COMPASS: present and future

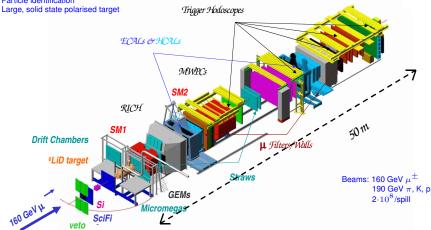
Barbara Badelek University of Warsaw

Low *x* 2012

Paphos, June 27 – 30, 2012

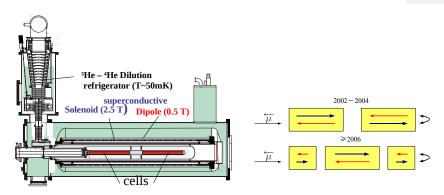
What has COMPASS done so far

- COMPASS n);
- Is taking data since 2002 (2005 break due to SPS shutdown);
- muon and hadron programmes;
- longitudinally polarised muon beam of 160 GeV/c off longitudinally and transversely polarised targets: ⁶LiD (d), NH₃ (p);
- 190 GeV/c hadron beams: π, K, p off unpolarised targets: liquid H₂, Pb, Ni, Cu, W;
- originally planned until 2009;
- addendum 2010-2011: transverse and longitudinal NH₃;
- muon results: quarks contribute 30% to the nucleon's spin, gluons contribution small in the measured x range, all 3 leading twist PDF (f_1,g_1,h_1) investigated
- hadron results: search for exotics, hybrids, glueballs; measurements of pion polarisabilities.



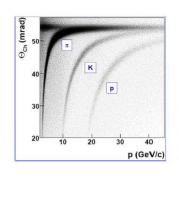
COMPASS Spectrometer

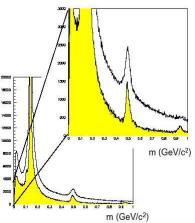
(muon run)


Nucl. Instr. Meth. A577 (2007) 455

Two stages, \sim 350 planes Calorimetry Particle identification

veto


COMPASS polarised targets

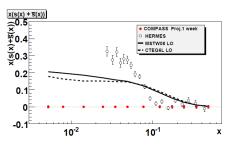

- * Two (three) target cells, oppositely polarised * Polarisation reversed every 8 h (less frequent after 2005) by field rotation
- * Material: solid ⁶LiD (NH₂)
- * Polarisation: ~ 50% (~90%), by the Dynamical Nuclear Polarisation
- * Dilution: f~0.4 (~0.15)
- * Polar acceptance: ~70 mrad (~180 mrad after 2005)

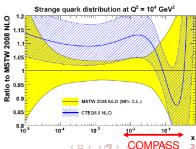
COMPASS RICH

Before upgrade: white distribution After upgrade: yellow distribution

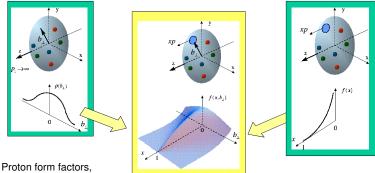
RICH2007 Federica

Federica Sozzi 19


COMPASS II Proposal


- CERN-SPSC-2010-014 (SPSC-P-340) of May 17, 2010
 wwwcompass.cern.ch/compass/proposal/compass-II_proposal/compass-II_proposal.pdf
- Approved in December 2010 initially 3 years data taking (Phase 1)
- Flavour separation and fragmentation in spin-averaged SIDIS (strange sector!)
- Focus on transverse structure of the nucleon
 - GPD, transverse size and parton orbital angular momentum
 - T-odd TMD (Sivers, Boer-Mulders distributions)
- π/K polarisabilities and tests of ChPT in the Compton scattering via Primakoff reaction.
- Addendum foreseen (spin-dependent GPD), Phase 2.

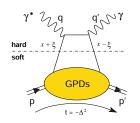
Spin-averaged SIDIS


- Spin-averaged SIDIS, $\mu p \to \mu h X$, will be recorded simultaneously with DVCS/DVMP, on a long LH₂ target (NH₃ target from COMPASS I is difficult!)
- Charge and nature of "h" will be determined (π^{\pm} , π^{0} , K^{\pm} , K^{0} , Λ , $\bar{\Lambda}$)
- Combined with COMPASS I data on 6 LiD \Longrightarrow q_f separation in global QCD fits, constraints on FF (hadron multiplicities) and LO determination of s(x) at 0.001 < x < 0.2.
- Two years of data taking: dependence on x, Q^2, p_T^2, z and asymmetries $A^{\cos\phi}$, $A^{\cos2\phi}$, $A^{\sin\phi}$ of hadrons on unpol. proton target. They are sensitive to T-odd TMD Boer-Mulders function and Cahn effect. Data exist for ⁶LiD.

3D picturing of the proton via GPD

D. Mueller, X. Ji, A. Radyushkin, A. Belitsky, ... M. Burkardt, ... Interpretation in impact parameter space

Proton form factors, transverse charge & current densities

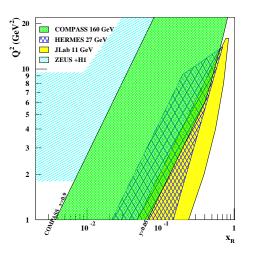

Correlated quark momentum and helicity distributions in transverse space - GPDs

Structure functions, quark longitudinal momentum & helicity distributions

Slide from V.D. Volker, LANL 2007

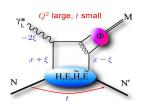
8/28

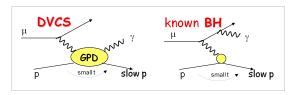
Access GPD through the DVCS/DVMP mechanism



$$\begin{array}{ccc} Q^2 \rightarrow \infty, & & & \\ \mathrm{fixed} \; x_\mathrm{B}, t & \Longrightarrow & |t|/Q^2 \; \mathrm{small} \end{array}$$

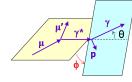
- 4 GDPs $(H, E, \widetilde{H}, \widetilde{E})$ for each flavour and for gluons
- Factorisation proven for σ_L only
- All depend on 4 variables: x, ξ, t, Q^2 ; DIS @ $\xi = t = 0$; Later Q^2 dependence omitted. Careful! Here $x \neq x_B$!
- H, \widetilde{H} conserve nucleon helicity E, \widetilde{E} flip nucleon helicity
- H, E refer to unpolarised distributions $\widetilde{H}, \widetilde{E}$ refer to polarised distributions
- $H^q(x,0,0) = q(x), \ \widetilde{H}^q(x,0,0) = \Delta q(x)$
- H, E accessed in vector meson production $via\ A_{UT}$ asymmetries
- $\bullet \ \ \widetilde{H}, \widetilde{E}$ accessed in pseudoscalar meson production $\emph{via} \ A_{UT}$ asymmetries
- lacktriangle All 4 accessed in DVCS (γ production) in $A_C, A_{LU}, A_{UT}, A_{UL}$
- Integrals of H, E, H, E over x give Dirac-, Pauli-, axial vector- and pseudoscalar vector form factors respectively.
- Important: $J_z^q = \frac{1}{2} \int dx \, x \left[H^q(x, \xi, t = 0) + E^q(x, \xi, t = 0) \right] = \frac{1}{2} \Delta \Sigma + L_z^q$ (X. Ji)




Why GPD at COMPASS?

- CERN high energy muon beam
 - 100 190 GeV
 - 80% polarisation, opposite for μ^+ , $\mu^ -\mu^+$ and μ^- beams
- Kinematic range
 - between HERA and HERMES/JLab12
 - intermediate x (sea and valence)
- Separation
 - pure B-H @ low $x_{
 m B}$
 - predominant DVCS @ high x_{B}
- Plans
 - DVCS
 - DVMP
- Goals
 - from unpolarised target: H (Phase 1)
 - from \perp polarised target: E (Phase 2)

DVCS/DVMP: $\mu p \rightarrow \mu p \gamma(M)$; what do we measure?



$$d\sigma^{\mu p \to \mu p \gamma} = d\sigma^{\rm BH} + (d\sigma^{\rm DVCS}_{\rm unpol} + P_{\mu} d\sigma^{\rm DVCS}_{\rm pol}) + e_{\mu} (\text{Re}I + P_{\mu} \text{Im}I) \quad 4 - \text{dim.} : x_{\rm B}, Q^2, t, \phi$$

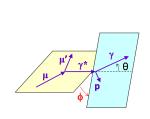
Observables (Phase 1):

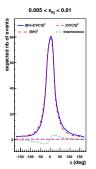
•
$$S_{\text{CS,U}} \equiv \mu^{+\leftarrow} + \mu^{-\rightarrow} = 2 \left(d\sigma^{\text{BH}} + d\sigma^{\text{DVCS}}_{\text{unpol}} + e_{\mu} P_{\mu} \text{Im} I \right)$$

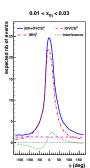
$$A_{\rm CS,U} \equiv \frac{\mu^{+\leftarrow} - \mu^{-\rightarrow}}{\mu^{+\leftarrow} + \mu^{-\rightarrow}} = \frac{D_{\rm CS,U}}{S_{\rm CS,U}}$$

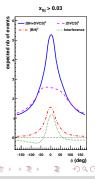
• Each term ϕ -modulated If ϕ -dependence integrated over \Longrightarrow twist-2 DVCS contribution; if ϕ -dependence analysed: \Longrightarrow Im (F_1H) and Re (F_1H)

Analogously for transversely polarised target (Phase 2): $S_{CS,T}, D_{CS,T}, A_{CS,T} \Rightarrow E$

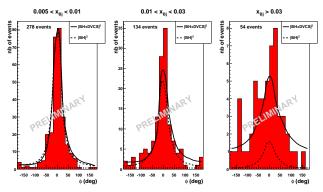

DVCS/DVMP: experimental requirements


New hardware items needed:


- 2.5 m long liquid H₂ target (LH₂), ready 2012
- 4 m long, tof recoil proton detector (CAMERA), ready 2012, with 2 barrels and a readout of 1GHz digitalisation (Gandalf)
- large angle electromagnetic calorimeter (ECAL0) just downstream target; prototype ready 2012



Simulations @ 160 GeV and present setup (no ECAL0); normalisation of BH @ small $x_{\rm B}$

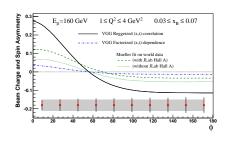


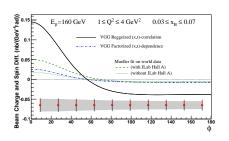
DVCS tests in 2008/2009

- Data taken at 160 GeV with μ^+ and μ^- (flux (μ^+) /flux (μ^-) = 3 at this energy)
- 40 cm long H₂ target (one vertex with μ , μ')
- Short recoil proton detector (one proton, $p_{\rm D}$ < 1 GeV/c)
- No ECAL0 (only one γ)

Results for μ^+ beam:

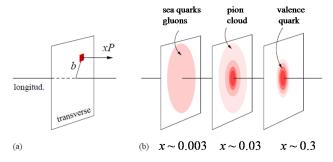
- MC normalised to yield @ low x_B
- A clear signal of DVCS at $x_{\rm B} > 0.03$


In 2012 \sim 10 x larger statistics!


DVCS: projected data sets and results

- Simulations for:
 - 2 years of data taking
 - 10% global efficiency
 - $-L = 1222 \text{ pb}^{-1}$

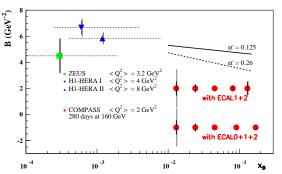
- $S_{\rm CS,U}, D_{\rm CS,U}, A_{\rm CS,U}$ measured in 6 $x_{\rm B} \times$ 4 Q^2 bins as function of ϕ
- Azimuthal dependence $A_{CS,U}$ and $D_{CS,U}$ compared to models:



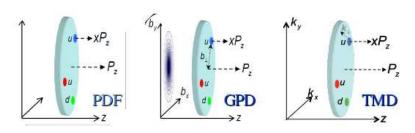
Nucleon transverse structure ("tomography")

In the GPD limiting case ξ = 0, $t \equiv -\Delta^2 = -\Delta^2_{\perp}$ and

$$q^f(x, \mathbf{b}_{\perp}) = \int \frac{\mathrm{d}^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{-i\mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H^f(x, 0, -\mathbf{\Delta}_{\perp}^2)$$

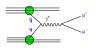

Get the nucleon transverse size as a function of longitudinal momentum fraction

Nucleon transverse structure – projected results


Case
$$x = \xi$$

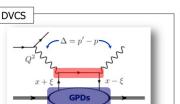
$$\frac{\mathrm{d}\sigma_{\mathrm{unpol}}^{\mathrm{DVCS}}}{\mathrm{d}t} \propto e^{-B(x_{\mathrm{B}})|t|} \quad \text{where at low } x_{\mathrm{B}} : B(x_{\mathrm{B}}) \approx \frac{1}{2} \langle r_{\perp}^{2}(x_{\mathrm{B}}) \rangle$$

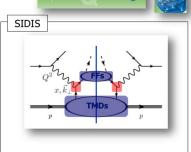
Here a simple ansatz: $B(x_{\rm B})=B_0+2\alpha'log\frac{x_0}{x_{\rm B}}$ was assumed.


Transverse Momentum Dependent (TMD) distributions

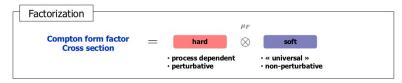
- lacktriangle parton intrinsic k_{T} taken into account
- allow accessing quark L!
- at COMPASS studied in 2 ways:
 - semi-inclusive DIS (polarised muons on unpolarised/transversely polarised target)
 - Drell-Yan process (pion beam on unpolarised/transversely polarised target)

SIDIS



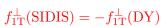


From Cédric Lorcé (Orsay), IWHSS2012

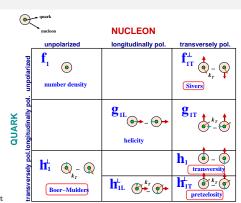


DVCS vs. SIDIS

Incoherent scattering

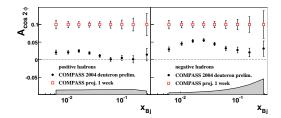

 $t = \Delta^2$

 $x = \frac{n}{P+}$

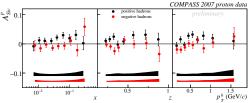

TMD distributions...cont'd

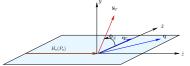
- In LT and considering k_T,
 8 PDF describe the nucleon
- lacktriangle QCD-TMD approach valid $k_{
 m T} \ll \sqrt{Q^2}$
- After integrating over k_T only 3 survive: f₁, g₁, h₁
- TMD accessed in SIDIS and DY by measuring azimuthal asymmetries
- SIDIS: e.g. $A_{\rm Sivers} \propto {\sf PDF} \otimes {\sf FF}$
- DY: e.g. $A_{\mathrm{Sivers}} \propto \mathsf{PDF}^{\mathrm{beam}} \otimes \mathsf{PDF}^{\mathrm{target}}$
- OBS! Boer-Mulders and Sivers PDF are T-odd, i.e. process dependent

$$h_1^{\perp}(SIDIS) = -h_1^{\perp}(DY)$$

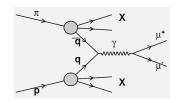


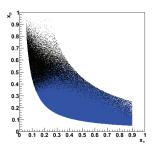
- OBS! transversity PDF is chiral-odd
- lacktriangle Boer-Mulders, Sivers and transversity $(h_1^\perp, f_{1\mathrm{T}}^\perp, h_1)$ will be measured in COMPASS lacktriangle

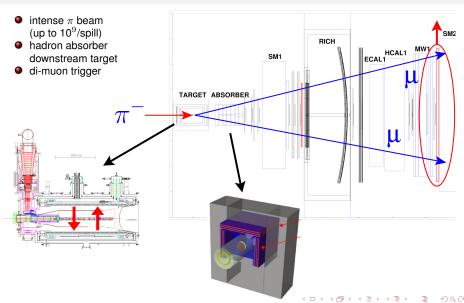



Boer-Mulders (h_1^{\perp}) and Sivers (f_{1T}^{\perp}) DF in SIDIS

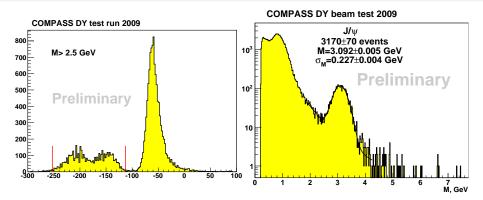
- can be measured on the proton together with DVCS


- $lackbox{ Sivers asymmetry, } A_{
 m Siv}^{
 m p} \equiv A_{
 m LT}^{\sin \Phi_{
 m S}},$ measured on d and p targets
- Found positive for h⁺ on proton but less strong than in HERMES

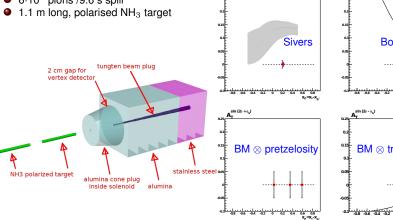


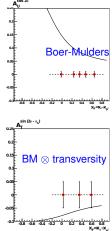

Drell-Yan process: $\pi^- p^\uparrow \to \mu^+ \mu^- X$ @ COMPASS

- Clean partonic process
- No fragmentation functions involved!
- Convolution of two Parton Distribution Functions $\sigma^{\mathrm{DY}} \propto f_{\bar{u}|\pi^-} \otimes f'_{u|\mathrm{p}}, \quad \sigma^{\mathrm{DY}} = \sigma^{\mathrm{DY}}(x_\pi, x_\mathrm{p})$
- Gives an access to azimuthal modulations of 4 PDF: transversity, pretzelosity, Boer–Mulders and Sivers.
- Ideal: $\bar{p}p$; good compromise: π^-p
- Here dominated by annihilation of valence \bar{u} from π^- and valence u from p
- COMPASS has large acceptance in the valence region of p and π (large SSA expected). Example of covered kinematics (in blue): π^- beam, 190 GeV/c, NH $_3$ target, \perp polarised dimuon mass range: 4-9 GeV/ c^2 (low bckg.)
- QCD TMD approach justified by: $M_{\mu\mu} \gg p_{\rm T}^{\mu\mu} \approx$ 1 GeV



Drell-Yan @ COMPASS: experimental requirements

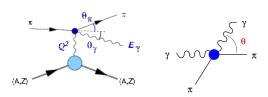

Drell-Yan @ COMPASS: Results from 2009 beam test



- 3 days of data taking
- $-8.10^{7}\pi^{-}/9.6$ s spill
- 2 cells of CH2 of 40-20-40 cm
- temporary absorber
- simple trigger

Drell-Yan @ COMPASS: Projections for azimuthal asymmetries

- $\bullet~$ projections for 4 GeV/ $c^2 < M_{\mu\mu} <$ 9 GeV/ c^2
- 2 years of data taking
- 6.10⁸ pions /9.6 s spill


Goals: change of sign between DIS and SIDIS in h_1^{\perp} , J/Ψ production mechanism....

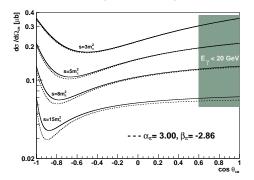
Future Drell-Yan experiments

Facility	Туре		$s (\mathrm{GeV^2})$	Time-line
RHIC (STAR, PHENIX)	collider,	$p^{\uparrow \!\!\!\uparrow} p^{\uparrow \!\!\!\uparrow}$	$200^2, 500^2$	> 2014
RHIC (internal target)	fixed target,	$p^{\uparrow\uparrow}p^{\uparrow\uparrow}$	500	> 2015
RHIC (AnDY)	collider,	$p^{\uparrow\!\!\uparrow}p^{\uparrow\!\!\uparrow}$	500^{2}	cancelled
E906 (Fermilab)	fixed target,	pp	226	> 2010
J-PARC	fixed target,	$pp^{\uparrow\uparrow}$	$60 \div 100$	> 2015
GSI (PAX)	collider,	$\overline{p}^{\!\!\!\uparrow} p^{\!\!\!\uparrow}$	200	> 2017
GSI (Panda)	fixed target,	$\overline{p}p$	30	> 2016
NICA	collider,	$p^{\uparrow\uparrow}p^{\uparrow\uparrow}$, $d^{\uparrow\uparrow}d^{\uparrow\uparrow}$	676	> 2014
COMPASS II	fixed target,	$\pi^-p^{\uparrow\uparrow}$	300÷400	> 2012

Studies of Chiral Perturbative Theory

Primakoff $(\pi^- Z \to \pi^- Z \gamma)$ and Compton $(\pi \gamma \to \pi \gamma)$ processes

- Breaking of chiral symmetry \Longrightarrow Goldstone bosons (pions, kaons)
- ChPT predicts e.g. pion electromagnetic polarisabilities \implies deviations of $\sigma(\pi\gamma \to \pi\gamma)$ from QED from point-like, spin 0 object


$$\frac{\mathrm{d}\sigma_{\pi\gamma}}{\mathrm{d}\Omega_{\mathrm{cm}}} = \left[\frac{\mathrm{d}\sigma_{\pi\gamma}}{\mathrm{d}\Omega_{\mathrm{cm}}}\right]_{\mathrm{point-like}} + C\frac{s - m_{\pi}^2}{s^2} P\left(\alpha_{\pi}, \beta_{\pi}\right) \qquad \bar{\mathbf{E}}$$

$$P(\alpha_{\pi}, \beta_{\pi}) = (1 - \cos \theta_{\rm cm})^2 (\alpha_{\pi} - \beta_{\pi}) + (1 + \cos \theta_{\rm cm})^2 (\alpha_{\pi} + \beta_{\pi}) f_1(s) + (1 - \cos \theta_{\rm cm})^3 (\alpha_2 - \beta_2) f_2(s)$$

Studies of Chiral Perturbative Theory,...cont'd

- 2-loop ChPT prediction: $\alpha_\pi \beta_\pi = (5.7 \pm 1.0) \cdot 10^{-4} \text{ fm}^3$ Measurements: $\alpha_\pi \beta_\pi = (4-14) \cdot 10^{-4} \text{ fm}^3$
- COMPASS II: measurements of both pion and kaon polarisabilities!

In 120 days	$\alpha_{\pi} - \beta_{\pi}$	$\alpha_{\pi} + \beta_{\pi}$	$\alpha_2 - \beta_2$
(90 with π , 30 with μ beams)	(10^{-4} fm^3)	(10^{-4} fm^3)	(10^{-4} fm^5)
2-loop ChPT prediction	5.7 ± 1.0	0.16 ± 0.10	16
COMPASS sensitivity	± 0.66	± 0.025	± 1.94

Tentative time table for COMPASS II

Proposal: CERN-SPSC-2010-014 (SPSC-P-340) of May 17, 2010 Approved in December 2010, initially 3 years data taking, 2014-16 (Phase 1) www.compass.cern.ch/compass/proposal/compass-II_proposal.pdf

- 2012 setup and tests: Primakoff with π , K beams, 8 weeks \Longrightarrow test of χ PT; DVCS with μ^+ , μ^- beams on unpolarised protons, 4 weeks;
- 2013 SPS shutdown; polarised target installation;
- 2014 Drell-Yan with π beam \Longrightarrow TMD;
- 2015 DVCS with μ^+ , μ^- beams on unpolarised protons,
 - $-2016 \Longrightarrow$ constrain GPD H and t-slope parameter B. Parallely SIDIS \Longrightarrow PDF, TMD, FF (especially for s-quark).
- • \geq 2017 Addendeum ??? DVCS with μ^+ , μ^- beams on \perp polarised protons \Longrightarrow constrain GPD E (Phase 2).

Low x 2012