Prospects for DVCS measurements using the COMPASS spectrometer at CERN

O.Kouznetsov CEA-Saclay/JINR-Dubna on behalf of the COMPASS Collaboration

The DVCS program is a part of the COMPASS Phase II (5 years after 2012) proposal submitted to CERN SPS comittee (May 17,2010)

COMPASS II proposal available at : CERN-SPSC-2010-014 preprint http://cdsweb.cern.ch/record/1265628/files/SPSC-P-340.pdf

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

COMPASS in μ run NIM A 577(2007) 455

Exclusive single-photon production

Deeply Virtual Compton Scattering (DVCS) & Bethe-Heitler (BH)

$$d\sigma(\mu N \to \mu N\gamma) \propto |\mathscr{A}_{BH}|^2 + |\mathscr{A}_{DVCS}|^2 + \underbrace{\mathscr{A}_{BH}\mathscr{A}_{DVCS}^* + \mathscr{A}_{BH}^*\mathscr{A}_{DVCS}^*}_{I}.$$

$$\frac{d^4\sigma(\mu p \to \mu p \gamma)}{dx_B dQ^2 d|t| d\phi} = d\sigma^{BH} + \left[d\sigma_{unpol}^{DVCS} + P_{\mu} d\sigma_{pol}^{DVSC}\right] + e_{\mu} \left[\operatorname{Re} I + P_{\mu} \operatorname{Im} I\right]$$

BH well known (reference yield)

DVCS t-slope measurement (nucleon tomography)

Interf. term access to ReADVCS ImADVCS

Kinematic domain accessible at COMPASS

with a 2.5m long LH₂ target $L = 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

 $Q^2 \rightarrow 8 \text{ GeV}^2$

→ 16 GeV² if luminosity increased by factor 4

$$\sim 10^{-2} < x_{Bj} < \sim 10^{-1}$$

 $x_{Bj} \rightarrow 0.20$ with extension of present calorimetry

Comparison of BH and DVCS at 160 GeV

BH dominates	BH and DVCS at the same level	DVCS dominates
excellent reference yield	access to DVCS amplitude through the interference	study of $d\sigma^{DVCS}/d t $
11/09/2010	Diffraction 2010	5

DVCS measurement with polarized μ^+ and μ^- beams

$$\mu^{+\downarrow}(P=-0.8), \ \mu^{-\uparrow}(P=0.8)$$

$$\frac{\mathrm{d}^4\sigma(\mu p \to \mu p \gamma)}{\mathrm{d}x_{Bj}\mathrm{d}Q^2\mathrm{d}|t|\mathrm{d}\phi} = \mathrm{d}\sigma$$

With unpolarized LH₂ target (goal to constrain GPD H)

- Beam charge & Spin Sum: $S_{CS,U} \equiv d\sigma^{+\downarrow} + d\sigma^{-\uparrow}$
- Beam charge & Spin Difference: $\mathcal{D}_{CS,U} \equiv d\sigma^{+\downarrow} d\sigma^{-\uparrow}$
- additionally deeply virtual meson production

t-slope of the DVCS cross section from $S_{CS,U}$

ImA^{DVCS} and ReA^{DVCS} from azimuthal angular dependence of interference terms in $S_{CS,U}$ & $D_{CS,U}$

DVCS measurement with polarized μ^+ and μ^- beams

$$\mu^{+\downarrow}(P=-0.8), \ \mu^{-\uparrow}(P=0.8)$$

$$\frac{\mathrm{d}^4\sigma(\mu p \to \mu p \gamma)}{\mathrm{d}x_{Bj}\mathrm{d}Q^2\mathrm{d}|t|\mathrm{d}\phi} = \mathrm{d}\sigma$$

With unpolarized LH₂ target (goal to constrain GPD H)

- Beam charge & Spin Sum: $S_{CS,U} \equiv d\sigma^{+\downarrow} + d\sigma^{-\uparrow}$
- Beam charge & Spin Difference: $\mathcal{D}_{CS,U} \equiv d\sigma^{+\downarrow} d\sigma^{-\uparrow}$
- additionally deeply virtual meson production

With transversely polarized NH₃ target (goal to constrain GPD E)

•
$$\mathcal{D}_{CS,T} \equiv \left(d\sigma^{+\downarrow}(\phi,\phi_S) - d\sigma^{+\downarrow}(\phi,\phi_S + \pi) \right) - \left(d\sigma^{-\uparrow}(\phi,\phi_S) - d\sigma^{+\uparrow}(\phi,\phi_S + \pi) \right)$$

•
$$S_{CS,T} \equiv \left(d\sigma^{+\downarrow}(\phi, \phi_S) - d\sigma^{+\downarrow}(\phi, \phi_S + \pi) \right) + \left(d\sigma^{-\uparrow}(\phi, \phi_S) - d\sigma^{+\uparrow}(\phi, \phi_S + \pi) \right)$$

$$ullet$$
 yielding two asymmetries $\mathcal{A}^D_{CS,T}=rac{\mathcal{D}_{CS,T}}{\Sigma_{unpol}}$ and $\mathcal{A}^S_{CS,T}=rac{\mathcal{S}_{CS,T}}{\Sigma_{unpol}}$

From S_{U.CS}: transverse imaging

integration of $\mathcal{S}_{CS,U}$ over ϕ and BH subtraction yields

$$d\sigma^{DVCS}/d|t| \propto \exp(-B|t|)$$
 with $B(x) \sim 1/2 \langle r_{\perp}^2(x) \rangle$

Projections: B accuracy ~0.1 GeV⁻² accuracy of α ' ~3 σ if α '>0.16

Projections for: $E\mu$ =160 GeV 2 years of running $L = 1222 \text{ pb}^{-1}$ $\epsilon_{\text{global}} = 10 \%$

Ansatz at small x_{Bj} : $(x \approx x_{Bj})$

$$B(x_{Bj}) = B_0 + 2\alpha' \ln \frac{x_0}{x_{Bj}}$$

 X_{R}

Study of the azimuthal dependence as a function of Q^2 and x_{Bi} (integration over t)

D_{U.CS}: Beam Charge & Spin Difference

A_{U.CS}: Beam Charge & Spin Asymmetry

2 years of running will permit us to study a two dimensional dependence

$$Q^2, x_{Bj}$$
 or t, x_{Bj}

Comparison to different models

Study of the $cos\phi$ modulation as a function x_{Bj} and t (integration over Q^2)

Projections VGG model compared to HERMES data Also shown D. Mueller (green)

DVCS test runs 2008 & 2009

Use COMPASS 'hadron' set-up more details in the talks of P.Jasinski and J.Friedrich

Liquid Hydrogen Recoil proton detector for hadron Sandwich Veto target system program Ring B Upstream Veto Ring A Acceptance 1 m long Recoil Proton Detector and a +/- 180 mrad 40cm LH₂ target in 2008/2009 Silicon Microstrip Detectors Silicon Microstrip Detectors 1 m Proton identification in RPD ∆E in outer ring (MeV) ∆E in outer ring (MeV) **Protons from Protons from DVCS** tests **Elastic scattering** with muon beam (2008) with pion beam (2008) 20 Diffraction 2010 11/0 12

2008 DVCS test run: a first observation of exclusive single-photon production.

Azimuthal distribution for exclusive single photon events

2009 DVCS test run: first estmation of pure DVCS, pure BH and DVCS-BH interference relative contributions

2009 beam test: DVCS signal

excess of events for $x_{bj}>0.03$ is a clear sign for DVCS

- evaluation an exclusive π^0 background is in progress
- question of the acceptance uniformity

Simulation using VGG for DVCS

Current spectrometer acceptance (non-uniformity for DVCS)

Normalised to the integrate luminosity of the 2009 DVCS test run

Detectors to be built: new large-angle electromagnetic calorimeter ECAL0

Prototype under studies
Shaschlyk module with AMPD readout

Requirements

- Photon energy range 0.2- 30 GeV
- Size: 360cm x 360cm;
- Granularity 4x4 6x6 cm²
- Energy resolution < 10.0%/√E (GeV)
- Thickness < 50 cm,
- Insensitive to the magnetic field.

Avalanche Micropixel Photo Diodes Need temp. stability <0.2K

Detectors to be built: recoil proton detector for 2.5 m long LH₂ target

- 4 m long scintillator slabs
- ~ 300 ps timing resolution
- 30° prototype tested successfully

Momentum resolution (3-9)% in the interval 0.26-0.7 GeV

high occupancy

1 GHz digitalisation of the PMT signal to cope with high rate

11/09/2010

Conclusions

- The strategic location of COMPASS on the highly energetic polarized μ^{\pm} beams provides with a great potential in GPDs physics
- For exclusive measurements detection of the recoil proton is mandatory
 - First phase: GPDs H study with unpolarized LH₂ target
 - measurement of t-slopes transverse partonic structure of the nucleon
 - measurement of Beam Charge and Spin differences & asymmetries
 Upgrade of spectrometer
 - 4m long RPD, 2.5m LH₂ target, extended & improved calorimetry is under the way
 - At a later stage a study of GPDs E requires a recoil detector integrated with a transversely polarized target.