DVCS and Flux Determination at COMPASS SPIN-PRAHA 2012

Nicolas du Fresne von Hohenesche

for the COMPASS collaboration Institut für Kernphysik, Mainz CERN

July 7th 2012

Outline

- Generalised Parton Distribution
- Deep Virtual Compton Scattering
- The COMPASS experiment
- Hardware upgrade for 2012
- Luminosity determination
- Summary

Generalised Parton Distribution

Factorisation for Q^2 large, $t < 1 \text{ GeV}^2$

- Generalised parton distribution for quarks: H^f , E^f , \tilde{H}^f , \tilde{E}^f
- limits:

$$q(x) = H(x,0,0)$$

$$F(t) = \int dx H(x,\xi,t)$$

• Ji's sumrule: $J^f = \frac{1}{2} \int_{1}^{1} dx \, x [H^f(x,\xi,t) + E^f(x,\xi,t)]$

 J^f : total angular momentum contribution of quark f

Nucleon Tomographie

GPDs allow measurement of longitudinal momentum and transverse spacial structure of the nucleon

for $\xi \to 0$: $t = -\Delta^2_{\perp}$ purely transverse

$$q^f(x,b) = \int \frac{d^2\Delta_{\perp}}{(2\pi)^2} e^{-i\Delta \cdot b_{\perp}} H^f(x,0,-\Delta_{\perp}^2)$$

GPD at COMPASS

Why at COMPASS?

- High energy muon beam
 - \bullet μ^+ or μ^-
 - 160 200ĠeV
 - 80 % polarized
- Unique kinematic range
- good acceptance

CERN, SPS and beam

SPS proton beam: $400 \, \text{GeV}$, $2 \cdot 10^{13} \, \text{per spill} \rightarrow \text{Secondary hadron beams}$ (p, K, π) $150 - 270 \, \text{GeV}$, $2 \cdot 10^7 \, \text{per spill}$ Tertiary muon beam (80% pol.) $160 - 200 \, \text{GeV}$, $2 \cdot 10^8 \, \text{per spill}$

Deep Virtual Compton Scattering

Hard exclusive exclusive photon production

$$\mu p \rightarrow \mu' p' \gamma$$

$$\sigma = \sigma_{\rm BH} + \sigma_{\rm DVCS} + \text{interference term}$$

BH calculable DVCS $d\sigma^{\mathrm{DVCS}}/d|t|$ Interference $Re\,A^{\mathrm{DVCS}}$ and $Im\,A^{\mathrm{DVCS}}$

BH vs. DVCS

• $Q^2 = 2 \,\text{GeV}^2$, $t = 0.1 \,\text{GeV}^2$ and 160 GeV beam energy Azimuthal distribution of the photon

Different contributions for different X_B regions: BH, Interference term and DVCS How to measure the interference?

Observables

DVCS experiment to constrain GPD H

$$\mu^{+\downarrow}(P = -0.8), \ \mu^{-\uparrow}(P = 0.8), \text{unpol. proton target (lH2)}$$

- Beam charge & Spin Sum: $S_{CS,U} \equiv d\sigma^{+\downarrow} + d\sigma^{-\uparrow}$ $\Rightarrow Im A^{DVCS}, \sigma^{BH}, \sigma^{DVCS}$
- Beam charge & Spin Difference: $\mathcal{D}_{CS,U} \equiv d\sigma^{+\downarrow} d\sigma^{-\uparrow}$ $\Rightarrow Re A^{DVCS}, \sigma^{DVCS}$
- Beam charge & Spin Asymmetry: $A_{CS,U} \equiv D_{CS,U}/S_{CS,U}$
- Additional: Deep virtual meson production (DVMP)

GPD E more challenging:

$$\mu^{+\downarrow}(P=-0.8), \ \mu^{-\uparrow}(P=0.8),$$
 transversely pola. proton target (NH₃)

Parametrisation and Transverse Imaging

Prediction with different models for t dependence:

- factorisation: $H(x, \xi, t) \propto q(x)F(t)$
- Regge motivated t dependence: x t correlation $H(x,0,t) \propto q(x) \exp(-B(x)|t|)$ For x dependency: simple Ansatz

$$B = 1/2 < b^2 > = B_0 + 2\alpha' \ln \frac{x_0}{x}$$

 $r_{\perp} = b/(1-x)$: transverse size of nucleon

BCSA Projections

With 2 years of data taking $\equiv 1222 pb^{-1}$

Uncertainties small enough for model comparison

2012 DVCS Dress Rehearsal

6 weeks of test run this years Studies of principles and checks of equipment for the main run in 2015/2016

Experimental challenges:

- New recoil proton detector (CAMERA)
- New 2.5 m long IH₂ target by CERN
- Good acceptance for photons (Upgrades and ECAL0)
- Extension of trigger acceptance towards higher Q²
- Well known acceptance
- High precision luminosity determination

160 GeV μ^{\pm} beam with a flux of $\approx 2 \cdot 10^7 \frac{1}{s}$

CAMERA

Exclusivity via recoil proton detection Used for triggering and proton PID

- 2.5 m long IH₂ target
- 40 mm diameter
- TOF detector with two layers of scintillator
- high time resolution (300 ps)
- Readout with GANDALF board with 1 GHz digitalisation

ECAL 0

Large angle photons detected by ECAL0

- Shashlyk modules with MAPD readout
- Energy range: 0.1-30 GeV
- Energy resolution $\frac{0.05}{\sqrt{E}}$
- Time resolution 0.5-0.6 ns

LAST

Large Angle Spectrometer Trigger Scintillator trigger hodoscope consisting of 2 planes (H1/ H2) Principle of target pointing with coincidence matrix $Q^2 > 10 \,\text{GeV}$

H1 and H2

H1: 230 cm \times 190 cm, 64 channels and 1 cm thick H2: 500 cm \times 420 cm, 128 channels and 2 cm thick

Cross section and Luminosity

$$\frac{d^2\sigma}{dQ^2 dx d\xi dt} = \frac{N}{\int L dt \cdot A \cdot \delta Q^2 \delta x \delta \xi \delta t \cdot \text{corrections}}$$

with N = number of selected events, A = acceptance and $\int L dt =$ integrated luminosity

Cross section measurement ⇒ precise luminosity determination

Fixed target experiment:

$$L[cm^{-2}s^{-1}] = flux \times target density$$

2009 Test Run

- Two weeks of data taking
- Small RPD
- 40 cm IH₂ target
- Only intermediate Q² trigger
- 160 GeV μ^{\pm} beam

Using one run of 2009 test data for illustration

Target Density

2009 DVCS test run:

- Liquid hydrogen target
- 40 cm long target cell
- Radius of 1.6 cm
- Density LH: 0.0745 mol / cm³ at 1020 mbar and 18 K
- $1.77 \cdot 10^{24} \frac{1}{cm^2}$

Random Trigger Method

High flux $\approx 10^7 s^{-1}$ Using random trigger for flux measurement Hardware and offline analysis Beam track reconstruction with beam telescope (FI,SI)

Flux =
$$\frac{\text{number of reconstructed beam tracks}}{\text{number of random trigger} \times \text{time gate } \Delta t}$$

- DAQ dead time free
- Effective flux
- Unbiased measurement

Random Trigger

- Radioactive β⁺source
- Decay of ²²Na measured
- 22 Na $\rightarrow ^{22}$ Ne + e⁺ + ν_e
- Away from experiment
- Very stable over the run
- Coincidence rate \approx 3kHz in 2009

Beam Track Selection

Selection of reconstructed beam tracks:

- Random Trigger Events
- Hits in FI01/FI02
- Reconstructed momentum
- Target cut (1.6 cm)
- ullet Track time cut \pm 2 ns
- Time in spill cut

pprox10% of the random trigger events contain at least one good beam track

Track Time for Δt

Time of the beam track with respect to trigger time Physics trigger have a time peak at 0 ns Flat distribution because of the Random Trigger

Time in spill

Beam tracks over time in spill

- Spill structure
- Flat beam track distribution
- Constant detector load
- Veto dead time correction easier
- Time in spill cut:2s and <10s

Estimated Flux

Time in spill cut applied
Random trigger attempts scaled with time window

Estimate of Precision

The statiscal errors are small: 2.1% per spill Systematic uncertainties to be estimated ⇒ Goal: 1%!

- Track time cut
- Target density
- Veto dead time
- μ^{\pm} differences

Studies are ongoing but not yet released

Summary and Outlook

- COMPASS has great potential to study GPDs
- GPDs are accessable via hard exclusive photon production
- Experimental challenges
- 6 Week of dress rehearsal in 2012
- Main physics run in 2015/2016
- Hardware upgrades:
 - CAMERA
 - ECAL0
 - Large Angle Spectrometer Trigger
- High precision luminosity determination with the Random Trigger method

Thanks for the attention