NLO QCD predictions for gluon polarization from the open-charm D^0 meson production at COMPASS

Krzysztof Kurek,
Andrzej Sołtan Institute
for Nuclear Studies

in collaboration with COMPASS

DIS10, XVIII International Workshop on Deep Inelastic Scattering and Related Subjects, 19-23 April, 2010, Florence
Contents:

• Introduction: open-charm and gluon polarization
• QCD NLO corrections to open-charm production
• Asymmetry decomposition for open-charm channel
• Role of MC, PS concept and application to QCD NLO approach
• Aroma MC generator results, gluon and light quark’s parts
• Predictions for gluon polarization in QCD NLO approximation at COMPASS (based on published asymmetries)
Open-charm production@COMPASS - Photon-Gluon Fusion (PGF) - the only process in LO QCD.

\[
\sigma^{PGF} = G \otimes \hat{\sigma}^{PGF} \otimes H \\
\Delta\sigma^{PGF} = \Delta G \otimes \Delta \hat{\sigma}^{PGF} \otimes H \\
\text{assumption: } \frac{\Delta G}{G} (x) \approx a(x - \bar{x}) + b \\
A \approx \frac{\Delta G}{G} (\bar{x}_G) < \hat{a}^{PGF}_{LL} >
\]
Open-charm production at COMPASS - Photon-Gluon Fusion (PGF) - the only process in LO QCD.

\[\sigma^{PGF} = G \otimes \hat{\sigma}^{PGF} \otimes H \]

\[\Delta \sigma^{PGF} = \Delta G \otimes \Delta \hat{\sigma}^{PGF} \otimes H \]

assumption: \[\frac{\Delta G}{G} (x) \approx a(x - \bar{x}) + b \]

from data \[A \approx \frac{\Delta G}{G} (\bar{x}_G) \langle \hat{a}^{PGF}_{LL} \rangle \]

from MC
Open-charm production@COMPASS - Photon-Gluon Fusion (PGF) - the only process in LO QCD.

\[\sigma^{PGF} = G \otimes \hat{\sigma}^{PGF} \otimes H \]

\[\Delta \sigma^{PGF} = \Delta G \otimes \Delta \hat{\sigma}^{PGF} \otimes H \]

assumption: \[\frac{\Delta G}{G}(x) \approx a(x - \bar{x}) + b \]

from data

from MC

COMPASS LO analysis in details: see presentation of Celso Franco
Open-charm production@COMPASS - Photon-Gluon Fusion (PGF) - the only process in LO QCD.

charm channel:
1. in LO QCD approach pure PGF events
 but
1. Low statistics
2. Huge combinatorial background to fight

Notice: here A is a signal asymmetry only;

\[A^{\text{meas}} = \frac{s}{s+b}A^D + \frac{b}{s+b}A^B \]

\(a_{LL} \) parameterized (with neural network) using only observed quantities \((x,y,Q^2, z_D, p_T^D)\) and calculated from real data

COMPASS LO analysis in details: see presentation of Celso Franco
NLO QCD corrections for open-charm

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(k_1 \rightarrow p_1 \quad k_1 \rightarrow p_1 \quad k_2 \rightarrow p_2 \quad k_2 \rightarrow p_2

(a)

(b)

(c)

(d)
NLO QCD approximation - kinematics

\[2 \rightarrow 2 \quad \Rightarrow \quad g(k_1) + \gamma(k_2) \rightarrow c(p_1) + \bar{c}(p_2) \]

\[2 \rightarrow 3 \quad \Rightarrow \quad g(k_1) + \gamma(k_2) \rightarrow c(p_1) + \bar{c}(p_2) + g(k_3) \]

\[s_1 = (k_1 + k_2)^2 + Q^2 = 2k_1k_2 \]

\[t_1 = (k_2 - p_2)^2 - m^2 = -2p_2k_2 \quad \text{\(k_1 \) - photon} \]

\[u_1 = (k_1 - p_2)^2 - m^2 = -2p_2k_1 \quad \text{\(k_2 \) - gluon/quark} \]

\[s_4 = (k_3 + p_1)^2 - m^2 = 2k_3p_1 \quad \text{\(p_1, p_2 \) - charm quarks} \]

\[x_g = \frac{s_1}{2Pq} = \frac{s_4 - t_1 - u_1}{2\text{MEy}} \]

\[2 \rightarrow 2 \quad \Rightarrow \quad s_1 + t_1 + u_1 = 0 \]

\[2 \rightarrow 3 \quad \Rightarrow \quad s_1 + t_1 + u_1 = s_4 \]
1. **NLO corrections available only for photo-production limit.** $Q^2 = 0$

2. **No problem for COMPASS:** D – depolarization factor

\[a_{LL}^{LO} = D a_{LL}^{LO,\gamma g} \]

\[a_{LL}^{NLO} = D a_{LL}^{NLO,\gamma g} \]

Q^2 neglected in this parts - very good approximation
1. MC events used for establish parton kinematics event-by-event basis
2. PS-on allows to have “room” for integration over s_4

MC is used for simulating Phase Space for NLO/LO calculations

3. Including light quark channel new background (hidden in signal events) is present. At the first look the situation is similar to high-p_T: unwanted processes which should be subtracted. There is however a big difference: The quark channel cross section is a “reduced” cross section (NLO) and mostly negative in the COMPASS kinematical range

Also gluon NLO xs can be negative - the physical meaning has total xs: LO+NLO
NLO QCD predictions for gluon polarization from the open-charm D0 meson production at COMPASS

COMPASS

quark integrated partonic xs
Stratmann&Bojak
NLO QCD cross sections - gluon part

NLO QCD predictions for gluon polarization from the open-charm D0 meson production at COMPASS

Krzysztof Kurek

COMPASS

NLO QCD predictions for gluon polarization from the open-charm D0 meson production at COMPASS

Stratmann & Bojak
\[
\sigma^{\text{signal}} = \left(G \otimes \left(\hat{\sigma}^{\text{PGF,LO}} + \hat{\sigma}^{\text{PGF,NLO}} \right) + \sum_{q} e_{q}^{2} q \otimes \hat{\sigma}^{\text{quark,light}} + \sum_{q} q \otimes \hat{\sigma}^{\text{quark,charm}} \right) \otimes H
\]

\[
\sigma^{\text{signal}} = \left(G \otimes \hat{\sigma}^{\text{Gluon}} + \sum_{q} q \otimes \hat{\sigma}^{\text{quark}} \right) \otimes H
\]

\[
\hat{\sigma}^{\text{Gluon}} = \hat{\sigma}^{\text{PGF,LO}} + \hat{\sigma}^{\text{PGF,NLO}} \quad \hat{\sigma}^{\text{quark}} = \hat{\sigma}^{\text{quark,charm}} + \frac{5}{18} \hat{\sigma}^{\text{quark,light}}
\]

\[
\Delta \sigma^{\text{signal}} = \left(\Delta G \otimes \Delta \hat{\sigma}^{\text{Gluon}} + \sum_{q} \Delta q \otimes \Delta \hat{\sigma}^{\text{quark}} \right) \otimes H
\]

\[
A^{\text{signal}} = \frac{\Delta \sigma^{\text{signal}}}{\sigma} = \left(\frac{\Delta G}{G} \otimes \Delta \hat{\sigma}^{\text{Gluon}} + A_{1}^{d,c} \sum_{q} q \otimes \Delta \hat{\sigma}^{\text{quark}} \right) \otimes H
\]

\[
A^{\text{measured}} = f P_{T} P_{b} \left(\frac{S}{S + B} A^{\text{signal}} + \frac{B}{S + B} A^{B} \right) \quad A_{1}^{d,c} = \frac{A_{1}^{d}}{1 - \frac{3}{2} \omega_{D}}
\]

Asymmetry decomposition

\[
\text{\textit{H - fragmentation,}} \quad \otimes - \text{convolution integral}
\]

\textit{thanks to deuteron target}
\[\sigma^{\text{signal}} = \left(G \otimes (\hat{\sigma}^{\text{PGF, LO}} + \hat{\sigma}^{\text{PGF, NLO}}) + \sum_q e_q^2 q \otimes \hat{\sigma}^{\text{quark, light}} + \sum_q q \otimes \hat{\sigma}^{\text{quark, charm}} \right) \otimes H \]

\[\sigma^{\text{signal}} = \left(G \otimes \hat{\sigma}^{\text{Gluon}} + \sum_q q \otimes \hat{\sigma}^{\text{quark}} \right) \otimes H \]

\[\hat{\sigma}^{\text{Gluon}} = \hat{\sigma}^{\text{PGF, LO}} + \hat{\sigma}^{\text{PGF, NLO}} \quad \hat{\sigma}^{\text{quark}} = \hat{\sigma}^{\text{quark, charm}} + \frac{5}{18} \hat{\sigma}^{\text{quark, light}} \]

\[\Delta \sigma^{\text{signal}} = \left(\Delta G \otimes \Delta \hat{\sigma}^{\text{Gluon}} + \sum_q \Delta q \otimes \Delta \hat{\sigma}^{\text{quark}} \right) \otimes H \]

\[A^{\text{signal}} = \frac{\Delta \sigma^{\text{signal}}}{\sigma} = \left(\frac{\Delta G}{G} \otimes \Delta \hat{\sigma}^{\text{Gluon}} + A_{1}^{d,c} \sum_q q \otimes \Delta \hat{\sigma}^{\text{quark}} \right) \otimes H \]

\[A^{\text{measured}} = f_P T P_b \left(\frac{S}{S + B} A^{\text{signal}} + \frac{B}{S + B} A^B \right) \]

\[A_{1}^{d,c} = \frac{A_1^d}{1 - \frac{3}{2} \omega_D} \]

Asymmetry decomposition

thanks to deuteron target

DIS 10 - XVIII International Workshop, Florence
Krzysztof Kurek

NLO QCD predictions for gluon polarization from the open-charm D0 meson production at COMPASS
Asymmetry decomposition

\[A_{\text{signal}} = - \left(\frac{\Delta G}{G} + A_1^{d.c} \sum_q q \hat{\Delta}^{\text{quark}} \right) \left(\frac{G \hat{\Delta}^{\text{Gluon}}}{G \hat{\Delta}^{\text{Gluon}} + \sum_q q \hat{\Delta}^{\text{quark}}} \right) \left(G \hat{\Delta}^{\text{Gluon}} + \sum_q q \hat{\Delta}^{\text{quark}} \right) H \]

\[= \left(\langle \frac{\Delta G}{G} a_{LL} + A_1^{d.c} a_{LL}^q \rangle \right) \left(\frac{\Delta G}{G} \right) a_{LL} + \langle A_1^{d.c} a_{LL}^q \rangle = \left(\langle \frac{\Delta G}{G} \rangle a_{LL} \right) + \langle A_1^{d.c} a_{LL}^q \rangle \left(\frac{\Delta G}{G} + A_1^{d.c} \frac{a_{LL}^q}{a_{LL}} \right) \langle a_{LL} \rangle \]

\[a_{LL} = \frac{G \hat{\Delta}^{\text{Gluon}}}{G \hat{\Delta}^{\text{Gluon}} + \sum_q q \hat{\Delta}^{\text{quark}}} \]

\[a_{LL}^q = \frac{\sum_q q \hat{\Delta}^{\text{quark}}}{G \hat{\Delta}^{\text{Gluon}} + \sum_q q \hat{\Delta}^{\text{quark}}} \]
1. Aroma with PS-on describes COMPASS data very well

2. every event from MC has s.t.u variables fixed what allows to calculate xs in LO (unique) and in NLO: partially integrated over one charm quark.

3. Integration over energy of emitted gluon (s_4) is performed event-by-event from 0 to $s_1+t_1+u_1$. After integration over s_4 xs depends only on two variables as in LO and can be combined with LO result.

4. All reduced NLO xs should be added together to avoid numerical instabilities.

Used sample: PS-on/off (Aroma)
2004/2006 setups, of COMPASS used in MC
MC calculations: quark unpolarized xs

quark channel reduced xs NLO as a function of s_1
MC calculations: LO gluon vs quark xs

quark channel reduced xs NLO versus LO PGF
The correction for gluon polarization - a_{LL} for quark is convoluted with unpolarized quark pdf and deuteron asymmetry.

Gluon valence quarks

Deuteron asymmetry parameterization as a function of x
MC calculations: a_{LL}

NLO gluon

A*a_{LL} quark ch.

LO (PGF)
• **Model independent asymmetries were extracted from data only**

\[A_{\text{exp}} = P_B P_T f \left[R_{\text{PGF}} DA^{\gamma N \to DX} + (1 - R_{\text{PGF}}) A_{bkg} \right] \]

\[\frac{\Delta g}{g} \text{ can be extracted using } a_{LL}^{\text{PGF}} \text{ calculated at } \text{LO} : \]

\[A_{\text{exp}} = P_B P_T f \left[R_{\text{PGF}} a_{LL}^{\text{PGF}} \frac{\Delta g}{g} + (1 - R_{\text{PGF}}) A_{bkg} \right] \]

• **Similar analysis, but with weight**

\[w = f P_B \frac{S}{S + B} a_{LL} \]

instead of

\[w = f P_B \frac{S}{S + B} D \]
LO published: $\Delta G/G = -0.49 \pm 0.27$

NLO: based on asymmetries in bins
- $\Delta G/G = +0.008 \pm 0.25$
- $\Delta G/G = \text{const} : \quad \Delta G/G = -0.018 \pm 0.31$
- $\Delta G/G > 0$, Compass NLO QCD fit: $\Delta G/G = -0.083 \pm 0.4$
- $\Delta G/G < 0$, Compass NLO QCD fit: $\Delta G/G = -0.18 \pm 0.31$

NLO: simple MC weighted NLO xs
$\Delta G/G = +0.005 \pm 0.22$
Gluon polarization results: tests

shift in s_1 ~17 GeV!

u_1 centered at ~6 GeV

t$_1$ centered at 0.4 GeV

events from MC with PS-on and PS-off “paired” to have a pair of events with the same observed quantities (x,y,Q^2,z_D,p_T^D). Differences in s,t,u are shown
Gluon polarization results: tests

NLO effect slightly overestimated

shift in s_1
~17 GeV!

u_1 centered
at ~6 GeV

t_1 centered
at 0.4 GeV

It is better to use t_1 and u_1
instead of s_1 and t_1
but it costs: polarized gluons model
needed to perform integration over s_4
to test the effect 3 models have been used
(see previous slide)

events from MC with PS-on and PS-off “paired” to have a pair of events with the
same observed quantities (x, y, Q^2, z_D, p_T^D). Differences in s, t, u are shown
Conclusions

- COMPASS, open charm, prel., 02–06
- COMPASS, high p_T, $Q^2>1$ (GeV/c)2, prel., 02–04
- COMPASS, high p_T, $Q^2<1$ (GeV/c)2, prel., 02–04
- HERMES, high p_T, all Q^2
- HERMES, single high p_T hadrons, all Q^2, prel.
- SMC, high p_T, $Q^2>1$ (GeV/c)2

$\Delta g/g$

X_g

- fit with $\Delta G>0$, $\mu^2=3$(GeV/c)2
- fit with $\Delta G<0$, $\mu^2=3$(GeV/c)2
Conclusions

\[\frac{\Delta g}{g} \]

\[\begin{array}{c}
\star \text{COMPASS, open charm, prel., 02–06} \\
\text{-} \text{COMPASS, high } p_T, Q^2 > 1 \text{ (GeV/c)}^2, \text{ prel., 02–04} \\
\bullet \text{COMPASS, high } p_T, Q^2 < 1 \text{ (GeV/c)}^2, \text{ prel., 02–04} \\
\triangle \text{HERMES, high } p_T, \text{ all } Q^2 \\
\text{–} \text{HERMES, single high } p_T \text{ hadrons, all } Q^2, \text{ prel.} \\
\blacksquare \text{SMC, high } p_T, Q^2 > 1 \text{ (GeV/c)}^2
\end{array} \]

\[\begin{array}{c}
\text{fit with } \Delta G > 0, \mu^2 = 3(\text{GeV/c})^2 \\
\text{fit with } \Delta G < 0, \mu^2 = 3(\text{GeV/c})^2
\end{array} \]

NLO QCD predictions for gluon polarization from the open-charm D0 meson production at COMPASS
Conclusions

NLO corrections - significant also on asymmetries. Should be considered as a upper limit of the effect.
Final COMPASS LO result - closer to zero (see Celso Franco talk)
- new asymmetries soon - NLO analysis ongoing
Why measure gluon spin from Open-Charm?

- $c\bar{c}$ production is dominated by the PGF process, and free from physical background (ideal for probing gluon polarisation)
 - In our center of mass energy, the contribution from intrinsic charm (c quarks not coming from hard gluons) in the nucleon is negligible
 - Perturbative scale set by charm mass $4m_c^2$
 - Nonperturbative sea models predict at most 0.7% for intrinsic charm contribution
 - Expected at high x_{Bj} (compass $x_{Bj} < 0.1$)
 - $c\bar{c}$ suppressed during fragmentation (at our energies)

NLO QCD predictions for gluon polarization from the open-charm D0 meson production at COMPASS

Intrinsic charm predictions: CTEQ6.5c

- In the COMPASS kinematic domain:
 - No intrinsic charm contamination is predicted by the theory driven results
 - Only the more phenomenological “See-like” scenario should be taken into account (under study)

![Comparison of models graph]