Hadron Spectroscopy with COMPASS at CERN

Nordic Conference on Nuclear Physics 2011

Karin Schönning, European Organization for Nuclear Research (CERN)

Outline

- Introduction
- The COMPASS experiment
- Diffractive Dissociation of pions
- Coulomb production of pions
- Final states with strangeness
- COMPASS physics with proton beam

Introduction

Meson Spectroscopy:

Study the meson spectrum and search for states other than conventional quark-antiquark pairs. For example *multiquarks*, *glueballs* and *hybrids*.

=
+
+
+

The COMPASS experiment

Two-stage magnetic spectrometer:

Beam: 190 GeV positive (p, π^+ , K⁺) or negative (π^- , K⁻) hadron beam **Targets**: Liquid H₂, Nuclear targets (Pb, Ni, W). **Final states**: charged (π^\pm , p, ...), neutral (π° , η , η' , ...), kaonic (K[±], K_S, ...)

Diffractive Dissociation of pions

$\pi^- Pb \rightarrow \pi^-\pi^+\pi^- Pb$

Data from 2004
190 GeV/c π⁻ on Pb
Momentum transfer 0.1 < t' < 1 (GeV/c)² → quasi-free nucleons in Pb

Partial Wave Analysis (PWA) Model:

- *t*-channel Reggeon exchange • Isobar model
 - Reflectivity basis

Diffractive dissociation of pions

Significant spin exotic J^{PC} = 1⁻⁺ wave [1]

- $M = 1660 \pm 10^{+0}_{-64} \text{ MeV/c}^2$ $\Gamma = 269 \pm 21^{+42}_{-64} \text{ MeV/c}^2$
- consistent with $\pi_1(1600)$
- Neglible leakage from other waves

[1] COMPASS, Phys. Rev. Lett. 104 (2010) 241803

Pb (2009) vs. H₂ (2008) target

- Normalised to $a_2(1320)$
- Different intensity of spin projections, i.e. of $J^{PC} = 1^{++}$
- On Pb: M = 1 enhanced, M = 0 suppressed

Search for exotics in $\pi^- p \rightarrow p(3\pi)^-$ and $\pi^- p \rightarrow p \pi^- \eta/\eta'$

- Data collected during 2008/9.
- Hydrogen and nuclear targets.
- Statistics will outnumber previous experiments.
- Charged and neutral channels available.
- Comparison between π⁻ π⁺ π⁻ p and π⁻ π^o π^o p promising.
- Excellent potential also in $\pi^- p \rightarrow p \pi^- \eta / \eta'$

Isospin symmetry: neutral / charged mode

- X⁻ decaying into $\rho \pi$: 1/1 intensity expected
- X⁻ decaying into $f_2 \pi$: 1/2 intensity expected

Coulomb production of pions

Low momentum transfer:

Contribution from photon exchange.

Low masses:

Only pions produced \rightarrow ChPT test. Results compared to LO ChPT predictions from EPJA 36 (2008) 181.

Final states with strangeness $\pi^{-}p \rightarrow K\overline{K}\pi\pi p$

- exotic signals can be observed in various decay channels, *e.g.* $f_1(1285)$ mode.
- The (KK $\pi\pi$) system reaches higher mass ranges .
- $f_1(1420)\pi$ system never studied before.
- COMPASS 2008 data contain 10 times higher statistics than BNL.

Final states with strangeness

Observed intensity in the o^- wave near the mass of the debated K(1460).

Leakage studies and mass dependent fit needed for more definite conclusions. $\mathrm{K}^{-}\mathrm{p} \rightarrow \mathrm{K}^{-} \, \pi^{+} \, \pi^{-} \, \mathrm{p}$

- Tagging incoming beam kaon.
- Many debated states need confirmation
- Most results from mass independent PWA agree with previous results from WA03.
- States consistent with qq with isospin 1/2.

Physics with proton beam

- Search for glueballs in central *pp* collisions
- Baryon spectroscopy
- Precise OZI tests
- Spin alignment of vector mesons

Summary

- Evidence for QCD allowed states like multiquarks, glueballs and hybrids still not beyond doubt.
- COMPASS has excellent potential to contribute:
 - Already observed the spin exotic wave $\pi_1(1600)$ in data from 2004 pilot run.
 - A large amount of data were collected with hadron beam in 2008/2009 (10 100 times world statistics).
- COMPASS measures charged and neutral channels:
 - Independent consistency check.
- COMPASS measures kaonic final states.
- COMPASS has access to 3 production mechanisms:
 - Diffractive dissociation
 - Central production
 - Coulomb production
- COMPASS also offers excellent opportunities to measure
 - Baryon spectroscopy
 - OZI tests
 - Spin alignment measurements

