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beyond
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Hypo 5: fp(1370)15(1500) fo(1710)are the result of the mixing of the glueball (and a tetraquark) with ordinary mesons.

Mixing scheme is based mainly on the results of WA102 experiment.

COMPASS goal in centrally produced data is to confirm and improve the observation of WA102:

measure the decay branching widths in KK, 77, R

7 p — n nmp very selective: X — gy has |(JPC) = 00+, 24+, 4+,
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COMPASS setup and detector descriptio

Pixel L‘rE\i
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Two arm spectrometer
Tracking: Straw, Drift chambers, MicroMegas, PixelGEM , Recoil Proton Detector
Calorimetry: ECAL1 (2006), ECAL2, HCAL1, HCAL2, Sandwich Veto

Cherenkov: CEDAR, RICH
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ECAL2

Salove. dura

® 11.1 m downstream, low energetic photon ® 33.2 downstream, high energetic photon
detection, L x H: 3.97x 2.86 P detection, L x H: 2.45x 1.94n?

® 1500 channels: ® 3068 channels:

® OLGA: 302 cells, 14.3 x 14.3 cn? ® peripheral area: GAMS lead glass blocks

® MAINZ: 572 cells, 7.5 x 7.5 cn? 38x 38 e’

® GAMS: 608 cells, 3.8 x 3.8 cn? ® central area: new ~ 900radiation hard

SHASHLYK modules 3.8 x 3.8 cm?
® New ADC (2008) with 32 sample converters

ltiter, I. Uman ly of 7~ p — 7~ n(;7)p at 190 GeV 6/ 22



Pre-selection of exclusive events

o Trigger dedicated to diffractive and "central” reactions.

o Loop to all primary vertexes.

e Interaction in the target: —69 < Zygtex < —29cm and rygex < 1.5 cm.
e 1 outgoing negative track with Eqa < 180GeV.

e 2and 4 good clusters in ECALL and in ECAL2 for the 2y and 4y channels,
respectively:
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o Trigger dedicated to diffractive and "central” reactions.

o Loop to all primary vertexes.

e Interaction in the target: —69 < Zygtex < —29cm and rygex < 1.5 cm.
e 1 outgoing negative track with Eqa < 180GeV.

e 2and 4 good clusters in ECALL and in ECAL2 for the 2y and 4y channels,
respectively:

> not pointed by a track.

> noise suppression.

g EC"-'%rin > 1GeVin ECAL1 and Edusmm >4 GeVin ECAL2.
>

in time with the beam: —3 < tyyger — theam < 5NS.

e Correction of the photons momenta assuming they originate from the
primary vertex.

e Correlation with RPD: —0.3 < ¢, — ¢p < 0.3 rad.
e Energy balance: 180 < E;-5, < 200GeV assuming the track to be a pion.

e 7% 1 — y17,: 1 combination. ,
ﬂ'g, n = Yivj, ﬂg, 12 = Yk¥Ym: 3 combinations. 0
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Vertex distributions

COMPASS 2008 data
42% of 2008 DATA
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n and two-body nz~ invariant masses in the 2y channel
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n masses in the 4y channel
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Preliminary statistics of 7~p — 7 7%

Amount of processed data (28% of 2008 data) 100.00%
DTO trigger 73.17%
Majority < 6 for CEDAR1 and CEDAR2 71.75%
Primary vertex 66.15%
—69 < Zyertex < —29cm 54.44%
rvertex < 1.5cm 52.92%
1 negative track 4.89%
Two golden clusters 0.93%
-03< ¢7r727 - ¢p <03 0.25%
Exclusivity (180< E_- 2 < 200GeV) 0.06%
100< mo < 170MeV 31.2% of excl. events
2 1CcCL > lO%(zrD mass) 14.6% of excl. events
450< m, < 650MeV 21.6% of excl. events
7 1C CL > 10%(n mass) 8.1% of excl. events

® A preliminary sample of about 150K fitted 7~ p — 7~ np events is used for the amplitude analysis.

® Better statistics will be achieved with improved calorimeter calibration (2008 data) and additional LASER and LED
calorimeter monitoring system (2009 DATA).
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Preliminary statistics of 7~ p — n7nn

Amount of processed data (42% of 2008 data) 100.00%
DTO trigger 73.78%
Majority < 6 for CEDAR1 and CEDAR2 72.49%
Primary vertex 66.91%
—69 < Zyertex < —29cm 54.81%
rvertex < 1.5¢cm 53.36%
1 negative track 4.94%
Four good clusters 0.61%
-03< br-ty —Pp < 0.3 0.21%
Exclusivity (180 < E7F4y < 200GeV) 0.10%
\/(myr,2 =M 0)? +(Mygy, —M0)2 <25MeV  69.78% of excl. events
279 2C CL > 10% (x° mass) 27.39% of excl. events
\/(myl.,2 —my)2 + (My gy, — My)2 < 25MeV 0.17% of excl. events
257 2C CL > 10%(n mass) 0.13% of excl. events

® A preliminary sample of about 5K fitted 7~ p — nnp events is used for the amplitude analysis.

Comparable amound of data is available in 7~ p and in pp at 190 GeV in the 2009 run.

® Better statistics will be achieved with improved calorimeter calibration (2008 data) and additional LASER and LED
calorimeter monitoring system (2009 DATA).

® The statistics will be further increased by using the mixed decay mode of one of both 7s in a0,
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Two and three-body inv. masses in the 4y channel
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Production mechanisms

At 190 GeV incoming beam energy two compelling mechanisms for the production process of a state X are possible:
® as a product of the decay of a diffractively produced state Y: 77 p — Yp, Y - 7~ X, X —
® centrally produced via Double Pomeron Exchange: 7~ p — 77 Xp, X — nn

fast
Diffractive dissociation Central production
\\gr: L T Trag.
. v e o
X Tz
P -
N
P ™
p p
P Psiow
MC of diffractive dissociation MC of central production
b Y o .
0 o P n
40000 15000
12500
30000 [
10000
20000 | 7500
X
S000
10000 |
X 2500
B I 0

215 1 05 0 05 1 15

123<M(XM)<25GeV % (MC) 11<M(nN)<25GeV % (MC)

X and rapidities overlap: both processes have to be fitted simultaneously!
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Amplitude Ansatz for the decay process
® Amplitude (isobar model):
\ Y3 (@.p)

Aj =G Fyd) ———————
2 Mg — s— impI'(m)
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Aj =G Fyd) ———————
2 Mg — s— impI'(m)

® Blatt-Weisskopf barrier factors
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\ Y3 (@.p)

A} =G, e Fy(q)

® Blatt-Weisskopf barrier factors

® Angular part: spherical harmonics,
decay angles a3 after "Wick rotations” (no D-function

® Relativistic Breit Wigner

® Resonance mass dependent width

® Mass of the two-body system
® Break-up momentum

® Intensity \\valth two resonances with masses mg and my, spin J and J':
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Amplit Ansatz for the decay process
® Amplitude (isobar model):
\ Y3 (@.p)

A} =G, e Fy(q)

® Blatt-Weisskopf barrier factors

® Angular part: spherical harmonics,
decay angles a3 after "Wick rotations” (no D-function

® Relativistic Breit Wigner

® Resonance mass dependent width

® Mass of the two-body system
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® Intensity \vlvith two resonances with masses mg and my, spin J and J':

W(mmo.my) = > [IAL (M mo) + IAY (mmy)i® + 2,61 KAL) (M mo)AY, (m.my)]
A

® 1 spin component along z —1 < ¢, < 1degree of coherence

Uman t 190 GeV 6/ 22



Minimization and comparison with standard PWA

® Minimization of total intensity of the negative log-likelihood:

N M
-InL = (—me,) + NIn(Zw.)
=1 i=1
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Minimization and comparison wi

® Minimization of total intensity of the negative log-likelihood:

N M
-InL = (—me,) + NIn(Zw.)
=1 i=1

® N: number of data events
M: number of MC events
Well established resonance parameters fixed at PDG values.
G,,6,.¢y: free parameters of the fit
With this definition, and for a fixed set of parameters, a reduction of In£ by 0.5 is statistically significant and
corresponds to one standard deviation in mass and width optimizations.
A higher change in the InL is requested for unambiguous spin determination (AIn£ > 10).
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With this definition, and for a fixed set of parameters, a reduction of In£ by 0.5 is statistically significant and
corresponds to one standard deviation in mass and width optimizations.
A higher change in the InL is requested for unambiguous spin determination (AIn£ > 10).

Main differences between this formalism and the standard PWA formalism used in the BNL E852 and WA102
experiments.

® Resonance rest frame after Wick rotation vs. Gottfried-Jackson reference frame

® Partial coherence vs. reflectivity basis with natural and unnatural-parity exchange

® Fitting procedure: unbinned log-likelihood fit vs. mass independent (binned) log-likelihood angular fit + mass fit
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® Partial coherence vs. reflectivity basis with natural and unnatural-parity exchange
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® Advantages:
> high constraint fit with reduced number of non-mathematical ambiguities (useful for low statistics
channel).
> no discontinuity among different bins.
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experiments.

® Resonance rest frame after Wick rotation vs. Gottfried-Jackson reference frame

® Partial coherence vs. reflectivity basis with natural and unnatural-parity exchange

® Fitting procedure: unbinned log-likelihood fit vs. mass independent (binned) log-likelihood angular fit + mass fit

® Advantages:
> high constraint fit with reduced number of non-mathematical ambiguities (useful for low statistics

channel).
> no discontinuity among different bins.

® Disadvantages:

> Computing limitations (presently fast convergence only for < 100K events).
> Additional mass and width scans for all possible spin combination of all unknown resonances needed.
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o COMPASS first results on neutral channels with 5s.

o A structure at 1.5 GeV which can be associated to f5(1500)
has been observed.

e An alternative amplitude analysis has been formulated as a
crosscheck to the one used for the BNL E852 and CERN
WA102 experiments.

e MC studies has shown the equivalence of this formalism with
the one used by previous experiments.
o Amplitude analysis of 7~ p — 7~ n(n)p real data is in progress.

e The rest of 2008 and all of the 2009 data will added to the
final sample.
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Simulation of the production of a diffractive X in 77 p — Xp wit

Theam Ptarget z

70000 [
My uniformly from my + my, to 3.5 GeV
bt 0 -2 2 : 60000
® tyase ™ withb=6GeV™< with 0 <t < 1GeV*. To take into
account a resonance dependent production mechanism the 50000 £ p X
shape of the t-distribution will be optimized from the data in
different mass ranges around the resonance masses. 40000
®  $x(¢p) uniformly from 0 to 2
30000 [
M>2< - 20000 [
L
1-xx = ————
S 10000 [
0 L L L
‘15 -1 05 0 05 1 15
5 B68<M(NT)<25GeV X (MC)
Prx = tx
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Simulation of the production of a central X in 7~ p — Xp with X — nn

Solution:
P ™
My Mx\? a2 + sin
Xp, = ﬁ + ’\TT + (sinhy)# + sinhy|.
p Psiow

20000 |- _
® My uniformly from 2m, to 3.5 GeV P Tt

17500 |

® txas &P with an average b=6 GeV 2 with 0 < t < 1 GeV2.
The optimization of a resonance dependent t-distribution will 15000
be obtained from the data.

12500 |
® Flat rapidity distribution —1 < y(X) < 1
f 10000
®  ¢x(¢p) uniformly from O to 2
7500 |
X
5000 [
M>2< =—Xp; Xp, S
2500 [

Xp, = 1= Xz onthe r side, Xxp; = xp — 1onthe pside L ) X
In the center of mass -15 - -0.5 0 05 1 15
11<M(NN)<25GeV X (MC)

& —e¥V  2My sinhyem

Vs

Xp + Xr +Xx =0 xx = Mt
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Wick rotatio d amplitude Ansatz

Definition of angles for a diffractive ~ Xin 7~ p - Xp, X —» 7 np:

® Thezaxis is defined in thep c.m. frame. Thex,y axes are defined by the angle formed by the production plashe an
the decay plane.

® The Wick rotation by angles¢ andé to the direction of flight of the diractiveX are followed by a Lorentz boost to
the its rest framex,y',Z) and by another rotation byd and-¢ so that the direction of the new reference frame
X’,y’,Z’ correspond to one of y,z

® o,p define the direction of ongin the rest frame of X after the Wick rotations. Thigeet of the Lorentz boost is to
leave they with final momenta dierent from those in the overatp rest frame.

The angles «,f obtained in this reference frame after Wick rotations enter in the decay amplitude definition:

Y (@.p)
o Al=GduF (51—
m2 — s— imgl'(m)
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