions

Three twist-two quark distributions in QCD (after integrating over the quark intrinsic k_t)

$$q(x) = \bigcirc$$

Quark momentum DF; well known (unpolarised DIS $o F_{1,2}(x)$).

$$\Delta q(x) = \bigcirc$$

Difference in DF of quarks with spin parallel or antiparallel to the nucleon's spin; known (polarised DIS $\rightarrow g_1(x)$).

Difference in DF of quarks with spin parallel or antiparallel to the nucleon's spin in a transversely polarised nucleon; unknown (polarised DIS $\rightarrow h_1(x)$).

Nonrelativistically: $\Delta_T q(x) \equiv \Delta q(x)$. OBS.! $\Delta_T q(x)$ are C-odd and chiral-odd; may only be measured with another chiral-odd partner, e.g. fragmentation function.

If the k_t taken into account \Longrightarrow 8 TMD distr.; e.g. f_{1T}^{\perp} (accessible through "Sivers asymmetry") All determined in SIDIS by COMPASS.

7 III determined III elbie

Low x. 2013

Transverse Momentum Dependent (TMD) distributions

- lacktriangle parton intrinsic k_{T} taken into account
- related to quark angular momentum, L!
- at COMPASS studied in 2 ways:
 - semi-inclusive DIS (polarised muons on unpolarised/transversely polarised target)
 - In the future: Drell-Yan process (π beam on unpolarised/transversely polarised tgt.)

SIDIS

3D picturing of the proton via GPD

D. Mueller, X. Ji, A. Radyushkin, A. Belitsky, ...
M. Burkardt, ... Interpretation in impact parameter space

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs

Structure functions, quark longitudinal momentum & helicity distributions

Slide from V.D. Volker, LANL 2007

Nucleon spin structure: observables in $\vec{\mu}\vec{N}$ scattering

• Inclusive asymmetry, A_{meas} :

• Inclusive asymmetry,
$$A_{meas}$$
:
$$A_{meas} = \frac{1}{fP_T P_B} \left(\frac{N^{\leftrightarrows} - N^{\leftrightarrows}}{N^{\leftrightarrows} + N^{\leftrightarrows}} \right) \approx DA_1 = D \frac{g_1(x,Q^2)}{F_1(x,Q^2)} = D \frac{\displaystyle\sum_q e_q^2 \Delta q(x,Q^2)}{\displaystyle\sum_q e_q^2 q(x,Q^2)}$$

$$\Delta q = q^+ - q^-, \quad q = q^+ + q^-, \qquad g_1^d = g_1^N (1 - \frac{3}{2}\omega_D) = \frac{g_1^p + g_1^n}{2} (1 - \frac{3}{2}\omega_D);$$

$$\omega_D = 0.05 \pm 0.01$$

• At LO, semi-inclusive asymmetry, A_1^h :

$$A_1^h(x,z,Q^2) \approx \ \frac{\displaystyle \sum_q e_q^2 \Delta q(x,Q^2) D_q^h(z,Q^2)}{\displaystyle \sum_q e_q^2 q(x,Q^2) D_q^h(z,Q^2)}$$

$$z = \frac{E_h}{\nu}$$

 $D_a^h \neq D_{\bar{a}}^h$

- COMPASS: experiment, acceptance
- Introduction: nucleon spin structure
- (Semi-) inclusive longitudinal asymmetries and flavour separation
- 4 Direct determination of Δg in the nucleon
- Charged hadron multiplicities
- 6 Measurements on a transversely polarised target
- Generalised Parton Distributions
- 8 Summary

New, 2011 muon-proton data,

Taken at 200 GeV (160 GeV until then) to balance the amount of deuteron target data and thus:

• to increase precision of the Bjorken sum determination, i.e. a precision of:

$$\int_{0.004}^{0.7} g_1^{\rm NS}(x) dx, \qquad g_1^{\rm NS} = g_1^{\rm p} - g_1^{\rm n} = 2g_1^{\rm p} - \frac{g_1^{\rm d}}{1 - \frac{3}{2}\omega_{\rm D}}, \quad \omega_{\rm D} \approx 0.05$$

- lacktriangle to extend the range and increase precision of $g_1^{
 m p}$ measurements at low x
- lacktriangle better constrain the strange quark polarisation, Δs

 $Q^2 \text{ vs } x$

Structure functions g_1^p and g_1^d at low x

$g_1(x)$ for proton and deuteron, $Q^2 > 1$ (GeV/c)²

NEW: proton data 2011 (preliminary); full deuteron statistics

COMPASS measurements at high Q^2 important for the QCD analysis! but little sensitive to Δq

14/38

Semi-inclusive asymmetries and parton distributions

- Measured on both proton and deuteron targets
- for identified, positive and negative pions and (for the first time) kaons

- LO DSS fragmentation functions and LO unpolarised MRST pdf assumed here.
- NLO parameterisation of DSSV describes the data well.

Polarisation of quark sea

• Δs puzzle. Strange quark polarisation:

$$2\Delta S=\int_0^1(\Delta s(x)+\Delta\bar{s}(x))dx=-0.09\pm0.01\pm0.02 \text{ from incl. asymmetries} + \text{SU}_3,$$
 while from semi-inclusive asymmetries it is compatible with zero

but depends upon chosen fragmentation functions. Most critical: $R_{SF} = \frac{\int D_{\bar{s}}^{K^+}(z)dz}{\int D_{u}^{K^+}(z)dz}$ \Longrightarrow plan to extract it from COMPASS data on multiplicities.

• The sea is not unsymmetric: COMPASS, Phys. Lett. B, 680 (2009) 217; ibid., 693 (2010) 227.

$$\int_{0.004}^{0.3} \left[\Delta \bar{u}(x,Q^2) - \Delta \bar{d}(x,Q^2)\right] dx = 0.06 \pm 0.04 \pm 0.02 \ @ \ Q^2 = 3 \ (\text{GeV/}c)^2$$

Thus the data disfavour models predicting $\Delta ar{u} - \Delta ar{d} \gg ar{d} - ar{u}$

- COMPASS: experiment, acceptance
- Introduction: nucleon spin structure
- (Semi-) inclusive longitudinal asymmetries and flavour separation
- lacktriangledown Direct determination of Δg in the nucleon
- Charged hadron multiplicities
- 6 Measurements on a transversely polarised target
- Generalised Parton Distributions
- 8 Summary

Direct measurement of $\Delta g(x)$

Direct measurements – *via* the cross section asymmetry for the photon–gluon fusion (PGF) with subsequent fragmentation into:

 charm mesons, q≡c, (max. @ low Q², perturbative scale: e.g. m_c): low statistics, few theoretical assumptions;

$$A_{meas} = p_B \ p_T \ f \ a_{LL} \ \frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{BGD}} \frac{\Delta g}{g} + A_{BGD}$$

a pair of hadrons of large p_T, q≡u, d, s, separately for low- and high Q² (perturbative scale: e.g. p_T): high statistics, several quantities from MC. At LO, for both 2-hadron and inclusive samples:

$$A_{meas} = p_B \ p_T \ f \left[R_{PGF} \cdot a_{LL}^{PGF} \cdot \frac{\Delta g}{g} + R_{LP} \cdot D \cdot A_1^{LP} + R_{QCDC} \cdot a_{LL}^{QCDC} \cdot A_1^{LP} \right]$$

COMPASS NLO analysis of gluon polarisation

Based on I. Bojak and M. Stratmann, PL B433 (1998) 411; NP B 540 (1999) 345; I. Bojak, PhD, hep-ph/0005120.

- AROMA with parton showers ON used for (event-by-event) simulation of PhSp for NLO
- lacktriangle Background NLO processes (e.g. diagram (d)) corrected for (A_{corr})
- $a_{
 m LL}^{
 m NLO}$ calculated event-by-event

$$A^{\gamma N} = \frac{a_{\rm LL}}{D} \frac{\Delta g}{q} + A_{\rm corr}$$

Summary of $\langle \Delta g/g \rangle$ from COMPASS

- All LO QCD data consistent and point toward small $\langle \Delta g/g \rangle$. ΔG also small ?
- Data do not permit to determine a sign of $\Delta g/g$.
- NLO QCD result of COMPASS, at $\langle x \rangle \approx 0.20$, influences a $\Delta g(x) > 0$ fit, reducing $\Delta G = 0.39 \pm 0.07$ (stat.) to 0.24 ± 0.09 (stat.) at $Q^2 = 3$ (GeV/c)².

B. Badelek (Warsaw)

Structure functions in COMPASS

High- p_T hadron photoproduction

- Measured cross-section compass hep-ex/1207.2022: $Q^2 <$ 0.1 (GeV/c) 2 , -0.1 < $\eta_{\rm CMS} <$ 2.4, $p_{\rm T} <$ 3.6 GeV/c.
- Photoproduction of inclusive hadrons at NLO QCD for the COMPASS kinematics
 B. Jäger, M. Stratmann and W. Vogelsang, EPJ C44 (2005) 533.
- In perspective: constraining the Δg by the QCD calculations of the single high- $p_{\rm T}$ hadron asymmetries

NLO QCD calculations and perspectives for COMPASS for 1/4 of its luminosity.

- COMPASS: experiment, acceptance
- 2 Introduction: nucleon spin structure
- (Semi-) inclusive longitudinal asymmetries and flavour separation
- $oxed{4}$ Direct determination of Δg in the nucleon
- Charged hadron multiplicities
- 6 Measurements on a transversely polarised target
- Generalised Parton Distributions
- 8 Summary

Charged (single-) hadron multiplicities,

• Studied to measure fragmentation functions (FF), $D_q^h(z,Q^2)$ (\Longrightarrow cf. Δs). At LO:

$$M^{h}(x,z) = \frac{\frac{d\sigma_{\text{SIDIS}}}{dxdz}}{\frac{d\sigma_{\text{DIS}}}{dxdz}} = \frac{\sum_{q} e_{q}^{2} \left[q(x) D_{q}^{h}(z) + \bar{q}(x) D_{\bar{q}}^{h}(z) \right]}{\sum_{q} e_{q}^{2} \left[q(x) + \bar{q}(x) \right]}$$

- Until now:
 - High precision Single Inclusive e^+e^- Annihilation data do not separate q and \bar{q} and only access charge sum of FF for a hadron h.
 - Measurements at a fixed, large ($\sim M_Z$), scale, except BELLE ($Q^2 \sim$ 10 GeV 2).
 - Inclusive single hadron production by RHIC ⇒ improve constraints on gluon FF.

 - Global NLO analyses, e.g.: DSS, Phys. Rev. D 75 (2007) 114010.
- New COMPASS results obtained on an isoscalar (d in ⁶LiD) target (nuclear effects in ⁶LiD small)...
- ...with K and π identification and measured x, y, z dependence.

Charged (single-) hadron multiplicities; identified kaons

Charged (double-) hadron multiplicities

- \bullet Studied to measure $D_q^{h^+,h^-}(z^+,z^-,Q^2)=D_q^h(z,M_h^2,Q^2)$
- Needed in extracting asymmetries in SIDIS, e.g.: $A_{UT}^{\sin(\phi_R+\phi_S)}(z,M_h^2,Q^2)$
- Measured by COMPASS on d from LiD in bins of (z, M_h^2, Q^2) .

Status of helicity-dependent PDFs

- Global fits (DSSV/DSSV+/DSSV++) include: spin-dependent DIS data, SIDIS data with identified π and K, and proton-proton data \Longrightarrow extracting PDFs at NLO. L_q and L_g decouple from this procedure \Longrightarrow TMDs and GPDs?.
 - Limited (x, Q^2) range \Longrightarrow hard to get Δg from DIS
 - Separation of q(x) and $\bar{q}(x)$ exclusively from SIDIS \Longrightarrow FF needed! \Longrightarrow COMPASS data crucial $(x_{\min} \approx 5 \cdot 10^{-3})$.

Status of helicity-dependent PDFs,...cont'd

NNPDF, R.D. Ball et al., arXiv: 1303.7236

DSSV: DIS + SIDIS data; NNPDF: only DIS

- $\Delta s(x)$ conundrum: negative from DIS but zero (slightly positive ?) from all data \Longrightarrow strong dependence on FF? Measurements coming from COMPASS, B–factories, LHC '3F-D' rule: $\int_0^1 dx [\Delta s(x) + \Delta \bar{s}(x)] \approx$ -0.1 Validity ??? Lattice QCD: $-0.020 \pm 0.010 \pm 0.001$.
- The PDF status not likely to change befor the advent of EIC!

Status of helicity-dependent PDFs,...cont'd

Transparency from M. Stratmann, DIS2013

- COMPASS: experiment, acceptance
- Introduction: nucleon spin structure
- (Semi-) inclusive longitudinal asymmetries and flavour separation
- $oxed{4}$ Direct determination of Δg in the nucleon
- Charged hadron multiplicities
- Measurements on a transversely polarised target
- Generalised Parton Distributions
- 8 Summary

Measurements on a transversely polarised target,

Collins asymmetry, TMD: Sivers asymmetry

Properties of $\Delta_T q(x)$:

- is chiral-odd

 → hadron(s) in final state needed to be observed
- simple QCD evolution since no gluons involved
- related to GPD
- sum rule for transverse spin
- first moment gives "tensor charge" (now being studied on the lattice)

Transversity measured e.g. via the Collins asymmetry: \bot polarised $q \Longrightarrow$ unpolarised h(asymmetry in the distribution of hadrons):

$$N_h^{\pm}(\phi_c) = N_h^0 \left[1 \pm p_T D_{NN} A_{Coll} \sin \phi_c \right]$$

$$\phi_C = \phi_h + \phi_S$$

$$A_{Coll} \sim \frac{\sum_{q} e_{q}^{2} \cdot \Delta_{T} q \cdot \Delta_{T}^{0} D_{q}^{h}}{\sum_{q} e_{q}^{2} \cdot q \cdot D_{q}^{h}}$$

But transverse fragmentation functions $\Delta^0_T D^h_q$ (universal!) needed to extract $\Delta_T q(x)$ from the Collins assymmetry! Recently those FF measured by BELLE and BaBar.

Sivers process ($\phi_S = \phi_h - \phi_S$, correlation of \perp nucleon spin with k_T of unpolarised q): related

to L_q in the proton. Fundamental!

4 D > 4 D > 4 D > 4 D > 3

Low x. 2013

Results for the Collins asymmetry for protons

- Collins asymmetries for proton measured for +/- unidentified and identified hadrons...
- ...are large at $x \gtrsim 0.1$ and consistent with HERMES (in spite of different Q^2 !)
- but negligible for the deuteron
- These data + HERMES + BELLE: $\Longrightarrow \Delta_T u + \Delta_T d \sim 0$
- Transversity also obtained from 2-hadron asymmetries (and "Interference Fragmentation Function")

Results for the Sivers asymmetry for protons

- Sivers asymmetries for proton measured for +/- unidentified and identified hadrons...
- ...are larger at larger Q^2 (HERMES)
- COMPASS deuteron data show very small asymmetry
- Sivers functions (f_{1T}^{\perp}) for d and u quarks have opposite signs

- COMPASS: experiment, acceptance
- Introduction: nucleon spin structure
- (Semi-) inclusive longitudinal asymmetries and flavour separation
- iggleq iggrap Direct determination of Δg in the nucleon
- Charged hadron multiplicities
- 6 Measurements on a transversely polarised target
- Generalised Parton Distributions
- 8 Summary

Access GPD through the DVCS/DVMP mechanism

$$Q^2
ightarrow \infty,$$
 fixed $x_{
m B}, t \implies |t|/Q^2$ small

- 4 GDPs $(H, E, \widetilde{H}, \widetilde{E})$ for each flavour and for gluons
- Factorisation proven for σ_L only
- All depend on 4 variables: x, ξ, t, Q^2 ; DIS @ $\xi = t = 0$; Later Q^2 dependence omitted. Careful! Here $x \neq x_B$!
- H, \widetilde{H} conserve nucleon helicity E, \widetilde{E} flip nucleon helicity
- H, E refer to unpolarised distributions $\widetilde{H}, \widetilde{E}$ refer to polarised distributions
- $H^q(x,0,0) = q(x), \ \widetilde{H}^q(x,0,0) = \Delta q(x)$
- H, E accessed in vector meson production $via A_{UT}$ asymmetries
- $lacktriangledaw{H},\widetilde{E}$ accessed in pseudoscalar meson production $\emph{via}~A_{UT}$ asymmetries
- lacktriangle All 4 accessed in DVCS (γ production) in $A_C, A_{LU}, A_{UT}, A_{UL}$
- Integrals of H, E, H, E over x give Dirac-, Pauli-, axial vector- and pseudoscalar vector form factors respectively.
- Important: $J_z^q = \frac{1}{2} \int dx \ x \left[H^q(x, \xi, t = 0) + E^q(x, \xi, t = 0) \right] = \frac{1}{2} \Delta \Sigma + L_z^q$ (X. Ji)

34/38

DVCS/DVMP: $\mu p \rightarrow \mu p \gamma(M)$; what do we measure?

$$d\sigma^{\mu p \to \mu p \gamma} = d\sigma^{\rm BH} + (d\sigma^{\rm DVCS}_{\rm unpol} + P_{\mu} d\sigma^{\rm DVCS}_{\rm pol}) + e_{\mu} ({\rm Re}I + P_{\mu} {\rm Im}I)$$

Observables (Phase 1):

•
$$S_{\text{CS,U}} \equiv \mu^{+\leftarrow} + \mu^{-\rightarrow} = 2 \left(d\sigma^{\text{BH}} + d\sigma^{\text{DVCS}}_{\text{unpol}} + e_{\mu} P_{\mu} \text{Im} I \right)$$

•
$$D_{\text{CS,U}} \equiv \mu^{+\leftarrow} - \mu^{-\rightarrow} = 2 \left(P_{\mu} d\sigma_{\text{pol}}^{\text{DVCS}} + e_{\mu} \text{Re} I \right)$$

$$A_{\text{CS,U}} \equiv \frac{\mu^{+\leftarrow} - \mu^{-\rightarrow}}{\mu^{+\leftarrow} + \mu^{-\rightarrow}} = \frac{D_{\text{CS,U}}}{S_{\text{CS,U}}}$$

Analogously for transversely polarised target (Phase 2): $S_{CS,T}, D_{CS,T}, A_{CS,T} \Rightarrow E$

Why GPD at COMPASS?

- CERN high energy muon beam
 - 100 190 GeV
 - 80% polarisation
 - $-\mu^{+\leftarrow}$ and $\mu^{-\rightarrow}$ beams
- Kinematic range
 - between HERA and HERMES/JLab12
- intermediate x (sea and valence)
- Separation
 - pure B-H @ low x_{B}
 - predominant DVCS @ high x_{B}
- Plans
 - DVCS
 - DVMP
- Goals
 - from unpolarised target: *H* (Phase 1)
 - from \perp polarised target: E (Phase 2)

Test runs: 2008-9 and 2012; DVCS signal seen, full setup evaluated

- COMPASS: experiment, acceptance
- Introduction: nucleon spin structure
- (Semi-) inclusive longitudinal asymmetries and flavour separation
- $oxed{4}$ Direct determination of Δg in the nucleon
- Charged hadron multiplicities
- 6 Measurements on a transversely polarised target
- Generalised Parton Distributions
- 8 Summary

Summary: nucleon structure @ COMPASS, now and in the future

- It is the only high-energy polarised lepton nucleon experiment taking data
- longitudinally polarised muon beam of 160 (200) GeV/c off longitudinally and transversely polarised targets: ⁶LiD (d), NH₃ (p)
- with hadron identification
- All three leading twist pdf (F_1, g_1, h_1) and TMD investigated
 - New proton (2011) data extend measurements of g₁^p to low x and will permit a more accurate extraction of polarised pdf
 - extraction of FF ratios from hadron multiplicities on the way
 - will help to solve the " Δs puzzle"
 - gluon polarisation, Δg updated in LO and (new) NLO suggest a small ΔG at the measured x with all world measurements compatible
 - In the transverse (and TMD) sector, clear signals on the proton and evidence of a strong Q^2 dependence of TMD observed
 - Expecting a new global analysis of HERMES and COMPASS data (with BELLE FF)
- In the future (≥2014) a focus on transverse structure of the nucleon:
 - GPD, transverse size and parton orbital angular momentum
 - T-odd TMD (Sivers, Boer-Mulders distributions)
- Lots of data awaiting analysis!

