Nucleon Longitudinal Spin Structure
Experimental overview

Fabienne KUNNE
CEA / IRFU Saclay, France

• Gluon helicity
• Quark helicities
• Outlook

Measurements at RHIC, COMPASS, HERMES, JLab
Nucleon spin

How is the nucleon spin distributed among its constituents?

\[\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L \]

- quark
- gluon
- orbital momentum

\[\Delta \Sigma : \text{sum over } u, d, s, \bar{u}, \bar{d}, \bar{s} \]

\[\Delta q = \vec{q} - \vec{q} \]

Parton spin parallel or anti parallel to nucleon spin

Past:
- Theory: QPM estimations, with relativistic effects
 \[\Delta \Sigma \sim 0.6 \]
- Experiment: “Spin crisis” in 1988, when EMC measured
 \[a_0 = \Delta \Sigma = 0.12 \pm 0.17 \] MS scheme

Today:
- Precise world data on polarized DIS
 \[g_1 + SU_f(3) \]
 \[a_0 = \Delta \Sigma \sim 0.3 \]
- First results from Lattice QCD on \[\Delta \Sigma_{u,d} \] and \[L_{u,d} \]

Large experimental effort on \[\Delta G \] measurement
also because
\[a_0 = \Delta \Sigma - n_f (\alpha_s/2 \pi) \Delta G \] (AB scheme)
Three ways to study gluon contribution \(\Delta G \)

1. **Lepton Nucleon**
 - Photon Gluon Fusion
 - \(\Delta G/G(x) \)
 - SMC, HERMES, COMPASS

2. **Proton Proton collisions**
 - Gluon-Quark + Gluon-Gluon + …
 - \(\frac{\Delta G}{G} \times \frac{\Delta q}{q} + \frac{\Delta G}{G} \times \frac{\Delta G}{G} + … \)
 - \(A_{LL}(p_T) \)
 - RHIC : PHENIX & STAR

3. **QCD \(Q^2 \) evolution of spin structure function \(g_1(x,Q^2) \):**
 - Indirect determination assuming a functional form \(\Delta G(x) \).
 - Global fits include polarized DIS, SIDIS and pp data
HERMES at DESY

1995 to 2007

Spectrometer:
$\Delta p/p \sim 2\%$, $\Delta \Theta < 1$ mrad
Excellent separation of π, K, p

HERA $e^+ \& e^-$ 27 GeV
longitudinally polarized ~ 54%

Gaseous internal target
Longit. Polar. 85% H, D, He
Transv. Polar H
Unpol H, D, Ne, Kr
COMPASS at CERN

Fixed target
Secondary beams from SPS

Nucleon spin structure

Polarized muon beam:
160-200 GeV μ, $P_B=80\%$

Solid polarized target:
^6LiD $P_T=50\%$ 2002 to 2006
NH_3 $P_T=80\%$ 2007, 2010, 2011

Meson spectroscopy

Hadron beam:
190 GeV π/p
LH$_2$ 2008-2009

DIS events
$0.003 < x < 0.5$
$1 < Q^2 < 10$ (GeV/c)2

COMPASS at CERN

Fixed target
Secondary beams from SPS

Nucleon spin structure

Polarized muon beam:
160-200 GeV μ, $P_B=80\%$

Solid polarized target:
^6LiD $P_T=50\%$ 2002 to 2006
NH_3 $P_T=80\%$ 2007, 2010, 2011

Meson spectroscopy

Hadron beam:
190 GeV π/p
LH$_2$ 2008-2009

NIMA 577 (2007) 455
1. $\Delta G/G$ from $\vec{\text{lepton}} \vec{\ell} \bar{N}$ scattering

Photon Gluon Fusion (PGF) process

Asymmetry of cross sections for longitudinal polarizations of beam and target, parallel and antiparallel

$$A_{LL} = R_{PGF} <a_{LL}> <\Delta G/G> + A_{\text{background}}$$

Fraction of process Analyzing power

Two signatures for PGF:

1/ $q=c$ open charm $c \to D^0 \to K \pi$
 - Clean signature of PGF
 - pQCD scale $\mu^2 = 4 (m_c^2 + p_T^2)$
 - Combinatorial background & limited statistics
 - \to Difficult experiment; 5 decay channels added

2/ $q=u,d,s$ high p_T hadron pair $q \overline{q} \to h h$
 - High statistics
 - pQCD scale Q^2 or Σp_T^2
 - Physical background, better described for high Q^2
High p_T hadrons: $Q^2 \sim 3$

with model for physical background

Open charm: $Q^2 = 13$

- All measurements compatible with 0
- Constraint on $\langle \Delta G \rangle$ for $0.05 < x < 0.3$
- Results disfavour value of the integral $> \sim \pm 0.3$
 - i.e. $\pm 60\%$ of the $\frac{1}{2}$ nucleon spin
- Contribution to $\langle \Delta G \rangle$ outside measured x range not excluded

Note that these data are NOT included in global fits

Figure:

Graph showing $\Delta g/g$ vs x_g with data points and curves for different experiments:

- COMPASS, high p_T, $Q^2>1$ (GeV/c)2, 02-06
- COMPASS, high p_T, $Q^2<1$ (GeV/c)2, 02-04
- COMPASS, Open Charm, all Q^2, 02-07 (LO)
- SMC, high p_T, $Q^2>1$ (GeV/c)2
- HERMES, high p_T, all Q^2

Legend:

- LSS10, $\Delta G \sim +0.32$ at $Q^2 = 4$
- LSS10, $\Delta G \sim -0.33$
- DSSV, $\Delta G = 0.02$

References:

- i r f u
- CIPANP 2012, St Pertersburg, Florida, May 2012 – 7
COMPASS high p_T hadron: Cross section

$\mu^+d \rightarrow \mu^+h^\pm X$

Quasi real photo production of hadron

Compared to predictions at NLO

Data agree with NLO pQCD over 5 orders of magnitude (within theory uncertainty)

Settles the theory framework for ΔG high p_T

Next step: produce spin asymmetries $A_{LL}(p_T)$ for same events
2. \(pp \) collisions at RHIC

\[\sqrt{s} = 62, 200, 500 \, \text{GeV} \]

- Longitudinal spin asymmetries
 - hadron production for \(<\Delta G>\),
 - \(W \) production for \(<\Delta q>\)
- Transverse spin
RHIC luminosity increase vs time

- $\sqrt{s} = 200$ GeV
 - run 5, 6, 9, 12
- $\sqrt{s} = 500$ GeV
 - run 9, 11
2. \(p p \) collisions at RHIC, channels for \(\Delta G \)

- More abundant channels
 - \(p p \rightarrow \pi^0 \times \) PHENIX
 - \(p p \rightarrow \text{jet} \times \) STAR
 - 3 processes contribute
 \[
 \Delta G (x_1) \cdot \Delta G (x_2)
 \]

- Other channels
 - \(p p \rightarrow \text{jet jet} \) proj. STAR 500 GeV, low \(x \)
 \[
 \Delta G (x_1) \cdot \Delta q (x_2)
 \]
 \[
 \Delta q (x_1) \cdot \Delta q (x_2)
 \]

- Other channels
 - \(p p \rightarrow \gamma \text{ jet} \)
 - 1 process \(\rightarrow \) cleaner
 - Full kinematics reconstructed
 - Low statistics

- Other channels: \(\pi^+, \pi^-, \eta, \ldots \)

High potential for \(\Delta G \) from various channels, various kinematics
pp collisions at RHIC: cross-sections

Two examples

Inclusive jets at STAR

• Good agreement between data and pQCD calculations
• Exist also for other channels: π⁺, π⁻, dijet, direct γ, γ +jet, η, etc.
• Establishes validity of pQCD frame → validates method for ΔG extraction
pp collisions at RHIC: inclusive jet at STAR

\[p + p \rightarrow \text{jet} + X \]

Measure double spin asymmetry \(A_{LL} (p_T) \)

Compare data to global fits with various \(\Delta G(x) \) parameterizations

High stat. run 9

→ New fit

\[\int_{0.05}^{0.2} dx \Delta g \approx 0.1 \]

(See: STAR at DIS12, Stratmann at DIS12, Vogelsang at IWHSS12)

Inclusive jet provides strong constraint on \(\Delta G \) in measured range giving \(\Delta G \) positive ~ 0.1 for 0.05<x<0.2
pp collisions at RHIC: \(\pi^0 \) production at PHENIX

\[p p \rightarrow \pi^0 X \]

Measure double spin asymmetry \(A_{LL}(p_T) \)

Compare data to global fits with various \(\Delta G(x) \) parameterizations

![Graph showing double spin asymmetry](image)

New fit

\(DSSV = -0.08 \)

Run9 vs Run 6: FoM increased by more than 2

Strong constraint on \(\langle \Delta G \rangle \) in x range probed 0.05 < x < 0.3
pp collisions at RHIC: other channels

charged pions: different FF for favored or unfavored

different qg contributions for $\pi^0, +, - \rightarrow$ access sign of ΔG

$$A_{LL}^{\pi^+} > A_{LL}^{\pi^0} > A_{LL}^{\pi^-} \Rightarrow \Delta G > 0$$

$$A_{LL}^{\pi^+} < A_{LL}^{\pi^0} < A_{LL}^{\pi^-} \Rightarrow \Delta G < 0$$

Promising channels when more statistics available
3. ΔG from global fits

Spin structure functions g_1

$$A_1^{DIS} \propto g_1(x) \propto \frac{1}{2} \sum_{q} e_q^2 (\Delta q(x) + \Delta \overline{q}(x))$$

$$\frac{d g_1}{d \log(Q^2)} \propto -\Delta g(x, Q^2)$$

g_1 as input to global QCD fits for extraction of $\Delta q_f(x)$ and $\Delta G(x)$

However x and Q^2 coverage not yet sufficient for ΔG

Use also constraint from pp data (DSSV)

Note: 200 GeV proton data to come from COMPASS 2011 run
Jlab experimental halls

6 GeV polarized CW electron beam
Pol=85%, 200µA

Will be upgraded to 12 GeV by ~2014

Hall A: two HRS’
Hall B: CLAS
Hall C: HMS+SOS

NH₃ & ND₃ targets

H. He target
Jlab CLAS - $g_1(x, Q^2)$ for the proton

Jlab/ CLAS - EG1
5.7 GeV e-
Polarized NH$_3$
(and ND$_3$) targets

Data included in LSS fit
3. $\Delta G(x)$ from global QCD fits of polarized data

LSS ’10
Only DIS & SIDIS data
Leader, Sidorov, Stamenov,
$\Delta G = 0.25 \pm 0.19$
$\Delta G = -0.40 \pm 0.43$
at $Q^2 = 2.5 \text{GeV}/c^2$

DSSV-2009 (old)
DIS, SIDIS & pp
De Florian, Sassot, Stratmann, Vogelsang
PRL101 (2008)072001
$\Delta G = -0.08 \pm ?$
at $Q^2 = 10 \text{GeV}/c^2$

- Data favored fits with ΔG close to 0, excluding ΔG std (DSSV-2009, LSS10)
- Strong constraint on $<\Delta G>$, now > 0 (DSSV+) in x range probed
- No constraint outside $0.05 < x < 0.2$
<table>
<thead>
<tr>
<th>Source</th>
<th>(\Delta \Sigma)</th>
<th>Notes</th>
</tr>
</thead>
</table>
| COMPASS | \(0.30 \pm 0.01 \) \(\pm 0.02 \) (stat) \(\pm 0.01 \) (evol) | fit to \(g_1^{p,n,d} \) world data, MS scheme, \(Q^2=3 \) (GeV/c)^2 PLB 647 (2007) 8 \\
| | \(\Delta s + \Delta \bar{s} = -0.08 \pm 0.01 \) (stat) \(\pm 0.02 \) (evol) | COMPASS data only |
| HERMES | \(0.33 \pm 0.01\) \(\pm 0.02 \) (theo) \(\pm 0.028 \) (evol) | HERMES \(g_1^d \) data, MS scheme, \(Q^2=5 \) (GeV/c)^2, neglecting \(x \) \(< 0.02\) contrib., PRD75 (2007)012007 \\
| | \(\Delta s + \Delta \bar{s} = -0.085 \pm 0.013 \) (th) \(\pm 0.008 \) (exp) \(\pm 0.009 \) (evol) | |
| DSSV | \(0.24 \) | \(Q^2=10 \) (GeV/c)^2 arXiv:0804.0422 |
| LSS '10 | \(\Delta \Sigma = 0.25 \pm 0.04 \) | \(\Delta G \) with node \(Q^2=10 \) (GeV/c)^2, \(\Delta G >0 \) |
| | \(\Delta \Sigma = 0.21 \pm 0.03 \) | |
Bjorken sum rule

A fundamental result of QCD on the non-singlet combination $g_1^{NS}(x) = g_1^p(x) - g_1^n(x)$ derived from current algebra:

$$\int_0^1 g_1^{NS}(x) dx = \frac{1}{6} \left| \frac{g_A}{g_V} \right| C^{NS}$$

Measuring the first moments provides a test of the Bjorken sum rule,

Fit to COMPASS data: $g_A/g_V = 1.28 \pm 0.07 \text{(stat)} \pm 0.10 \text{(syst)}$

PDG value:
1.268 ± 0.003
Quark helicities from Semi-Inclusive DIS

- COMPASS
 - PLB693(2010)227, using DSS FF
- HERMES
 - PRD71(2005)012003
- DSSV

- Full flavour separation → $x \sim 0.004$
- Sea quark distributions ~ zero
- Good agreement with global fits

HERMES $\Delta s + \bar{\Delta s} = 0.037 \pm 0.019$ (stat) ± 0.027 (syst), *PLB666(2008)466*

COMPASS $\Delta s = -0.01 \pm 0.01$ (stat) ± 0.01 (syst), $0.003 < x < 0.3$

$\Delta s - \bar{\Delta s}$ compatible with 0

Extraction at LO

$$\frac{A_1^{h(p/d)}(x)}{\sum_q e_q^2 D_q^h q(x)} = \sum_q e_q^2 D_q^h \Delta q(x)$$
Light sea quark polarized distributions

\[x(\Delta \bar{u} - \Delta \bar{d}) \]

\[\int_{0.004}^{0.3} (\Delta \bar{u} - \Delta \bar{d}) \, dx = 0.052 \pm 0.035 \text{(stat.)} \pm 0.013 \text{(syst.)} \]

Slightly positive, compatible with zero.

Recall value for unpolarized case: \[\int (\bar{d} - \bar{u}) \, dx = 0.118 \pm 0.012 \]
\[\Delta s \] puzzle

- **DIS data**: the integral of \(\Delta s \) can be extracted from the integral of \(g_1 \) using two other inputs (\(n \) and hyperon decay) & SU(3)
 \[\int \Delta s + \overline{\Delta s} = - 0.08 \pm 0.01 \pm 0.02 \]

- **SIDIS data**: the integral of \(\Delta s \) can be computed from \(\Delta s(x) \) measured from kaon spin asymmetries, using quark Fragmentation Functions
 \[\Delta s(x) \approx 0 \]

Several possible explanations to the discrepancy:

- Uncertainty on quark fragmentation functions (\(s \to K \))
 - would need value twice bigger than DSS

- Global fits (DSSV, LSS) suggest negative \(\Delta s \) at low \(x \)
 - reconciles the two approaches

- Assume SU(3) violation \(a_8 \) from 0.58 to 0.42
 \[\Delta s = -0.02 \]

\[\text{Bass &Thomas, PLB 684(2010)216} \]

Need more data on quark fragmentation functions
Need more data on \(\Delta s \) at low \(x \)

COMPASS run 2011 at 200 GeV
Certainly a physics case for EIC
Δs puzzle cont’d. New fit DSSV+

From Stratmann at DIS-2012, Including COMPASS SIDIS results π, K at low x:

“Tendency toward negative low-x also from SIDIS? Heavily relies on Fragmentation Functions.”
Quark helicities from W production in pp

RHIC short exploratory run: first collisions at 500 GeV

Parity violating, single spin asymmetry

No fragmentation function uncertainty

$u + \bar{d} \rightarrow W^+ \rightarrow e^+ + \nu$

$\bar{u} + d \rightarrow W^- \rightarrow e^- + \bar{\nu}$

PHENIX

STAR

J. Haggerty ICHÉP2010

- Signs as expected from polarized PDFs
- Promising channel
Jlab – CLAS A_{1}^p, A_{1}^d

$W > 2; Q^2 > 1$

Proton

Deuteron
Jlab – A_1^n A_1^p

$W > 2; Q^2 > 1$

Neutron

Proton

A_1^n at $x \rightarrow 1$, SU(6) symmetry breaking?

Polarized Quark Distributions - Valence sector

From A_1^n and A_1^p results
u quark spin as expected

d quark spin stays negative

• Disagree with pQCD model calculations assuming HHC (hadron helicity conservation)
• Quark orbital angular momentum

Consistent with valence quark models and pQCD PDF fits without HHC constraint

Chen, Seattle OAM Workshop, Feb2011
pQCD with Quark Orbital Angular Momentum

Inclusive Hall A and B and Semi-Inclusive Hermes

\[
\frac{\Delta u}{u}, \quad \frac{\Delta d}{d}
\]

\[
q^+(x) \propto (1 - x)^3 \quad q^-(x) \propto (1 - x)^5 \quad x \rightarrow 1
\]

Chen, Seattle OAM Workshop, Feb2011
Lattice: quark spin and angular momentum

- Impressive results from lattice QCD
- Agreement with measurements for quark spin
- Predictions for angular momentum

Ph. Haegler, MENU 2010

MS at 4 GeV² vs. $m_π^2$ [GeV²]
Conclusions

Gluon contribution to nucleon spin
All measurements point to zero or small contribution. Strong constraint on fits from RHIC. Only $0.05 < x < 0.2$ probed. Need low x measurement.

Quark contribution to nucleon spin
Extraction for all flavours from SIDIS
Towards agreement with Lattice QCD calculation for $\Delta \Sigma$
$\Delta s(x) \sim 0$ from SIDIS in measured region, and $\int \Delta s < 0$ from DIS:
need more precision and Fragmentation Function knowledge.

Angular momentum
DVCS, DVMP:
data from HERMES & Jlab + projects at Jlab-12GeV & COMPASSII
Good prospects for Lattice QCD

Exciting future programs in preparation at RHIC, COMPASS-II, Jlab-12GeV, and... EIC/ENC