
Study of π−p→ π−η(η)p at 190 GeV with the
COMPASS experiment
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• Selection and preliminary statistics of π−p→ π−ηηp

• A first glimpse of f0(1500)→ ηη
• PWA description and comparison with standard formalisms.

• Conclusion and outlook.
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Exotic π(1400)

E852 CBAR

Seen by E852 exp. in π− p→ ηπ− p at 18 GeV/c (publ. in 1997) and by CBAR exp. in p̄d → π−π0ηpspectator (publ. in 1998).
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Exotic π(1400)

E852 CBAR

Seen by E852 exp. in π− p→ ηπ− p at 18 GeV/c (publ. in 1997) and by CBAR exp. in p̄d → π−π0ηpspectator (publ. in 1998).

Questioned by Dzierba et al. in 2003 in π− p→ ηπ0n at 18 GeV/c.

Confirmed again by E852 in 2007 in π− p→ ηπ0n at 18 GeV/c, but with a lower mass (M = 1257± 20± 25 MeV).
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Hypothetical lightest scalar nonets configurations and
beyond
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Hypo 3: f0(1500)supernumerary and therefore may be a glueball
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Hypo 3: f0(1500)supernumerary and therefore may be a glueball

Hypo 4: a0(980), f0(980)cusps or members of a tetraquark nonet.
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Hypo 3: f0(1500)supernumerary and therefore may be a glueball

Hypo 4: a0(980), f0(980)cusps or members of a tetraquark nonet.

Hypo 5: f0(1370), f0(1500), f0(1710)are the result of the mixing of the glueball (and a tetraquark) with ordinary mesons.

Mixing scheme is based mainly on the results of WA102 experiment.

COMPASS goal in centrally produced data is to confirm and improve the observation of WA102:

measure the decay branching widths in KK̄ , ππ, ηη, ηη′ ,4π, η′η′, ...
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Hypo 3: f0(1500)supernumerary and therefore may be a glueball

Hypo 4: a0(980), f0(980)cusps or members of a tetraquark nonet.

Hypo 5: f0(1370), f0(1500), f0(1710)are the result of the mixing of the glueball (and a tetraquark) with ordinary mesons.

Mixing scheme is based mainly on the results of WA102 experiment.

COMPASS goal in centrally produced data is to confirm and improve the observation of WA102:

measure the decay branching widths in KK̄ , ππ, ηη, ηη′ ,4π, η′η′, ...

π− p→ π−ηηp very selective: X → ηη has I(JPC ) = 0(0++,2++ ,4++ , ...)
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COMPASS setup and detector description

• Two arm spectrometer

• Tracking: Straw, Drift chambers, MicroMegas, PixelGEM , Recoil Proton Detector

• Calorimetry: ECAL1 (2006), ECAL2, HCAL1, HCAL2, Sandwich Veto

• Cherenkov: CEDAR, RICH
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Electromagnetic Calorimeters

ECAL1

• 11.1 m downstream, low energetic photon
detection, L × H: 3.97× 2.86 m2

• 1500 channels:

• OLGA: 302 cells, 14.3× 14.3 cm2

• MAINZ: 572 cells, 7.5× 7.5 cm2

• GAMS: 608 cells, 3.8× 3.8 cm2

ECAL2

• 33.2 downstream, high energetic photon
detection, L × H: 2.45× 1.94 m2

• 3068 channels:

• peripheral area: GAMS lead glass blocks
3.8× 3.8 cm2

• central area: new ∼ 900radiation hard
SHASHLYK modules 3.8× 3.8 cm2

• New ADC (2008) with 32 sample converters
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Pre-selection of exclusive events

• Trigger dedicated to diffractive and ”central” reactions.

• Loop to all primary vertexes.

• Interaction in the target: −69< zvertex < −29 cm and rvertex < 1.5 cm.

• 1 outgoing negative track with Etrack < 180GeV.

• 2 and 4 good clusters in ECAL1 and in ECAL2 for the 2γ and 4γ channels,
respectively:
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• Trigger dedicated to diffractive and ”central” reactions.

• Loop to all primary vertexes.

• Interaction in the target: −69< zvertex < −29 cm and rvertex < 1.5 cm.

• 1 outgoing negative track with Etrack < 180GeV.

• 2 and 4 good clusters in ECAL1 and in ECAL2 for the 2γ and 4γ channels,
respectively:

◮ not pointed by a track.
◮ noise suppression.
◮ Eclusmin

> 1 GeV in ECAL1 and Eclusmin > 4 GeV in ECAL2.
◮ in time with the beam: −3 < tcluster − tbeam < 5ns.

• Correction of the photons momenta assuming they originate from the
primary vertex.

• Correlation with RPD: −0.3 < φπ−nγ − φp < 0.3 rad.

• Energy balance: 180< Eπ−nγ < 200GeV assuming the track to be a pion.

• π0, η→ γ1γ2: 1 combination.
π0

1, η1 → γiγ j, π0
2, η2→ γkγm: 3 combinations.
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Vertex distributions
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Recoil Proton Detector and exclusivity cuts
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η and two-body ηπ− invariant masses in the 2γ channel
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η masses in the 4γ channel
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Preliminary statistics of π−p→ π−π0(η)p

Amount of processed data (28% of 2008 data) 100.00%
DT0 trigger 73.17%
Majority < 6 for CEDAR1 and CEDAR2 71.75%
Primary vertex 66.15%
−69< zvertex < −29cm 54.44%
rvertex < 1.5 cm 52.92%
1 negative track 4.89%

Two golden clusters 0.93%
−0.3 < φπ−2γ − φp < 0.3 0.25%
Exclusivity (180< Eπ−2γ < 200GeV) 0.06%
100< m

π0 < 170 MeV 31.2% of excl. events

π0 1C CL > 10% (π0 mass) 14.6% of excl. events
450< mη < 650 MeV 21.6% of excl. events
η 1C CL > 10%(η mass) 8.1% of excl. events

• A preliminary sample of about 150K fitted π− p→ π−ηp events is used for the amplitude analysis.

• Better statistics will be achieved with improved calorimeter calibration (2008 data) and additional LASER and LED
calorimeter monitoring system (2009 DATA).

T. Schlüter, I. Uman Study of π− p→ π−η(η)p at 190 GeV 12/ 22



Preliminary statistics of π−p→ π−ηηp

Amount of processed data (42% of 2008 data) 100.00%
DT0 trigger 73.78%
Majority < 6 for CEDAR1 and CEDAR2 72.49%
Primary vertex 66.91%
−69< zvertex < −29cm 54.81%
rvertex < 1.5 cm 53.36%
1 negative track 4.94%
Four good clusters 0.61%
−0.3 < φπ−4γ − φp < 0.3 0.21%
Exclusivity (180< Eπ−4γ < 200GeV) 0.10%
√

(mγ1γ2 − m
π0 )2 + (mγ3γ4 − m

π0)2 < 25 MeV 69.78% of excl. events

2π0 2C CL > 10%(π0 mass) 27.39% of excl. events
√

(mγ1γ2 − mη)2 + (mγ3γ4 −mη)2 < 25 MeV 0.17% of excl. events

2η 2C CL > 10%(η mass) 0.13% of excl. events

• A preliminary sample of about 5K fitted π− p→ ηηp events is used for the amplitude analysis.

• Comparable amound of data is available in π− p and in pp at 190 GeV in the 2009 run.

• Better statistics will be achieved with improved calorimeter calibration (2008 data) and additional LASER and LED
calorimeter monitoring system (2009 DATA).

• The statistics will be further increased by using the mixed decay mode of one of both ηs in π+π−π0.
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Two and three-body inv. masses in the 4γ channel
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Production mechanisms

At 190 GeV incoming beam energy two compelling mechanisms for the production process of a state X are possible:
• as a product of the decay of a diffractively produced state Y: π− p→ Y p, Y → π−X, X → ηη• centrally produced via Double Pomeron Exchange: π− p→ π−f astX p, X → ηη

Diffractive dissociation
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x f and rapidities overlap: both processes have to be fitted simultaneously!

T. Schlüter, I. Uman Study of π− p→ π−η(η)p at 190 GeV 15/ 22



Amplitude Ansatz for the decay process

• Amplitude (isobar model):

AλJ = Gλeiδλ FJ (q)
YλJ (α, β)

m2
0 − s − im0Γ(m)

• Blatt-Weisskopf barrier factors

• Angular part: spherical harmonics,
decay angles α,β after ”Wick rotations” (no D-functions needed).

• Relativistic Breit Wigner

• Resonance mass dependent width

Γ(m) = Γ0


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
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

• Mass of the two-body system

• Break-up momentum

• Intensity with two resonances with masses m0 and m1, spin J and J′ :

w(m,m0,m1) =
∑

λ

[ |AλXJ
(m,m0)|2 + |AλYJ′

(m,m1)|2 + 2 cλ ℜ(AλXJ
(m,m0)Aλ∗YJ′

(m,m1)]

• λ spin component along z, −1 ≤ cλ ≤ 1 degree of coherence
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Minimization and comparison with standard PWA

• Minimization of total intensity of the negative log-likelihood:

−lnL = (−
N
∑

j=1

lnw j) + Nln(
M
∑

i=1

wi)
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• N: number of data events
M: number of MC events
Well established resonance parameters fixed at PDG values.
Gλ , δλ , cλ : free parameters of the fit
With this definition, and for a fixed set of parameters, a reduction of lnL by 0.5 is statistically significant and
corresponds to one standard deviation in mass and width optimizations.
A higher change in the lnL is requested for unambiguous spin determination (∆lnL > 10).
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Main differences between this formalism and the standard PWA formalism used in the BNL E852 and WA102
experiments.

• Resonance rest frame after Wick rotation vs. Gottfried-Jackson reference frame

• Partial coherence vs. reflectivity basis with natural and unnatural-parity exchange

• Fitting procedure: unbinned log-likelihood fit vs. mass independent (binned) log-likelihood angular fit + mass fit
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channel).
◮ no discontinuity among different bins.
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• Advantages:
◮ high constraint fit with reduced number of non-mathematical ambiguities (useful for low statistics

channel).
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• Disadvantages:
◮ Computing limitations (presently fast convergence only for < 100K events).
◮ Additional mass and width scans for all possible spin combination of all unknown resonances needed.
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Conclusion and outlook

• COMPASS first results on neutral channels with ηs.
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• COMPASS first results on neutral channels with ηs.

• A structure at 1.5 GeV which can be associated to f0(1500)
has been observed.

• An alternative amplitude analysis has been formulated as a
crosscheck to the one used for the BNL E852 and CERN
WA102 experiments.

• MC studies has shown the equivalence of this formalism with
the one used by previous experiments.

• Amplitude analysis of π−p→ π−η(η)p real data is in progress.

• The rest of 2008 and all of the 2009 data will added to the
final sample.
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Backup Slides
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Simulation of the production of a diffractive X in π−p→ Xp with X → π−η

p

π− π−f ast

pslow

X

η

�

• MX uniformly from mπ + mη to 3.5 GeV

• tX as e−bt with b = 6 GeV−2 with 0 < t < 1 GeV2. To take into
account a resonance dependent production mechanism the
shape of the t-distribution will be optimized from the data in
different mass ranges around the resonance masses.

• φX (φp) uniformly from 0 to 2π

1− xX =
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X −m2
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Simulation of the production of a central X in π−p→ Xp with X → ηη

p

π− π−f ast

pslow

X

η

η

�

�

• MX uniformly from 2mη to 3.5 GeV

• tX as e−bt with an average b = 6 GeV−2 with 0 < t < 1 GeV2.
The optimization of a resonance dependent t-distribution will
be obtained from the data.

• Flat rapidity distribution −1 < y(X) < 1

• φX (φp) uniformly from 0 to 2π

M2
X = −x�1 x�2 s

x�2 = 1− xπ on the π side, x�1 = xp − 1 on the p side
In the center of mass

xp + xπ + xX = 0 xX = MT
ey − e−y
√
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=

MT√
s
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Wick rotation and amplitude Ansatz

X

η

x

y

φ

x′

x′′

−φ
β′

β
X

η

z

θ

z′

z′′

φ

−θ
α′

α

Definition of angles for a diffractive X in π− p→ π−Xp, X → π−ηp:

• Thez axis is defined in theπp c.m. frame. Thex, y axes are defined by the angle formed by the production plane and
the decay plane.

• The Wick rotation by angles−φ andθ to the direction of flight of the diffractiveX are followed by a Lorentz boost to
the its rest frame (x′ , y′ , z′ ) and by another rotation by−θ and−φ so that the direction of the new reference frame
x′′ , y′′ , z′′ correspond to one ofx, y, z.

• α, β define the direction of oneη in the rest frame of X after the Wick rotations. The effect of the Lorentz boost is to
leave theη with final momenta different from those in the overallπp rest frame.

The angles α, β obtained in this reference frame after Wick rotations enter in the decay amplitude definition:

• AλJ = GλeiδλFJ (q)
YλJ (α, β)

m2
0 − s − im0Γ(m)
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