

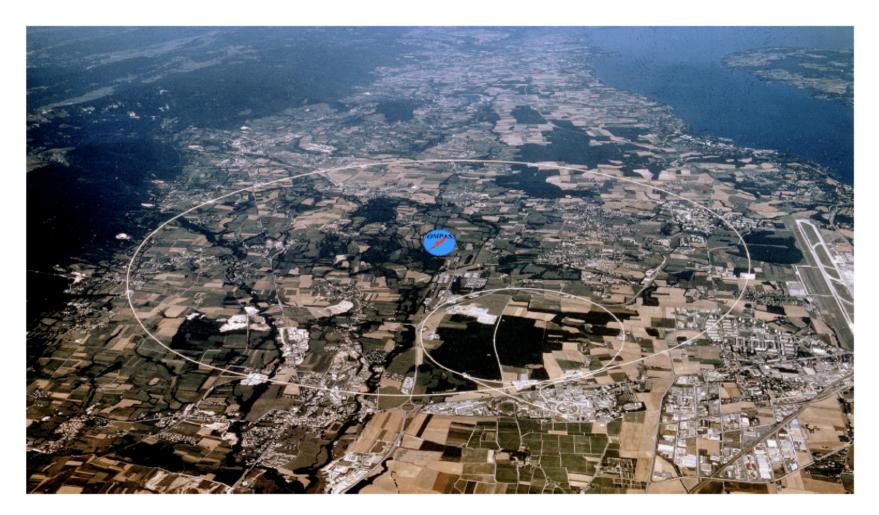
Forthcoming Drell-Yan experiment at COMPASS

Opportunities for Drell-Yan Physics at RHIC

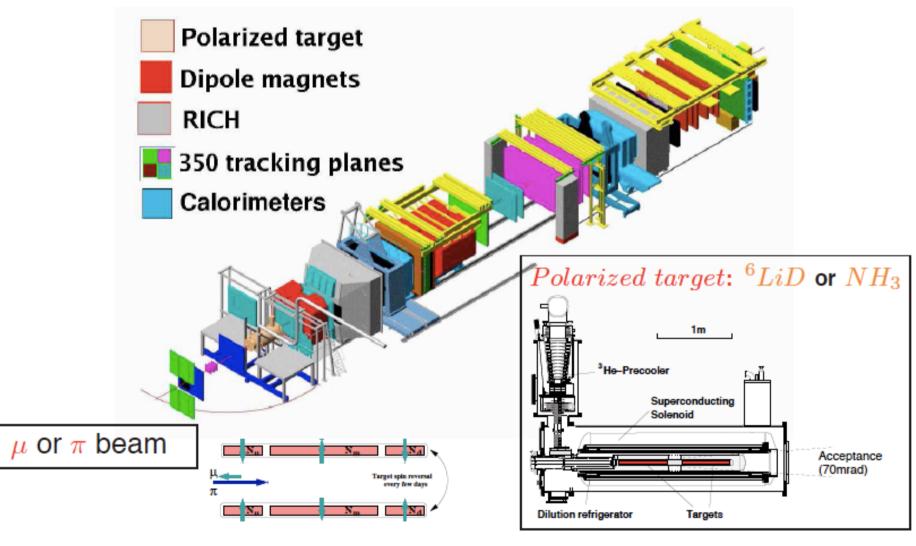
RIKEN BNL Research Center Workshop May 11-13, 2011 at Brookhaven National Laboratory

> Oleg Denisov INFN section of Turin For the COMPASS collaboration 12.05.2011

Outline


- COMPASS I → COMPASS-II
- Drell-Yan, polarised case
- Transversity & TMDs (single transversally polarised DY, this workshop George Sterman, Gunar, Mauro,....):
 - Proton description at LO
 - − Proton spin → quark orbital angular momentum
 - TMDs factorisation and universality crucial test of modern QCD
- Unpolarised pion Drell-Yan (Paul Reimer and Jen-Chieh Peng)
- TMDs study choice of kinematic domain
- Polarised DY@COMPASS
 - Set-up
 - Kinematics & Projections
 - Beam test
 - Upgrades & Timelines
- Some conclusions

COMPASS facility at CERN (SPS)


COmmon Muon Proton Apparatus for Structure and Spectroscopy

COMPASS facility at CERN

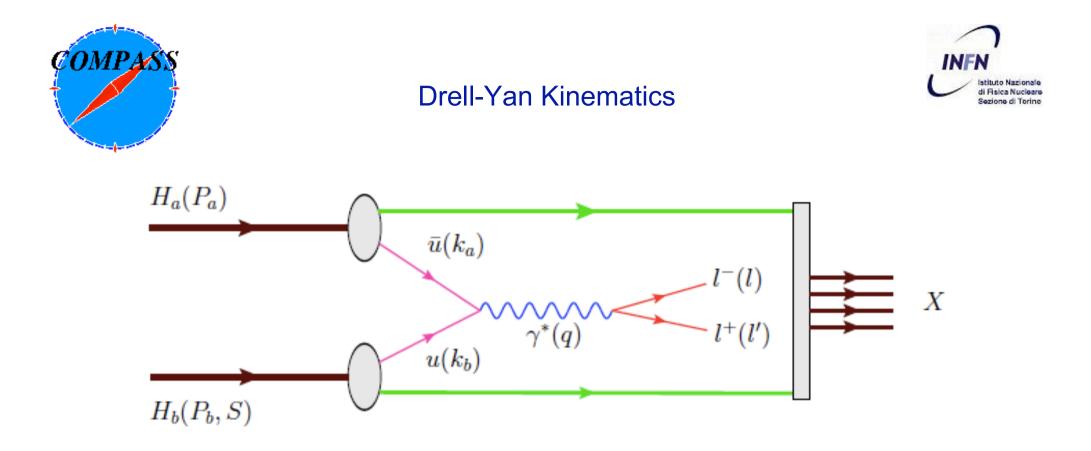
17-05-2011

Oleg Denisov

COMPASS-II (New Physics) a piece of history

- COMPASS is very sophisticated, universal and flexible facility → Physics beyong SIDIS and hadron spectroscopy is possible:
 - Unique COMPASS Polarised Target
 - Both hadron and lepton beams
 - Easy-accessable spectrometer components
- All that all together has generated new physics proposals with COMPASS DVCS(GPDs) and polarised DY:
 - For the first time these ideas (GPD and DY) were reported at the Villars SPSC meeting in September 2004
 - Since then (DY part) 3 International Workshops (Torino, Dubna, CERN), > 40 COMPASS DY subgroup meetings, 3 Beam Tests, > 20 presentations at the international Conferences....
- The COMPASS-II proposal was submitted to the CERN SPSC on May 17th 2010
- Approved by the CERN research board on December 1st 2010, 1 year for Drell-Yan and 2 years for GPDs in the time interval between two LHC shutdowns.
- April 7th the Collaboration took a decision to run first the DY program and then DVCS (GPDs) program – we will start in 2013 (beam test) and in 2014 we will have a full year of DY data taking.

COMPASS-II: a Facility to study QCD (SPSC, CERN)


COMMON MUON and PROTON APPARATUS for STRUCTURE and SPECTROSCOPY

Long Term Plans for at least 5 years (starting in 2012)

- ✓ Primakoff with π , K beam → Test of Chiral Perturb. theory
- ✓ DVCS & DVMP with µ beams → Transv. Spatial Distrib. with GPDs
- ✓ SIDIS (with GPD prog.) → Strange PDF and Transv. Mom. dep. PDFs

Drell-Yan with π beams \rightarrow Transverse Momentum dependent PDFs

O. Denisov (INFN Torino) - DY, J. Friedrich (TU Munich) - Primakoff, N. d'Hose (CEA Saclay) - GPD for the COMPASS Collaboration

 $P_{a(b)}$ $s = (P_a + P_b)^2,$ $x_{a(b)} = q^2 / (2P_{a(b)} \cdot q),$ $x_F = x_a - x_b,$ $M_{\mu\mu}^2 = Q^2 = q^2 = s \ x_a \ x_b,$ $k_{Ta(b)}$ $q_T = P_T = k_{Ta} + k_{Tb}$

the momentum of the beam (target) hadron, the total centre-of-mass energy squared, the momentum fraction carried by a parton from $H_{a(b)}$, the Feynman variable, the invariant mass squared of the dimuon, the transverse component of the quark momentum, the transverse component of the momentum of the virtual photon.

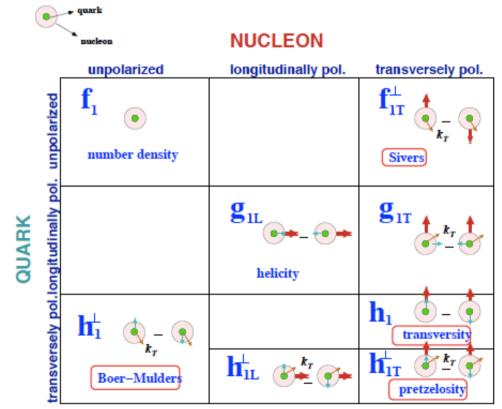
Drell-Yan cross-section – general (full) angular distribution

2008: S. Arnold, (Ruhr U., Bochum), A. Metz, (Temple U.), M. Schlegel, (Jefferson Lab) Phys.Rev.D79:034005,2009, e-Print: arXiv:0809.2262

$$\begin{split} \frac{d\sigma}{d^4q\,d\Omega} &= \frac{\alpha_{em}^2}{F\,q^2} \times \\ &\left\{ \left((1+\cos^2\theta)\,F_{UU}^1 + (1-\cos^2\theta)\,F_{UU}^2 + \sin 2\theta\cos\phi\,F_{UU}^{\cos\phi} + \sin^2\theta\cos2\phi\,F_{UU}^{\cos\,2\phi} \right) \\ &+ S_{aL} \left(\sin 2\theta\sin\phi\,F_{LU}^{\sin\phi} + \sin^2\theta\sin2\phi\,F_{LU}^{\sin\,2\phi} \right) \\ &+ S_{bL} \left(\sin 2\theta\sin\phi\,F_{UL}^{\sin\phi} + \sin^2\theta\sin2\phi\,F_{UL}^{\sin\,2\phi} \right) \\ &+ |\vec{S}_{aT}| \left[\sin\phi_a \left((1+\cos^2\theta)\,F_{TU}^1 + (1-\cos^2\theta)\,F_{TU}^2 + \sin 2\theta\cos\phi\,F_{TU}^{\cos\phi} + \sin^2\theta\cos2\phi\,F_{TU}^{\cos\,2\phi} \right) \\ &+ \cos\phi_a \left(\sin 2\theta\sin\phi\,F_{TU}^{\sin\phi} + \sin^2\theta\sin2\phi\,F_{UT}^{\sin\,2\phi} \right) \right] \\ &+ |\vec{S}_{bT}| \left[\sin\phi_b \left((1+\cos^2\theta)\,F_{UT}^1 + (1-\cos^2\theta)\,F_{UT}^2 + \sin 2\theta\cos\phi\,F_{UT}^{\cos\phi} + \sin^2\theta\cos2\phi\,F_{UT}^{\cos\,2\phi} \right) \\ &+ \cos\phi_b \left(\sin 2\theta\sin\phi\,F_{UT}^{\sin\phi} + \sin^2\theta\sin2\phi\,F_{UT}^{\sin\,2\phi} \right) \right] \\ &+ S_{aL}\,S_{bL} \left((1+\cos^2\theta)\,F_{LL}^1 + (1-\cos^2\theta)\,F_{LL}^2 + \sin 2\theta\cos\phi\,F_{LL}^{\cos\phi} + \sin^2\theta\cos2\phi\,F_{LL}^{\cos\,2\phi} \right) \end{split}$$

17-05-2011

Oleg Denisov



Leading Order PDFs

At leading order, 3 PDFs are needed to describe the structure of the nucleon in the collinear approximation.

But if one takes into account also the quarks intrinsic transverse momentum k_T , 8 PDFs are needed:

Single-polarised DY cross-section: Leading order QCD parton model

At LO the general expression of the DY cross-section simplifies to (Aram Kotzinian) :

$$\frac{d\sigma^{LO}}{d^4q \, d\Omega} = \frac{\alpha_{em}^2}{F \, q^2} \hat{\sigma}_U^{LO} \left\{ \left(1 + D_{[\sin^2 \theta]}^{LO} A_U^{\cos 2\phi} \cos 2\phi \right) \right. \\
\left. + S_L D_{[\sin^2 \theta]}^{LO} A_L^{\sin 2\phi} \sin 2\phi \right. \\
\left. + \left. |\vec{S}_T| \left[A_T^{\sin \phi_S} \sin \phi_S + D_{[\sin^2 \theta]}^{LO} \left(A_T^{\sin(2\phi + \phi_S)} \sin(2\phi + \phi_S) \right. \\
\left. + A_T^{\sin(2\phi - \phi_S)} \sin(2\phi - \phi_S) \right) \right] \right\},$$

Thus the measurement of 4 asymmetries (modulations in the DY cross-section):

- $-A_U^{\cos 2\phi}$ gives access to the Boer-Mulders functions of the incoming hadrons, $-A_T^{\sin \phi_S}$ to the Sivers function of the target nucleon, $-A_T^{\sin(2\phi+\phi_S)}$ to the Boer-Mulders functions of the beam hadron and to h_{1T}^{\perp} , the
- pretzelosity function of the target nucleon,
- $-A_T^{\sin(2\phi-\phi_S)}$ to the Boer-Mulders functions of the beam hadron and h_1 , the transversity function of the target nucleon.

17-05-2011

Oleg Denisov

The time-reversal odd character of the Sivers and Boer-Mulders PDFs lead to the prediction of a sign change when accessed from SIDIS or from Drell-Yan processes:

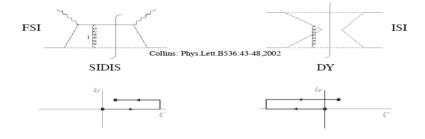
 \hookrightarrow Check the predictions:

 $f_{1T}^{\perp}(DY) = -f_{1T}^{\perp}(SIDIS)$

 $h_1^{\perp}(DY) = -h_1^{\perp}(SIDIS)$

Its experimental confirmation is considered a crucial test of non-perturbative QCD.

Universality test includes not only the sing-reversal character of the TMDs but also the comparison of the amplitude as well as the shape of the corresponding TMDs COMPASS


Sivers, Boer-Mulders functions SIDIS $\leftarrow \rightarrow$ DY

QCD $\sigma_{h} \cong \sigma_{p} \times PDF$

QCD factorization, valid for hard processes only (Q, $q_{\rm T}\,are\,large)$

Cross-sections are gauge-invariant objects, to provide the gauge invariance of the PDFs the gauge-link was introduced (intrinsic feature of PDF). The presence of gauge-link provides the possibility of existence of non-zero T-odd TMD PDFs

Direction of the gauge-link of the k_T dependent PDF is process-dependent (gauge-link is resummation of all collinear soft gluons) and it changes to the opposite in SIDIS wrt DY

li Fisica Nucleare Sezione di Tering

Sivers and Boer-Mulders functions are T-odd, and to provide the time-invariance they change the sign in SIDIS wrt DY due to the opposite direction of the gauge-link

$$f_{1T}^{\perp}(x, \mathbf{k}_T) \Big|_{SIDIS} = -f_{1T}^{\perp}(x, \mathbf{k}_T) \Big|_{DY}$$
$$h_1^{\perp}(x, \mathbf{k}_T) \Big|_{SIDIS} = -h_1^{\perp}(x, \mathbf{k}_T) \Big|_{DY}$$

J.C. Collins, Phys. Lett. B536 (2002) 43

J. Collins, talk at LIGHT CONE 2008

SIDIS ← → DY – QCD test

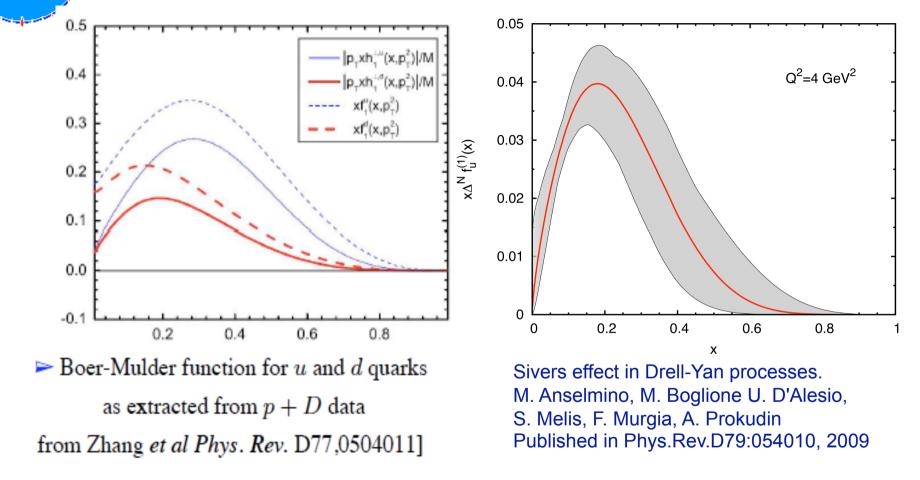
Andreas Metz (Trento-TMD'2010):

Sign reversal of the Sivers function

• Prediction based on operator definition (Collins, 2002)

 $f_{1T}^{\perp}\big|_{DY} = - \left.f_{1T}^{\perp}\right|_{DIS}$

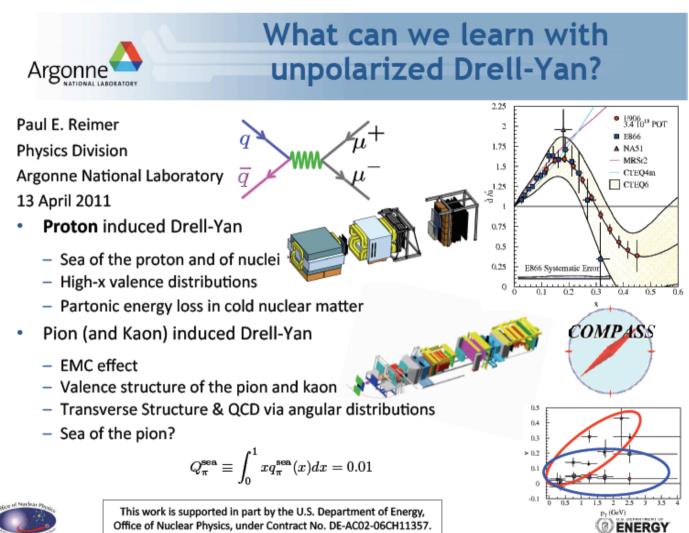
- What if sign reversal of f_{1T}^{\perp} is not confirmed by experiment?
 - Would not imply that QCD is wrong
 - Would imply that SSAs not understood in QCD
 - Problem with TMD-factorization
 - Problem with resummation of large logarithms
 - \rightarrow Resummation relevant if more than one scale present
 - \rightarrow CSS resummation in Drell-Yan (Collins, Soper, Sterman, 1985); resum logarithms of the type


$$\alpha_s^k \ln^{2k} \frac{\vec{Q}_T^2}{Q^2}$$

 \rightarrow Has also implications for Fermilab and LHC physics

Some indications for the future Drell-Yan experiments

1. TMD PDFs – ALL are sizable in the valence quark region


2. $\Lambda_{QCD} < p_T < Q$: - P_T should be small (~ 1 GeV), can be generated by intrinsic motion of quarks and/or by soft gluon emission. This is the region where TMD formalism applies. **Oleg Denisov**

OMPA

Unpolarised Drell-Yan → Paul Reimer seminar at Torino 13/04/2011

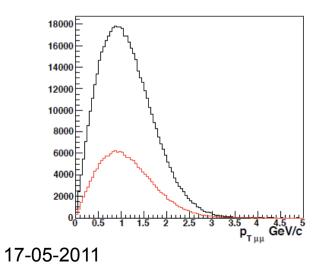
We need very much unpolarised DY data to run successful polarised DY experiment

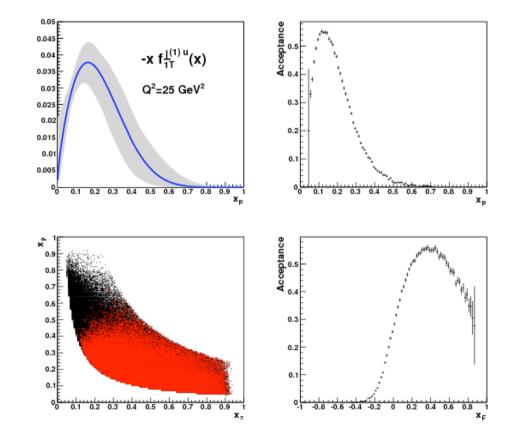
17-05-2011

Oleg Denisov

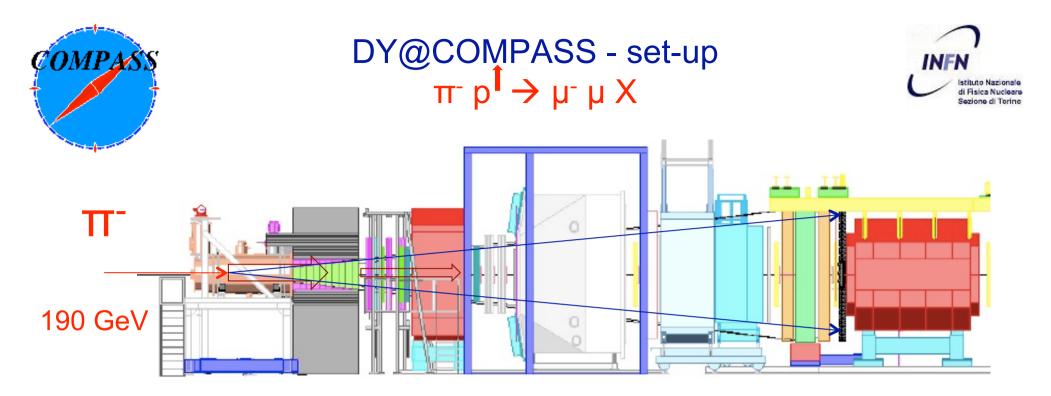
- 1. Large angular acceptance spectrometer
- 2. SPS M2 secondary beams with the intensity up to 10⁸ particles per second
- 3. Transversely polarized solid state proton target with a large relaxation time and high polarization, when going to spin frozen mode;
- 4. a detection system designed to stand relatively high particle fluxes;
- 5. a Data Acquisition System (DAQ) that can handle large amounts of data at large trigger rates;
- 6. The dedicated muon trigger system

For the moment we consider two step DY program:

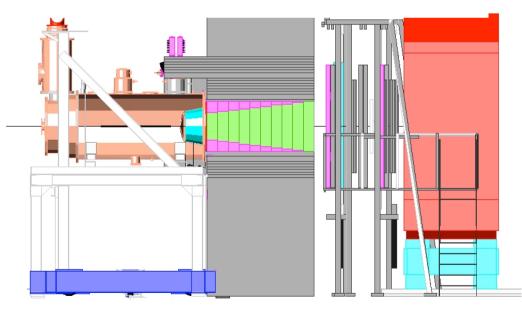

- •The program with high intensity pion beam
- •The program with Radio Frequency separated antiproton beam



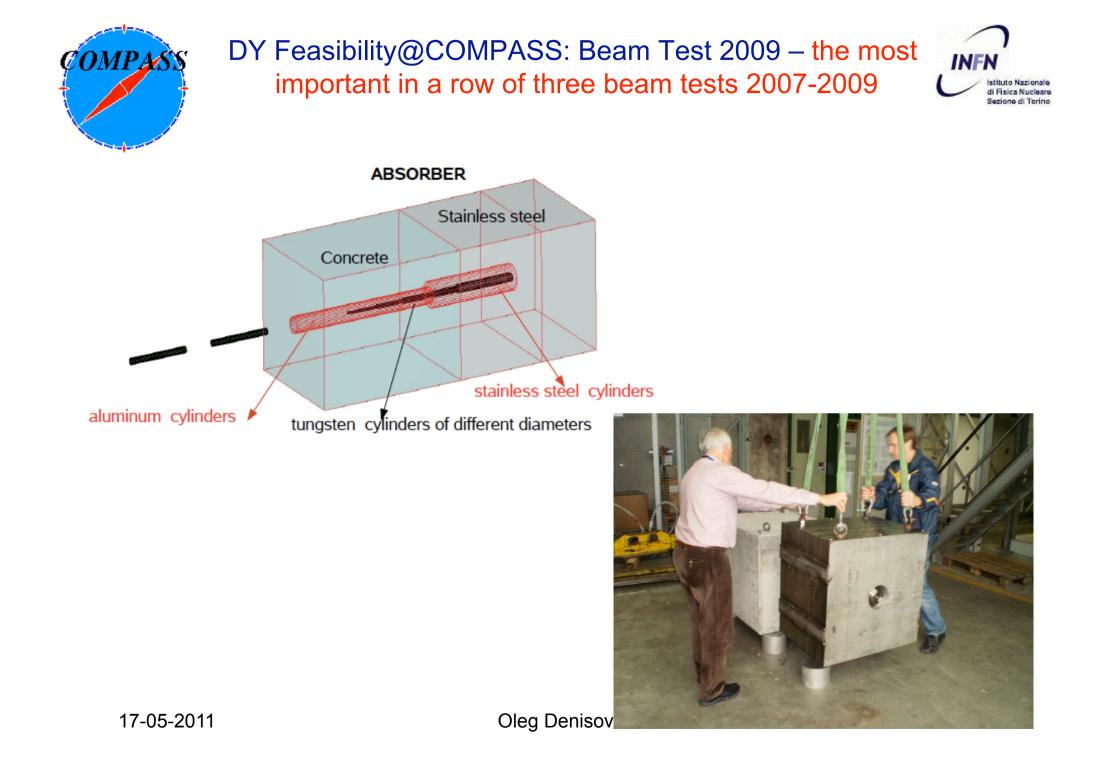
DY@COMPASS – kinematics - valence quark range $\pi^{-}p \rightarrow \mu^{-} \mu X$ (190 GeV pion beam)



- In our case (π⁻ p → μ⁻ μ X) contribution from valence quarks is dominant
- In COMPASS kinematics uubar dominance
- <P_T> ~ 1GeV TMDs induced effects expected to be dominant with respect to the higher QCD corrections



Oleg Denisov


Key elements:

- 1. COMPASS PT
- 2. Tracking system (both LAS abs SAS) and beam telescope in front of PT
- 3. Muon trigger (in LAS is of particular importance 60% of the DY acceptance)
- RICH1, Calorimetry also important to reduce the background (the hadron flux downstream of the hadron absorber ~ 10 higher then muon flux)

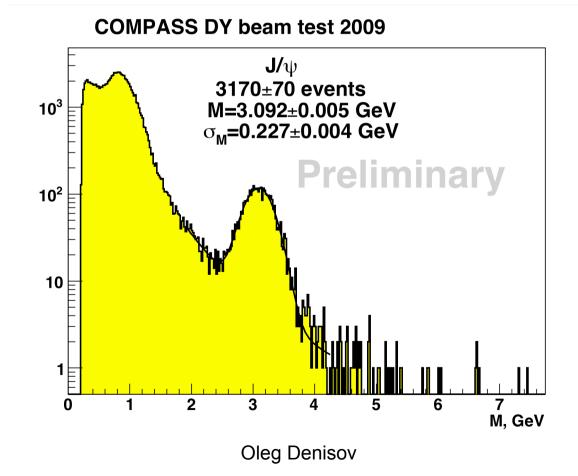
17-05-2011

Oleg Denisov

DY Feasibility@COMPASS Beam Test 2009 (with hadron absorber III)

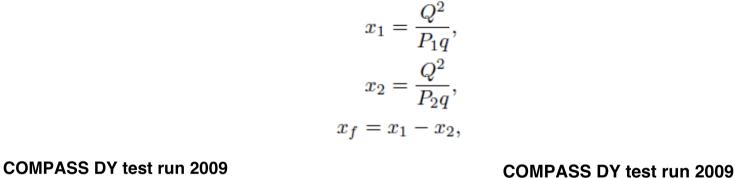
OMP 🖌

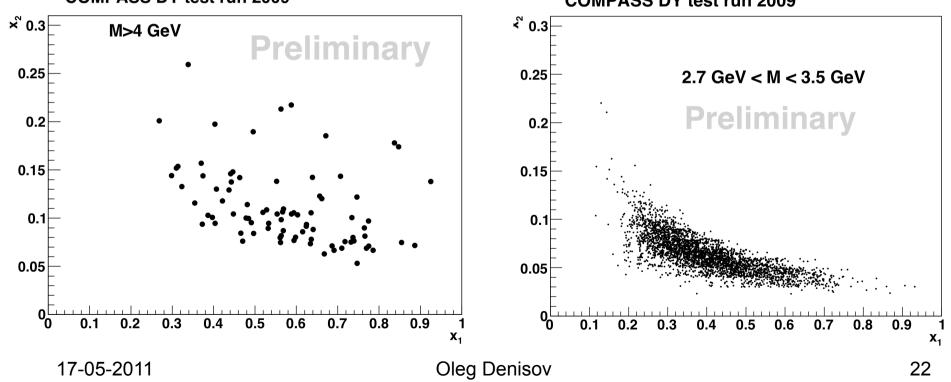
Radiation in the experimental area, detector occupancies and J/Psi yeild: Everything as expected 17-05-2011 Oleg Denisov



DY@COMPASS - feasibility - Signal

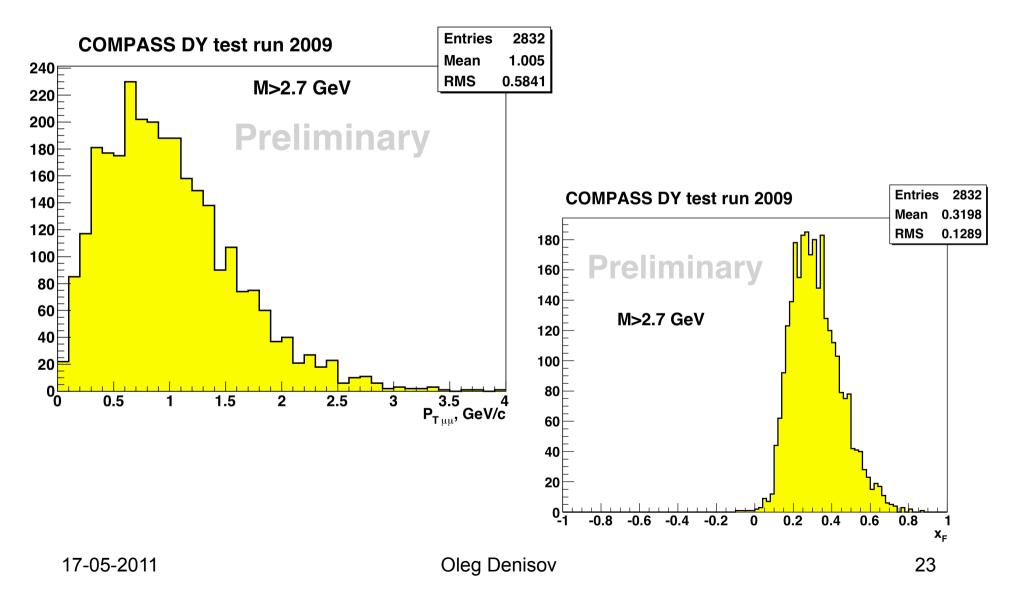
- Expected according to the proposal J/Psi and Drell-Yan yields: 3600±600 and 110±22 (normalized to 2009 beam flux ~3.7 x 10¹¹)
- Measured in 2009 beam test J/Psi yield is 3170±70, and DY yield is 84±10





DY@COMPASS - feasibility - Kinematics I

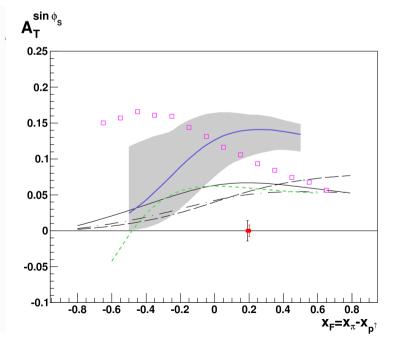
• Valence quark range for both J/Psi and DY



DY@COMPASS - feasibility - Kinematics II

 q_T and x_F ranges

DY@COMPASS projections I

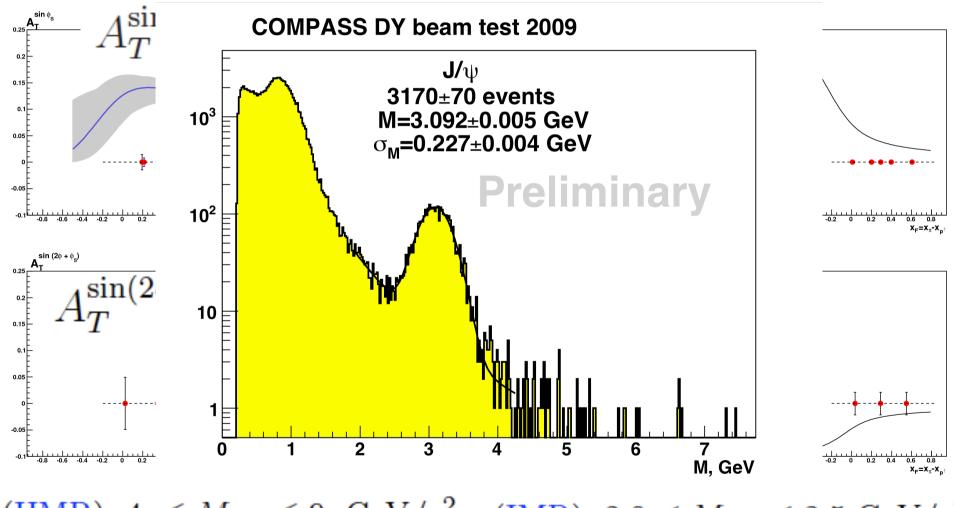

With a beam intensity $I_{beam} = 6 \times 10^7$ particles/second, a luminosity of $L = 1.7 \times 10^{33} \ cm^{-2}s^{-1}$ can be obtained.

 \hookrightarrow Assuming 2 years of data-taking, one can collect > 200000 DY events in the region $4 < M_{\mu\mu} < 9$. GeV/c².

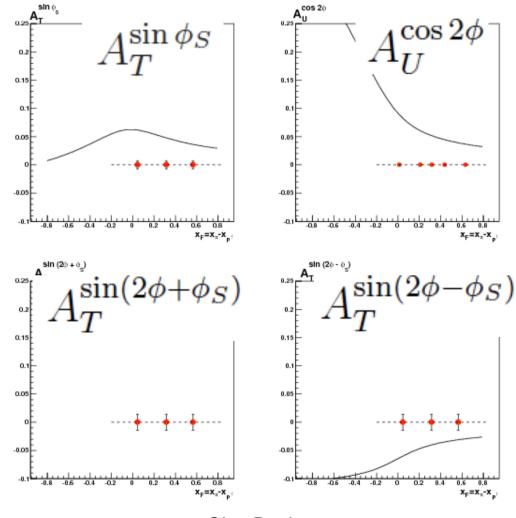
Predictions for the Sivers asymmetry in the COMPASS phase-space, for the mass region 4. < M < 9. GeV/c², compared to the expected statistical errors of the measurement:

- solid and dashed: Efremov et al, PLB612(2005)233;
- dot-dashed: Collins et al, PRD73(2006)014021;
- solid, dot-dashed: Anselmino et al, PRD79(2009)054010;
- -boxes: Bianconi et al, PRD73(2006)114002;
- short-dashed: Bacchetta et al,
 - PRD78(2008)074010.

17-05-2011



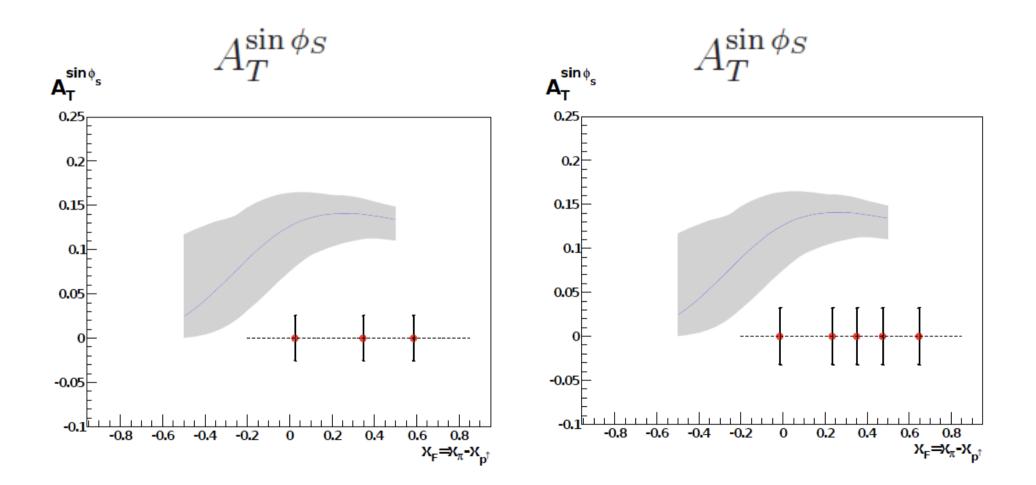
DY@COMPASS projections II


(HMR): 4. $\leq M_{\mu\mu} \leq 9$. GeV/c² (IMR): 2.0 $\leq M_{\mu\mu} \leq 2.5 \text{ GeV/c}^2$ 17-05-2011 Oleg Denisov 25

DY@COMPASS projections III

 J/ψ region: $2.9 \le M_{\mu\mu} \le 3.2 \text{ GeV/c}^2$

17-05-2011


Oleg Denisov

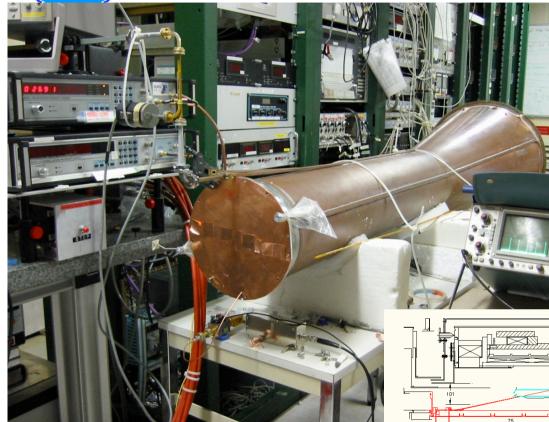
DY@COMPASS projections IV

(HMR): 4. $\leq M_{\mu\mu} \leq 9. \text{ GeV/c}^2$

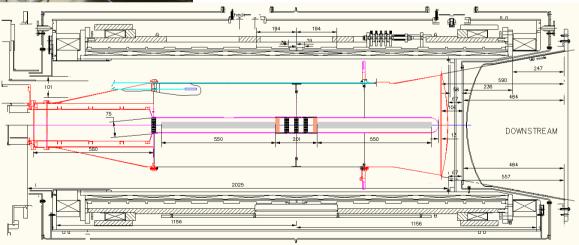
DY@COMPASS - set-up $\pi^{-} p^{1} \rightarrow \mu^{-} \mu X$

The main characteristics of the future Drell-Yan experiment:

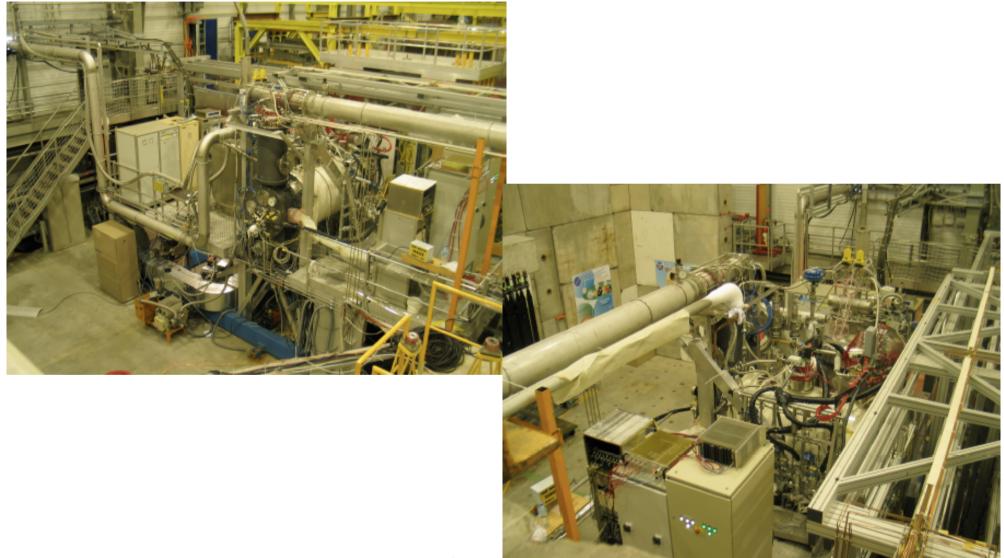
- Small cross section → High intensity hadron beam (up to 10^9 pions per spill) on the COMPASS PT
- 2. High intensity hadron beam on thick target \rightarrow
 - 1. Hadron absorber to stop secondary particles flux
 - 2. Beam plug to stop the non interacted beam
 - 3. Radioprotection shielding around to protect things and people
 - 4. High-rate-capable radiation hard beam telescope
- 3. Hadron absorber + shielding \rightarrow PT has to be moved by 2.2 meters upstream
- LAS dominates in the acceptance → The performance of the LAS tracking system must be improved and muon trigger in LAS has to be well tuned.
- 5. Hadron absorber → vertex detector is very welcome to improve cell-to-cell separation



COMPASS-II DY list of upgrades


- COMPASS Polarised target:
 - New target holder (2x55 cm, 20 cm gap)
 - Old/modified Micro-Wave cavity (2 cells target)
 - PT Pump system refurbishing
- COMPASS PT has to be moved by ~2.2 meters upstream in order to release a space for the Hadron Absorber
- Hadron absorber (Alumina Al₂O₃) and beam plug (tungsten)
- Radio-Protection screen (stainless steel & borated polyeth.)
- New SciFi-based beam telescope
- H1 trigger hodoscope modification (central hole size adjustment)
- New vertex detector (SciFi based)
- New Large Area tracking station in the LAS
- Additional trigger hodoscope?

- 1. Modified standard OD cavity (3 cells)
- 2. Use old SMC 2 cell cavity (needs new support system in OD magnet)

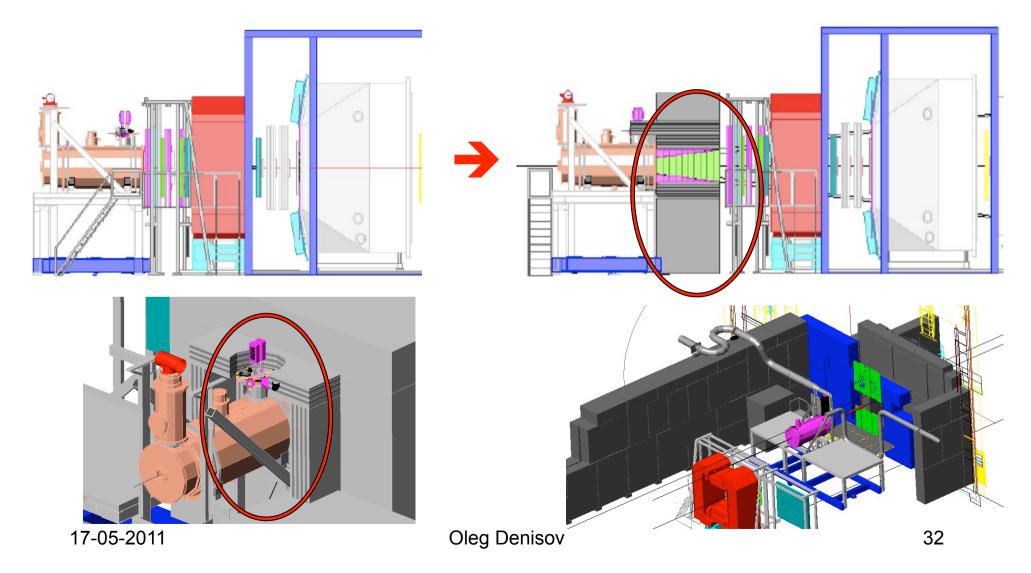


COMP AS

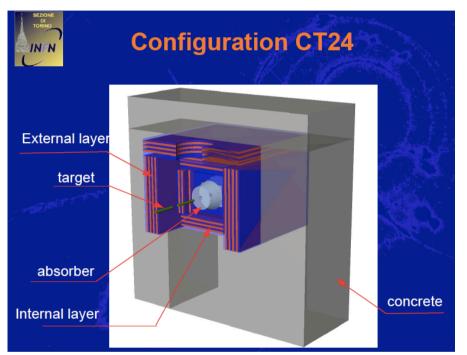
PT movement

17-05-2011

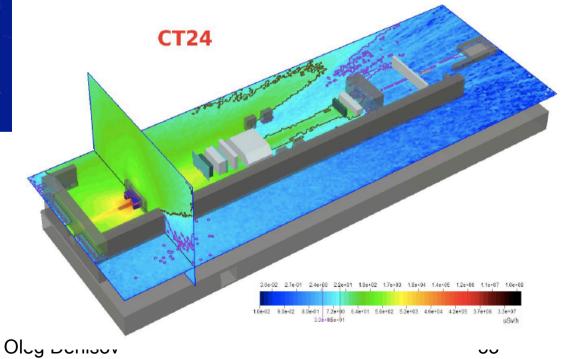
Oleg Denisov


31

PT movement

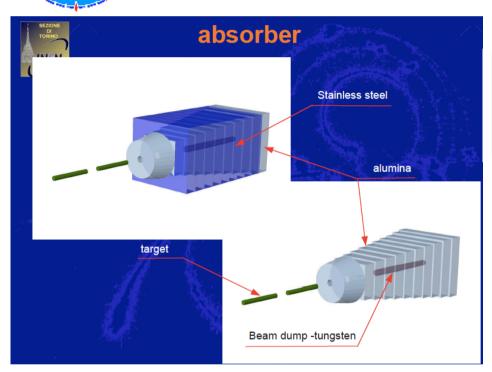

Second step is the Drell-Yan set-up drawings production \rightarrow will be done by the beginning of May

Hadron absorber & beam plug



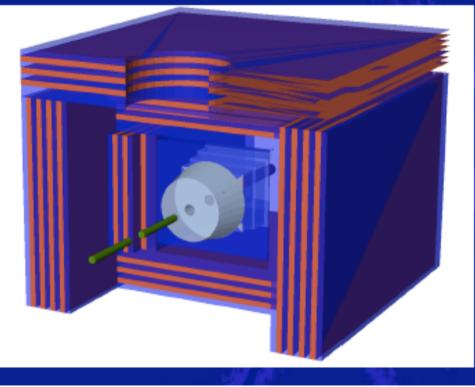
RP issue – approved by CERN RP for the maximal possible beam intensity 10⁹ pions per spill and super cycle duration 33,6 s, flat top 10 s.

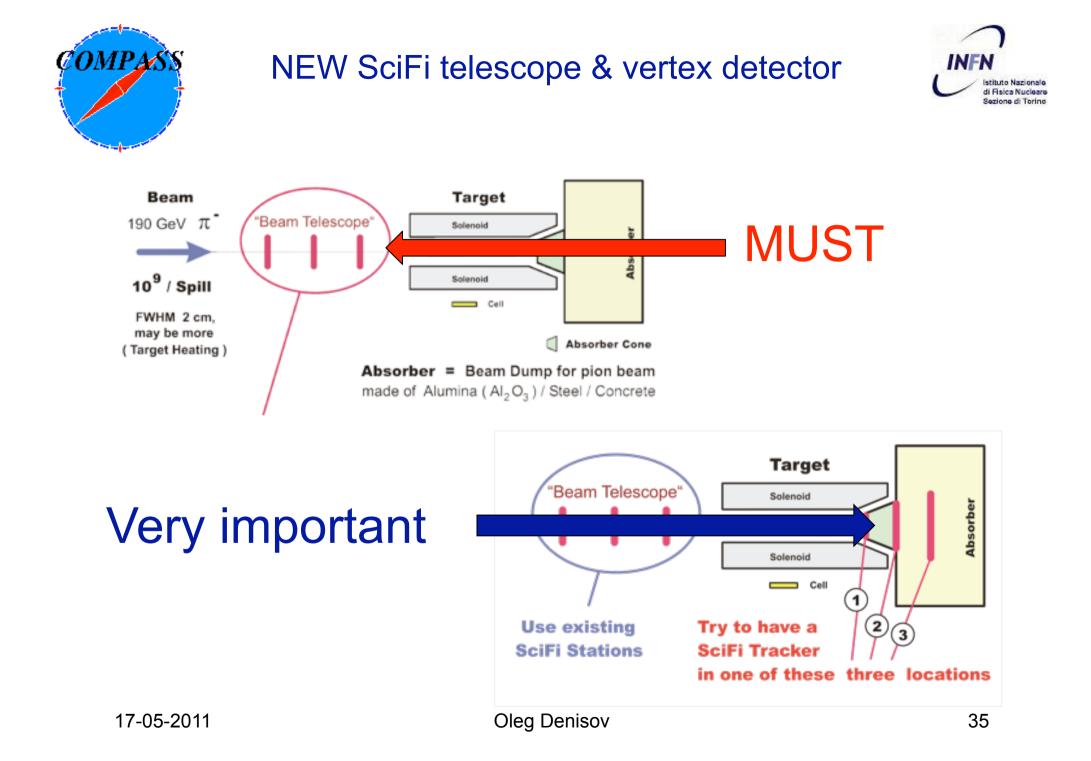
17-05-2011


Purpose:

- 1. To stop the non-interacted beam
- 2. To spot secondary hadron flux to avoid spectrometer illumination
- 3. To protect people and things from the irradiation
- 4. Very COMPACT and TRANSPARENT

Hadron absorber & beam plug

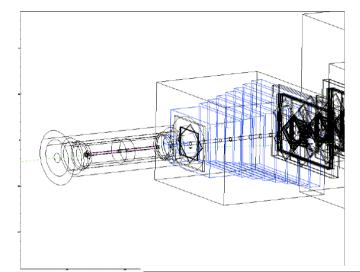


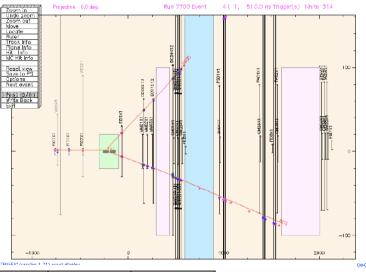


Must be compatible with the PT platform and the access to the PT instrumentation has to be provided

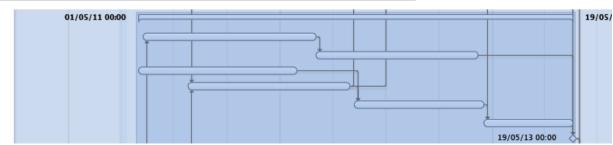
$AI_2O_3-ideal$ material, very good ratio X/ $\!\lambda$

	X ₀ [g/cm ²]	ρ [g/cm³]	$\lambda_{int}(\pi)$ [g/cm ²]
Concrete	26,60	2,30	128,6
Alumina	27,94	3,97	129,3
Stainless Steel	13,94	7,90	160,9
Carbon	42,7	2,27	117,8





Very important but we can start without

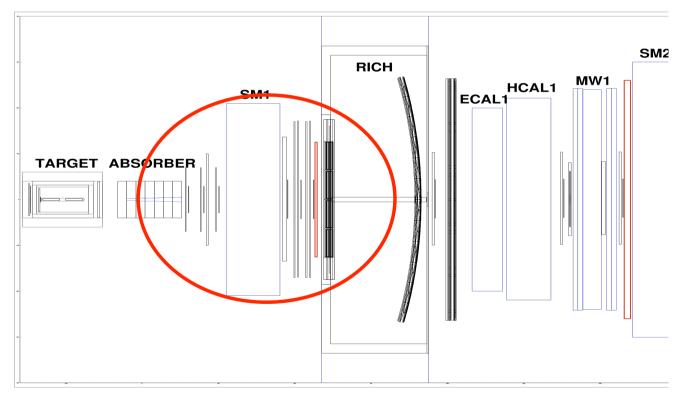

Geometry	$\sigma_{\Delta M}$	$\sigma_{\Delta V_z}$	$\sigma_{\Delta V_x}$	$\sigma_{\Delta\phi}$	in target	in target
	(MeV/c^2)	(cm)	(cm)	(mrad)	(z)	(z & r)
Solo Al ₂ O ₃	172	6.3	0.09	64	89.0%	73.6%
Telescopio fascio	174	6.2	0.1	57	89.3%	74.3%
Vtx det 10 cm	142	3.2	0.08	52	92.6%	78.3%
Vtx det 15 cm	134	2.2	0.08	51	93.8%	79.7%
Vtx det 20 cm	132	2.0	0.08	50	94.6%	80.6%
Vtx det 60 cm	128	1.8	0.07	50	95.8%	82.2%

15) Beam telescope (SciFi's)

MPA

-		00:00
 16) Design of the mechanical structure for beam telescope 	42s 4g 1h	08/05/11 00:00
 17) Production of new detectors for the beam telescope 	40s	01/03/12 00:00
 18) Feasibility study Vertex detector 	39s 1h	01/05/11 00:00
 19) Conceptual design HA+Vertex detector 	40s	24/07/11 00:00
 20) Design of the mechanics for the vertex detector 	32s 1h	06/05/12 00:00
 21) Production of the new stations and design of the support 	21s 6g 23h	16/12/12 00:00
 22) Test assembly with absorber 		19/05/13 00:00

107s 01/05/11



Tracking Station in LAS

Drell-Yan muon pairs at COMPASS kinematics:

- 1. 60% both muons stays in LAS
- 2. 36% 1 muon in LAS and another in SAS

COMPASS-II DY preparation timelines: no show stopper

08/09/2013 - Drell-Yan experiment is ready for beam

• 1) Drell-Yan program upgrades	153s 2g	01/10/10	01/10/10 00:00		08/0
• 2) Hadron absorber (HA)		00:00 01/10/10	01/10/10 00:00		21/03/13 00:00
 3) Hadron absorber MC study 	1h 25: 5:	00:00 01/10/10 00:00			
 4) Hadron absorber MC study 4) Hadron absorber RP opimiziation 		01/10/10 00:00			
	235 29			30/03/11 00:00	
 5) Concept design of the absorber 6) Design of the absorber 	F 4 - 4 -	30/03/11 00:00		30/03/11 00:00	
 6) Design of the absorber 		30/03/11 00:00			
7) Absorber production		29/04/12 00:00 24/07/11 00:00			
 8) HA support stucture design 9) Test assembling UA support 	525 4 9 11	21/03/13 00:00		21/03/13 00:00	
 9) Test assembling HA+support 10) Padiameterian abialdiana 	140- 7-			21/05/15 00:00	
 10) Radiorptection shieldings 		01/10/10 00:00	01/10/10 00:00		09/06/13 00:00
 11) Monte Carlo oprimisation 	16s	01/10/10 00:00			
12) Decision on the concept of the		20/01/11 23:00		/01/11 23:00 人	
 shielding 13) R/P shielding design + support 	74s 2a	20/01/11 23:00			
stucture design					
 14) R/P shielding + support production 	50s	24/06/12 00:00			
 15) Beam telescope (SciFi's) 	104s	01/05/11		01/05/11 00:00	28/04/13 00:00
		00:00			20/01/15 00.00
 16) Design of the mechanical structure for beam telescope 	42s 4g 1h	08/05/11 00:00			
 17) Production of new detectors for 	40s	01/03/12 00:00			
the beam telescope					
18) Feasibility study Vertex detector		01/05/11 00:00			
 19) Conceptual design HA+Vertex detector 	40s	24/07/11 00:00			
 20) Design of the mechanics for the vertex detector 		06/05/12 00:00			
 21) Production of the new stations and design of the support 	18s 6g 23h	16/12/12 00:00			
 22) Test assembly with absorber 	2311	28/04/13 00:00		28/04/13 00:00	*
 23) Trigger system modification 	76s 2g	01/01/12		01/01/12 00:00	18/06/13 01:00
		00:00			
 24) H1 modification (central hole) 25) T 		01/01/13 00:00			
 25) Trigger configuration/logic modufucation 	245	01/01/13 00:00			
 26) ??? Additional trigger hodoscope (extentions to the existing)?? 	75s 6g 23h	01/01/12 00:00			
 27) Trigger system ready 		18/06/13 01:00		18/06/1	13 01:00
 28) Polarised Target modification 	82s 1h	07/08/11 00:00		07/08/11 00:00	03/03/13 00:00
 29) Microwave cavity design 	34s	07/08/11 00:00			
 30) Microwave cavity construction 	33s 1h	01/04/12 00:00			
 31) Microwave cavity test 	15s	18/11/12 00:00			
 32) Target holder design and 	45s	25/09/11 00:00			
 construction 33) Target region modification 	1505	24/10/10			
		00:00	24/10/10 00		08/0
 34) Lay-out of the DY experiment (upstream part) 	28s	24/10/10 00:00			
(upstream part) • 35) Preliminary lay-out fixed		08/05/11 00:00		08/05/11 00:00	
 36) Access to the are (doors etc.) – 	14s 6a	27/02/11 00:00			
discussion with CERN (Lau)	23h				
 37) Study of the radiation influence on the sensitive elements PT + electronics 	8s	03/04/11 00:00			
 38) Optimisation of the sensitive elepent positioning in the area 		29/05/11 00:00			
 39) Plan for the PT infrastructure 	22s	08/05/11 00:00			
modification (piping etc.)		24/07/11 00:00		24/07/11 00:00	
 40) Phal D hay-out 41) PT pump system refurbishing 	74s 6a	11/12/11 00:00			
	23h				
 42) PT Infrastructure modification 		09/10/11 00:00			
 43) PT platform modification 		18/09/11 00:00			
 44) PT movement + infrastructure 	29s 6g	18/11/12 00:00			
assembling • 45) PT cooling down and test	23h 11s 2g	16/06/13 00:00			
polarisation	22h				
 46) HA installation 	6s				
 47) Radioprotection shielding installation 	6s	28/07/13 00:00			
 48) Ready for data taking 		08/09/13 00:00			08/09/13 00:00
· · · ·					

Oleg Denisov

COMPAS

COMPASS Running until 2016 III

Decision by the Collaboration (F.K. slide):

2014-2016

2013 Long shut down necessary for PT mouvement and installation

 \rightarrow Agreed upon

COMPASS: Summary

- Pion and, later probably antiproton beams (50-200 GeV)
- Drell-Yan process dominated by the contribution from the valence quarks (both beam and target), $\tau = x_1 x_2 = Q^2/s \approx 0.05 \div 0.3$
- Solid state polarised targets, NH₃ and ⁶LD, in case of hydrogen target
- Statistical error on single spin asymmetries after one year of running is on the level 1÷2%
- The proposal was recommended by SPSC for approval on September 29th. The initial recommendation is for 3 years (likely 2013-2015). The SPSC also proposes a schedule of two years GPD and one year DY.
- Proposal is approved by the CERN Research Board on December 1st 2010.
- During the last Collaboration meeting the decision is taken by the Collaboration to run first Drell-Yan experiment (2013 → 2014) and then DVCS program.
- Looking at the huge activity in the field a lot of new DY data is just behind the corner