Hadron Spectroscopy & Primakoff Reactions at COMPASS

Jan Friedrich
TU München

International Workshop on Hadron Structure and Spectroscopy
Paris, 5. April 2011
Investigation of the strong interaction where it is strong

- Formation of bound states of quarks and gluons
 → hadron spectroscopy
 COMPASS: high-statistics meson spectroscopy

- Hadron reactions at low relative momenta
 → manifestation of QCD by its symmetries
 COMPASS: pure pion-photon (Primakoff) reactions
Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- > 1 PByte/year
Physics goals: **Hadron spectroscopy**

- 190 GeV/c secondary hadron beams
 - h^- beam: 97% π^-, 2% K^-, 1% \bar{p}
 - h^+ beam: 75% p, 24% π^+, 1% K^+
- Various targets: ℓH_2, C, Ni, Cu, Pb, W
Spin-parity rules for bound $q\bar{q}'$ system
Spin-parity rules for bound $q\bar{q}'$ system

- Quark spins couple to total intrinsic spin $S = 0$ (singlet) or 1 (triplet)
- Relative orbital \vec{L} and \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$

![Diagram](image)
Spin-parity rules for bound $q\bar{q}'$ system

- Quark spins couple to total intrinsic spin $S = 0$ (singlet) or 1 (triplet)
- Relative orbital \vec{L} and \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$
- Charge conjugation $C = (-1)^{L+S}$
- **Forbidden J^{PC} combinations:** $0^{--}, 0^{+-}, 1^{-+}, 2^{++}, \ldots$
Mesons in the Constituent Quark Model

Spin-parity rules for bound $q\bar{q}'$ system

- Quark spins couple to total intrinsic spin $S = 0$ (singlet) or 1 (triplet)
- Relative orbital \vec{L} and \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$
- Charge conjugation $C = (-1)^{L+S}$
- **Forbidden J^{PC} combinations:** 0^{--}, 0^{+-}, 1^{-+}, 2^{++}, ...

QCD allows for states beyond the CQM

- Hybrid $|q\bar{q}g\rangle$, Glueball $|gg\rangle$, Multi-quark states $|q^2\bar{q}^2\rangle$, ...
- Physical mesons: superposition of all allowed basis states
- “Exotic” mesons with $|q\bar{q}\rangle$-forbidden J^{PC}
Production of Hadrons in Diffractive Dissociation

- Soft scattering of beam hadron off nuclear target
 - Excitation into resonance X
 - X decays into n-body final state
Production of Hadrons in Diffractive Dissociation

- **Soft scattering** of beam hadron off nuclear target
 - Excitation into resonance X
 - X decays into n-body final state
- At high energies **Pomeron exchange** dominates
Production of Hadrons in Diffractive Dissociation

- **Soft scattering** of beam hadron off nuclear target
 - Excitation into resonance X
 - X decays into n-body final state

- At high energies **Pomeron exchange** dominates
- Use kinematic distribution of outgoing particles
 - Disentangle all resonances $X \rightarrow$ mass, width, $I^G J^{PC}$
 - **Method**: partial-wave analysis (PWA)
Isobar model: X^- decay is chain of successive two-body decays

- Isobar with **spin** S and bachelor π^- have **relative orbital** L
 - L and S couple to **spin** J of X^-
- **“Wave”:** unique combination of isobar and quantum numbers, specified by $J^{PC}M^\epsilon[\text{isobar}]L$
- **PWA:** disentangle waves using the **angular distributions** and interference
2004 Pilot Run: PWA of $\pi^-\pi^-\pi^+$ f.s. PRL 104 (2010) 241803

$\pi^-\pi^-\pi^+$ mass spectrum

![Mass Spectrum Graph](image-url)
2004 Pilot Run: PWA of $\pi^-\pi^-\pi^+$ f.s.

$\pi^-\pi^-\pi^+$ mass spectrum

$1^{++}0^+ [\rho\pi] S \ a_1(1260)$
2004 Pilot Run: PWA of $\pi^-\pi^-\pi^+$ f.s.

$\pi^-\pi^-\pi^+$ mass spectrum

$1^{++}0^+[\rho\pi]S \ a_1(1260)$

$2^{++}1^+[\rho\pi]S \ a_2(1320)$
$\pi^-\pi^-\pi^+$ mass spectrum

$2^{-+}0^+[f_2\pi]S \pi_2(1670)$

$1^{++}0^+[\rho\pi]S a_1(1260)$

$2^{-+}0^+[f_2\pi]S \pi_2(1670)$

$2^{++}1^+[\rho\pi]S a_2(1320)$
2004 Pilot Run: PWA of $\pi^-\pi^-\pi^+$ f.s.

$\pi^-\pi^-\pi^+$ mass spectrum

$2^{-+}0^+[f_2\pi]S\ a_2(1670)$

$1^{++}0^+[\rho\pi]S\ a_1(1260)$

$2^{++}1^+[\rho\pi]S\ a_2(1320)$

$2^{-0}f_2\pi S$
Pb target

Data described by model consisting of 41 waves + incoherent isotropic background

- Isobars: $(\pi\pi)_S$, $f_0(980)$, $\rho(770)$, $f_2(1270)$, and $\rho_3(1690)$
2004 Pilot Run: PWA of $\pi^-\pi^-\pi^+$ f.s.

Spin-exotic $1^{-+}1^{+}[^{\rho\pi}]P$

$1^{-+}1^{+}[^{\rho\pi}]P$

$1^{++}0^{+}[\rho\pi]S \quad a_1(1260)$

- Significant 1^{-+} amplitude
2004 Pilot Run: PWA of $\pi^-\pi^-\pi^+ \ f.s.$

Spin-exotic $1^{-+}1^+[\rho\pi]P$

$2^{-+}0^+[f_2\pi]\ S \ \pi_2(1670)$

$1^{-+}1^+[\rho\pi]P - 2^{-+}0^+[f_2\pi]\ S$

- Significant 1^{-+} amplitude
- $\pi_1(1600)$ BW + backgr.

$m = 1.660 \pm 10^{+0}_{-64}\ MeV/c$

$\Gamma = 269 \pm 21^{+42}_{-64}\ MeV$

Intensity: $(1.7 \pm 0.2^{+0.9}_{-0.1})\%$
2008 Data using H$_2$ Target

π^- diffraction into $\pi^-\pi^-\pi^+$ final state

- **Spectrometer upgrade**: recoil proton detector, beam PID, calorimetry, tracking
- 190 GeV/c negative hadron beam: 97% π^-, 2% K^-, 1% \bar{p}
2008 Data using H$_2$ Target

π^- diffraction into $\pi^-\pi^-\pi^+$ final state

- **Spectrometer upgrade**: recoil proton detector, beam PID, calorimetry, tracking
- 190 GeV/c negative hadron beam: 97% π^-, 2% K^-, 1% \bar{p}
- 200× 2004 statistics: $\approx 10^8$ events \Rightarrow challenging analysis

$\pi^-\pi^-\pi^+$ mass distribution

Dalitz plot for $\pi_2(1670)$ region
Isospin partner to $\pi^- p \rightarrow \pi^- \pi^- \pi^+, p$

- Important consistency check
- Comparison with $\pi^- \pi^- \pi^+$: normalization to $a_2(1320)$

Mass Distributions

Left Panel: $\pi^- \pi^0 \pi^0$ mass distribution

- $a_1(1320)$
- $a_1(1260)$
- $\pi_d(1670)$

Right Panel: $\pi^- \pi^+ \pi^-$ mass distribution

- $a_1(1260)$
- $a_2(1320)$
- $\pi_d(1670)$
Diffractive Dissociation into $\pi^- \pi^0 \pi^0$ Final State

Isospin partner to $\pi^- p \rightarrow \pi^- \pi^- \pi^+, p$

- Important consistency check
- Comparison with $\pi^- \pi^- \pi^+$: normalization to $a_2(1320)$
- Isospin symmetry: $I = 1$ isobar \Rightarrow same intensity
 $I = 0$ isobar \Rightarrow half intensity

$1^{++}[\rho\pi]S$: $a_1(1260)$

$2^{-+}[f_2\pi]S$: $\pi_2(1670)$
Production mechanism depends on t region

- $0.1 < t < 1 \text{GeV}^2/c^2$ scattering on individual nucleons

![Graph showing the number of events vs. Momentum Transfer t' (GeV2/c2) with $0.1 < t < 1 \text{GeV}^2/c^2$]
Production mechanism depends on t region

- $0.1 < t < 1\text{GeV}^2/c^2$ scattering on individual nucleons
- For $t \lesssim 0.01\text{GeV}^2/c^2$: coherent scattering on Pb nucleus

$t < 0.1\text{GeV}^2/c^2$

COMPASS 2004
$\pi\text{Pb} \rightarrow \pi\pi\pi'\text{Pb}$

Number of Events

10^5
10^4
10^3
10^2

Momentum Transfer t' (GeV2/c2)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

$0.1 < t < 1\text{GeV}^2/c^2$

COMPASS 2004
$\pi\text{Pb} \rightarrow \pi\pi\pi'\text{Pb}$

Number of Events

10^3

10^2

Momentum Transfer t' (GeV2/c2)
2004 Pilot Run: PWA of $\pi^-\pi^-\pi^+$ Final State at low t

Production mechanism depends on t region

- $0.1 < t < 1\text{GeV}^2/c^2$ scattering on individual nucleons
- For $t \lesssim 0.01\text{GeV}^2/c^2$: coherent scattering on Pb nucleus
- For $t \lesssim 10^{-3}\text{GeV}^2/c^2$ Coulomb contribution

$t < 0.1\text{GeV}^2/c^2$

COMPASS 2004
$\pi^0\text{Pb} \rightarrow \pi\pi\pi^0\text{Pb}$

$t < 10^{-3}\text{GeV}^2/c^2$

COMPASS 2004
$\pi^-\text{Pb} \rightarrow \pi\pi\pi^-\text{Pb}$
Test of chiral perturbation theory (ChPT)

- $\gamma\pi^- \rightarrow \pi^-\pi^-\pi^+$ for $m_{3\pi} < 700\text{MeV}/c^2$
 - ChPT parameter-free prediction [N. Kaiser, JF, EPJ A36 (2008) 181]

- $\pi^-\pi^-\pi^+$ Primakoff production at $t < 10^{-3}\text{GeV}^2/c^2$ probes strong interaction at low energies ~ 100 MeV

- Use PWA to extract strength of ChPT amplitude as function of $m_{3\pi}$
2004 Pilot Run: PWA of $\pi^-\pi^-\pi^+$ Final State at low t

First measurement of $\gamma\pi^- \rightarrow \pi^-\pi^-\pi^+$ cross section

- **Absolute cross section** from beam flux measurement
 - Using $K^- \rightarrow \pi^-\pi^-\pi^+$ decays of beam K^- (2.4%)

![Graph showing COMPASS 2004 $\pi Pb \rightarrow\pi \pi \pi^+ Pb$ with $t' < 0.001$ GeV2/c2. ChPT Intensity and ChPT Prediction with full systematic error and luminosity uncertainty.](preliminary)

- **Data** confirm leading order ChPT calculation
COMPASS – Analyzed Hadron Beam Channels

- $\pi^−\pi^−\pi^+ \text{ large } t \text{ on various targets Pb, p, Ni, W}$ F. Haas
- $\pi^−\pi^−\pi^+\pi^−\pi^+ \text{ all } t$, 2004 Pb S. Neubert
- $\pi^−\pi^−\pi^+ \text{ low } t$ S. Grabmüller
- $\pi^−K\bar{K}$ T. Schlüter
- $p\pi^−\pi^+, pK^−K^+$ baryon spectroscopy A. Austregesilo
- $p_s p_f \pi^−\pi^+\pi^−\pi^+$ J. Bernhard
- $K^−\pi^−\pi^+$ P. Jasinski
- $K\bar{K}\eta, K\bar{K}\pi^0$ K. Schoenning
- $\pi^−\pi^0\pi^0 \text{ large } t$ F. Nerling, S. Pflüger
- $\pi^−\eta(\eta) \text{ large } t$ S. Uhl, I. Uman, T. Schlüter
- $\pi\gamma$ Primakoff T. Nagel, J.F., A. Guskov
Access to $\pi + \gamma$ reactions via the Primakoff effect:

At small momentum transfer to the nucleus, high-energetic particles scatter predominantly off the el.mag. field quanta ($\sim Z^2$)
Access to $\pi + \gamma$ reactions via the Primakoff effect:

At small momentum transfer to the nucleus, high-energetic particles scatter predominantly off the el.mag. field quanta ($\sim Z^2$)

\[\pi^- + \gamma \rightarrow \begin{cases}
\pi^- + \gamma \\
\pi^- + \pi^0 \\
\pi^- + \pi^0 + \pi^0 \\
\pi^- + \pi^- + \pi^+ \\
\pi^- + \ldots
\end{cases} \]

analogously: Kaon-induced reactions $K^- + \gamma \rightarrow \cdots$
Key idea: Use Coulomb field of (heavy) nuclei as "photon target" for hadronic reactions

[H. Primakoff, Phys. Rev. 81 (1951) 899]
Electric charge at rest
Electric charge moving
Electromagnetic field
Weizsäcker-Williams Method

further reading: J. D. Jackson chapt. 11.10, 15.4
Low-\(t\) production mechanisms

- Production via \textit{photon} and strong (pomeron) exchange
 - separable by different \(t\)–dependence
- e.g. resonance \(a_2(1320)\) is produced both ways
 - radiative width
 - phase between the photon and strong amplitudes
Compton scattering and polarisability

\[\pi + \gamma \rightarrow \pi + \gamma \]

Leading deviation from pointlike particle ↔ e.m. polarisability

for \(\alpha_\pi - \beta_\pi \) [10^{-4} fm^3]: \((\alpha_\pi \approx -\beta_\pi) \)

ChPT: 5.7±1.0

experiments: 4 — 14
Experiments
Polarisability effect (LO ChPT values)

loop effects not shown

- - - $\alpha_\pi = 3.00, \beta_\pi = -3.00$
Polarisability effect (NLO ChPT values)

\[\theta = \cos^{-1} \left(\frac{-0.8}{1} \right) \]

\[\frac{d\sigma}{d\Omega_{cm}} \text{ [\mu b]} \]

\[s = 3m^2 \]

\[s = 5m^2 \]

\[s = 8m^2 \]

\[s = 15m^2 \]

\[\alpha_{\pi} = 3.00, \beta_{\pi} = -2.86 \]

loop effects not shown
Polarisability effect (wrong sign $\alpha_\pi + \beta_\pi$)

Loop effects not shown

$$d\sigma/d\Omega_{\text{cm}} \, [\mu b]$$

- $s=3m^2_\pi$
- $s=5m^2_\pi$
- $s=8m^2_\pi$
- $s=15m^2_\pi$

$E_\gamma < 20 \text{ GeV}$

$\alpha_\pi = 3.00, \beta_\pi = -3.14$
loop effects not shown

\[\frac{d\sigma}{d\Omega_{cm}} \, [\mu b] \]

\(s=3m_\pi^2 \)
\(s=5m_\pi^2 \)
\(s=8m_\pi^2 \)
\(s=15m_\pi^2 \)

\(- - - \alpha_\pi = 6.10, \beta_\pi = -6.10\)

\(E_\gamma < 20 \text{ GeV} \)
Nov. 2004

- recorded statistics (eff. 3 days) competitive to Serpukhov
- setup not final → large estimated systematic error
Polarisability measurements at COMPASS

Nov. 2004
- recorded statistics (eff. 3 days) competitive to Serpukhov
- setup not final → large estimated systematic error

Nov. 2009
- major upgrade of calorimeter readout, new digital trigger
- fine tuning / offline corrections ongoing

New proposal
COMPASS-II proposal for a high-statistics Primakoff run
increase statistics by a factor ≥ 30,
uncertainty on $\alpha_{\pi^-} - \beta_{\pi^-}$: ± 0.66 (ChPT: 5.7)
First measurement of polarisability sum $\alpha_{\pi^+} + \beta_{\pi^-}$
expected uncertainty ± 0.025 (ChPT: 0.16)
Polarisability measurements at COMPASS

Nov. 2004
- recorded statistics (eff. 3 days) competitive to Serpukhov
- setup not final → large estimated systematic error

Nov. 2009
- major upgrade of calorimeter readout, new digital trigger
- fine tuning / offline corrections ongoing

≥ 2012
- http://wwwcompass.cern.ch → New proposal
- COMPASS-II proposal for a high-statistics Primakoff run
- increase statistics by a factor > 30, uncertainty on $\alpha_\pi - \beta_\pi$: ± 0.66 (ChPT: 5.7)
- First measurement of polarisability sum $\alpha_\pi + \beta_\pi$
 - expected uncertainty ± 0.025 (ChPT: 0.16)
COMPASS 2004: few days with 190 GeV hadron beam
 - Primakoff: calorimetry problems
 - diffractive: spin-exotic π_1 observation (PRL104)
 - still harvesting: chiral $\gamma\pi \rightarrow \pi^-\pi^-\pi^+$, radiative couplings ($a_2,...$), Pomeron/Photon interference

2008 and 2009 data with extended spectrometer
 - huge statistics on diffractive scattering (H, Pb, Ni)
 - central production with p beam
 - Primakoff on Ni \rightarrow pion polarisability result upcoming

Future Primakoff run
 - determine α_π and β_π pion polarisabilities independently, first value for forward polarisability $\alpha_\pi + \beta_\pi$
 - first experimental value for the Kaon polarisability
Kinematics of the Primakoff Compton Reaction

Cross section small, a-b significant

Cross section large, polarisability effect small

\(\sqrt{s}/m_{\pi} \)

\(\cos \theta_{CM} \)

\(\frac{d\sigma}{d\sqrt{s} \, dc\cos\theta_{CM}} \)
Estimated errors on 20,000 Primakoff events

\[\frac{d\sigma}{d\Omega_{\text{cm}}} \] [\mu b]

\[s=3m_{\pi}^2 \]
\[s=5m_{\pi}^2 \]
\[s=8m_{\pi}^2 \]
\[s=15m_{\pi}^2 \]

\[\alpha_{\pi} = 3.00, \beta_{\pi} = -3.00 \]
Estimated errors on 500,000 Primakoff events

\[\frac{d\sigma}{d\Omega_{\text{cm}}} \text{ [\(\mu b\)]} \]

\[\cos \theta_{\text{cm}} \]

\[s=3m_{\pi}^2, s=5m_{\pi}^2, s=8m_{\pi}^2, s=15m_{\pi}^2 \]

\[E_\gamma < 20 \text{ GeV} \]

\[\alpha_\pi = 3.00, \beta_\pi = -3.00 \]
Primakoff measurements: principle and goals

\[Q^2 \ll m^2 \pi \]

\[(A,Z) \rightarrow (A,Z)\]

\(\pi / K\) on Ni with \(Q^2 < 10^{-3}\) GeV\(^2/c^2\) dominated by \(\gamma\)-exchange \(\leftrightarrow \sum p_T \approx 0\)

\[\pi / K + \gamma \rightarrow \begin{cases}
\pi / K + \gamma & \rightarrow \text{polarisabilities} \\
\pi / K + \pi^0/\eta & \rightarrow \text{chiral anomaly} \\
\pi / K + \pi^0/\eta + \pi^0/\eta & \rightarrow \text{chiral tree & loops} \\
\pi / K + n \cdot [\pi / K]^\pm & \rightarrow \text{radiative couplings, exotics}
\end{cases}\]
Primakoff Compton: retrieving polarisabilities

\[z_{\pm} = 1 \pm \cos \theta_{cm} \]

\[
\frac{d\sigma_{\pi\gamma}}{d\Omega_{cm}} = \frac{\alpha^2 (s^2 z_+^2 + m_\pi^4 z_-^2)}{s(sz_+ + m_\pi^2 z_-)^2} - \frac{\alpha m_\pi^3 (s - m_\pi^2)^2}{4s^2(sz_+ + m_\pi^2 z_-)}. P
\]

\[P = z_-^2 (\alpha_\pi - \beta_\pi) + \frac{s^2}{m_\pi^4} z_+^2 (\alpha_\pi + \beta_\pi) - \frac{(s - m_\pi^2)^2}{24s} z_-^3 (\alpha_2 - \beta_2) \]

- leading (non-pointlike) order: \(\alpha_\pi - \beta_\pi \)
 \[\rightarrow \text{suppression of large } E_{\gamma}^{lab} \]

- next ("s-dependent") order: \(\alpha_\pi + \beta_\pi \) and