

International Committee for Spin Physics Symposia XIII WORKSHOP ON HIGH ENERGY SPIN PHYSICS $\mathcal{D}.SPIN-09$

Dubna, Russia September 1 - 5, 2009

AZIMUTHAL ASYMMETRIES IN SEMI-INCLUSIVE PRODUCTION OF HADRONS ON THE LONGITUDINALLY POLARIZED DEUTERIUM TARGET

I.Savin, JINR, Dubna, on behalf of the COMPASS Collaboration

OUTLINE

- 1. Introduction: theoretical summary & motivations.
- 2. Methods of the analysis: single & double ratios.
- 3. Data selection.
- 4. Results.
- 5. Conclusions and prospects.
- 6. Back up slides.

Supported by the RFFI-CERN grant 08-02-91013

INTRODUCTION (1)

The azimuthal distributions of hadrons in SIDIS of leptons on Tand L-targets are sources of information on the PDF and PFF, characterizing the transverse spin structure of nucleons, e.g.:

A number of PDF's and PFF's enter in SIDIS cross section

INTRODUCTION (2)

The cross section and asymmetry of the h production in SIDIS:

$$d\sigma = d\sigma_{00} + P_{\mu}d\sigma_{L0} + P_{L}(d\sigma_{0L} + P_{\mu}d\sigma_{LL}) + |P_{T}|(d\sigma_{0T} + P_{\mu}d\sigma_{LT}),$$

$$A_{L}(\phi) = \frac{d\sigma^{\rightarrow \Rightarrow} - d\sigma^{\rightarrow \Leftarrow}}{d\sigma^{\rightarrow \Rightarrow} + d\sigma^{\rightarrow \Leftarrow}} \sim P_{L}\left(d\sigma_{0L} + P_{\mu}d\sigma_{LL}\right) + P_{L}\sin(\theta_{\gamma})(d\sigma_{0T} + P_{\mu}d\sigma_{LT}),$$

where contributions to σ_{ij} (i=beam, j= target polarizations) from each quark and antiquark (up to the order of (M/Q)) have forms:

$$d\sigma_{0L} \propto = x h_{1L}^{\perp}(x) \oplus H_1^{\perp}(z) \sin(2\phi) + \sqrt{2 \in (1-\epsilon)} \frac{M}{Q} x^2 \Big[h_L(x) \oplus H_1^{\perp}(z) + f_L^{\perp}(x) \oplus D_1(z) \Big] \sin(\phi),$$

$$d\sigma_{LL} \propto \sqrt{1-\epsilon^2} \quad x g_{1L}(x) \oplus D_1(z) + \sqrt{2 \in (1-\epsilon)} \frac{M}{Q} x^2 \Big[g_L^{\perp}(x) \oplus D_1(z) + e_L(x) \oplus H_1^{\perp}(z) \Big] \cos(\phi),$$

$$\text{transversity}$$

$$d\sigma_{0T} \propto = \left[x h_1(x) \oplus H_1^{\perp}(z) \sin(\phi + \phi_S) + x h_{1T}^{\perp}(x) \oplus H_1^{\perp}(z) \sin(3\phi - \phi_S) \right]$$

$$Sivers$$

$$- x f_{1T}^{\perp}(x) \oplus D_1(z) \sin(\phi - \phi_S) \Big], \qquad \otimes = \text{convolution in } k_T$$

$$d\sigma_{LT} \propto = \sqrt{1-\epsilon^2} x g_{1T}(x) \oplus D_1(z) \cos(\phi - \phi_S). \qquad \phi_S = 0 \text{ for L-target}$$

INTRODUCTION (3)

Summary:

- –Quark transverse spin effects contribute to the asymmetries $A_L(\phi)$ in hadron production from longitudinally polarized target.
- -Asymmetries modulations should be seen in $A_{i}(\phi)$.
- –Aims: search for $A_L(\phi)$, its possible $sin(\phi)$ (Sivers + Transversity), $sin(2\phi)$, $sin(3\phi)$ (Pretzelosity) and $cos(\phi)$ (Twist 3) modulations and x, z, p_h^T -dependence of corresponding amplitudes.
- $-A_{l}(\phi)$ expected to be small, $\leq 1\%$.
- Methods of analysis should be adequate.

The single ratio method, SRM (1)

4 possible spin combinations:

hours

Polarization: ~ 50%

SRM (2)

Usually the ϕ - asymmetry is defined as

$$A(\phi) = \frac{\frac{dN_{+}(\phi)}{L_{+}d\phi} - \frac{dN_{-}(\phi)}{L_{-}d\phi}}{\frac{N_{+}}{L_{+}}\langle P_{-}\rangle + \frac{N_{-}}{L_{-}}\langle P_{+}\rangle}, \quad \pm \text{ - are the target polarizations}$$

where

$$\frac{dN_{\pm}(\phi)}{d\phi} = CL_{\pm} \left[\frac{d\sigma_{00}}{d\phi} + P_{\mu} \frac{d\sigma_{L0}}{d\phi} \pm P_{\pm} \cos(\theta_{\gamma}) \left(\frac{d\sigma_{0L}}{d\phi} + P_{\mu} \frac{d\sigma_{LL}}{d\phi} \right) + P_{\pm} \sin(\theta_{\gamma}) \left(\frac{d\sigma_{0T}}{d\phi} + P_{\mu} \frac{d\sigma_{LT}}{d\phi} \right) \right]$$

$$= CL_{\pm} \left[(B_0 + B_1 \cos(\phi) + B_2 \sin(\phi) + \dots) \pm P_{\pm} (A_0 + A_1 \sin(\phi) + A_2 \sin(2\phi) + \dots) \right],$$

$$N_{\pm} = \int_{-\pi}^{\pi} d\phi \frac{dN_{\pm}(\phi)}{d\phi},$$

C is an acceptance (assumed to be ϕ -independent), L₊ is a $N_{\pm} = \int_{-\pi}^{\pi} d\phi \frac{dN_{\pm}(\phi)}{d\phi}$, luminosity and $\langle P_{\pm} \rangle$ are average products of target polarization and dilution factors.

For COMPASS two cells target:

$$A_{UD}(\phi) = \frac{\left(\frac{dN_{+}^{U}(\phi)}{L_{+}^{U}d\phi} - \frac{dN_{-}^{D}(\phi)}{L_{-}^{D}d\phi}\right) + \left(\frac{dN_{+}^{D}(\phi)}{L_{+}^{D}d\phi} - \frac{dN_{-}^{U}(\phi)}{L_{-}^{U}d\phi}\right)}{\left(\frac{N_{+}^{U}}{L_{+}^{U}}\left\langle P_{-}^{U}\right\rangle + \frac{N_{-}^{D}}{L_{-}^{D}}\left\langle P_{+}^{D}\right\rangle\right) + \left(\frac{N_{+}^{D}}{L_{+}^{D}}\left\langle P_{-}^{D}\right\rangle + \frac{N_{-}^{U}}{L_{-}^{U}}\left\langle P_{+}^{U}\right\rangle\right)}$$

$$A_{UD}(\phi) \approx \frac{1}{2}\left(A_{UD}(\phi) \approx \frac{1}{2}\left(A_{U$$

I.Savin, Azimuthal asymmetries in SIDIS production of hadrons on the longitudinally polarized D target

SRM (3)

The SRM method has been tested using a part of the COMPASS data of 2002, standard COMPASS selection cuts.

Results on asymmetries: $A_f(\phi)$, f is a direction of the target solenoid magnetic field, f=+ or -:

- different for f_+ and f_- , i.e. $A(\phi)$ distributions depend on the initial f
- -different for U and D cells: $A_U(\phi) \neq A_D(\phi)$,

Large false asymmetries, larger than physics ones

SRM can not be used for searches of small asymmetries

METHODS OF ANALYSIS: THE MODIFIED DOUBLE RATIO METHOD, (MDR) (1)

$$R_{f}(\phi) = \frac{N_{+f}^{U}(\phi)}{N_{-f}^{D}(\phi)} \cdot \frac{N_{+f}^{D}(\phi)}{N_{-f}^{U}(\phi)} = \frac{C_{f}^{U}(\phi)L_{+f}^{U}\sigma_{+}(\phi)}{C_{f}^{D}(\phi)L_{-f}^{D}\sigma_{-}(\phi)} \cdot \frac{C_{f}^{D}(\phi)L_{+f}^{D}\sigma_{+}(\phi)}{C_{f}^{U}(\phi)L_{-f}^{U}\sigma_{-}(\phi)},$$

where

 $N_{pf}^{t}(\phi)$ is a number of events,

t = U or D for Upper or Down cell,

p = + or - polarization (along or opposite to the beam),

f = + or - solenoid field direction (along or opposite to beam),

 $C_f^t(\phi)$ target acceptance factor (source of false asymmetries),

 $L_{pf}^{t} = \Phi_{pf}^{t} n^{t}$ product of beam flux and target density,

 σ_p spin dependent cross sections.

 $L_{\pm f}^{t}$ and $C_{f}^{t}(\phi)$ cancel if beam crosses both cells and if one combines periods with the same f.

$$R_{+}(\phi) = \frac{dN_{+,+}^{U}(\phi)/d\phi}{dN_{-,+}^{D}(\phi)/d\phi} \cdot \frac{dN_{+,+}^{D}(\phi)/d\phi}{dN_{-,+}^{U}(\phi)/d\phi}; \qquad R_{-}(\phi) = \frac{dN_{+,-}^{U}(\phi)/d\phi}{dN_{-,-}^{D}(\phi)/d\phi} \cdot \frac{dN_{+,-}^{D}(\phi)/d\phi}{dN_{-,-}^{U}(\phi)/d\phi}$$

MDR (2)

Configuration 1

H(f)

Up

$$N_{p,f}^t$$
 : $N_{+,+}^U$

$$\frac{T_f^t}{T_f}$$
:

Down

$$\longrightarrow$$

$$N_{-,+}^D$$

Configuration 2

Up

$$\overset{\longrightarrow}{\longrightarrow}$$

$$N^U_{-,+} \ C^U_-$$

Down

$$\longrightarrow$$

$$N_{-,+}^D$$

$$C_{\perp}^{D}$$

$$R_f$$
:

$$R_{+} \sim \frac{C_{+}^{U}}{C_{+}^{D}} \cdot \frac{C_{+}^{D}}{C_{+}^{U}} \sim 1$$

$$R_{f}(\phi) = \frac{\left(1 + P_{+,f}^{U} a_{f}(\phi)\right) \left(1 + P_{+,f}^{D} a_{f}(\phi)\right)}{\left(1 - P_{-,f}^{D} a_{f}(\phi)\right) \left(1 - P_{-,f}^{U} a_{f}(\phi)\right)}, \qquad a_{f}(\phi) \approx \frac{R_{f}(\phi) - 1}{P_{+,f}^{U} + P_{+,f}^{D} + P_{-,f}^{U}}$$

$$a_{f}(\phi) \approx \frac{R_{f}(\phi) - 1}{P_{+,f}^{U} + P_{+,f}^{D} + P_{-,f}^{u} + P_{-,f}^{D}}$$

$$a(\phi) = \frac{\left(a_0 + a_1 \sin(\phi) + a_2 \sin(2\phi) + ...\right)}{\left(1 + b_1 \sin(\phi) + b_2 \cos(\phi) + b_3 \sin(\phi) + ...\right)} \qquad a_i = A_i / B_0, b_i = B_i / B_0,$$

$$\cong a_0 + a_1 \sin(\phi) + a_2 \sin(2\phi) + a_3 \sin(3\phi) + a_4 \cos(\phi) \dots + O(a_i b_j).$$

 $a_{\perp}(\phi) \approx a_{\parallel}(f),$

free of false (multiplicative) asymmetries connected with the field.

MDR (3)

SUMMARY:

- the MDR method has been tested using a part of data,
- possible ϕ -dependent false asymmetries, connected with the target solenoid magnetic field, are canceled,
- the MDR method can be used for studies of small modulations of ϕ asymmetries, of order 0.2% or smaller,
- the analysis of the full set of COMPASS L-data is in progress, first the data of 2002-2004 from deuterium, presented in this talk.

DATA SELECTION (1)

AIM: TO HAVE A CLEAN SAMPLE OF IDENTITYED HADRONS

(1) Selection of "GOOD EVENTS" out of preselected sample of events with $Q^2>1~GeV^2$ and y>0.1 (=167.5 M from 2002, 2003, 2004 data taking)

EXCLUDED EVENTS:

- originated from bad spills,
- with a number of rec.prim.vertex >1,
- χ²/NDF>2,
- Z vertex outside the fiducial volume U or D- cell,
- 140 GeV >E(muon)> 180 GeV,
- invariant mass W < 5 GeV,
- y > 0.9. = 58% of initial sample

DATA SELECTION (2)

- (2) Selection of "GOOD TRACKS" from "GOOD EVENTS".

 Total number of tracks from "GOOD EVENTS" = 290 M

 Excluded tracks:
 - identified as muons,
 - with z-variable >1,
 - with P_h^T <0.1 GeV ----- "GOOD TRACKS" = 157 M
- (3) Selection of "GOOD HADRONS" from "GOOD TRACKS".

Each track should:

- hit one of the hadron calorimeters HCAL1 or HCAL2,
- •have an associated energy cluster E_{hcal1} >5 GeV or E_{hcal2} > 7 GeV,
- energy cluster coordinates compatible with the track coordinates,
- energy cluster compatible with the momentum of the track \rightarrow "GOOD HADRONS" = 53 M (25 M h⁻ + 28 M h⁺)
- (4) Each "GOOD HADRON" enters in considerations of asymmetries

RESULTS (1)

The weighted sum of azimuthal asymmetries (AA) $a_{+}(\phi)$ and $a_{-}(\phi)$ for $h^{-}(left)$ and $h^{+}(right)$ averaged over all kinematical variables :

where solid lines are fit functions $a_+ + a_- = a_0 + a_1 \sin(\phi) + a_2 \sin(2\phi) + a_3 \sin(3\phi) + a_4 \cos(\phi)$.

- —Within a stat. precision of about 0.15%, parameters a_1 - a_4 are compatible with zero; fits by constants: Chsq/DF=4.8/9(h^-) and 8.0/9(h^+),
- —parameters a_0 are different from zero and about equal for h^+ and h^- .

REMIND: $a_0 \propto d\sigma_{LL} \propto xg_{1L}(x) \oplus D_1(z)$, where g_{1L} is a helicity PDF of L-polarized quarks in L-polarized target

RESULTS (2)

Dependence of the AA parameter a₀ for h⁺ and h⁻ on kinematical variables:

- $A_0(x) = a_0(x)/D_0 \equiv A_d^h$ (D_0 is a virtual photon depolarization factor) is in agreement with COMPASS published data (PLB660(2008)458),
- $-a_0(z, P_h^T)$ for h^- and for h^+ : small and flat.
- —Statistical errors are shown, systematic ones are estimated to be smaller.

RESULTS (3)

Dependence of the AA parameter a_1 for h^+ and h^- on kinematic variables:

- $-a_1(x)$ are less pronounced than the HERMES ones,
- $-a_1(p_h^T)$ is flat and do not confirm the HERMES trends.

REMIND:
$$a_1 \propto d\sigma_d \propto \frac{M}{Q} x^2 \left(h_L(x) \oplus H_1^{\perp}(z) + f_L^{\perp}(x) \oplus D_1(z) \right)$$
 where $h_I(x)$ and f_L^{\perp} are pure twis-3 PDF.

NOTE: HERMES data are for identified π^+ and π^- and smaller <Q²>.

RESULTS (4)

Dependence of the AA parameter a_2 for h^+ and h^- on kinematic variables:

- $-a_2(x)$ are small and in general agree with HERMES and theoretical predictions by H.Avakian et al., Phys.Rev. D77 (2008),
- $-a_2(z, p_h^T)$ no other data.

REMIND: $a_2 \propto d\sigma_{0L} \propto x h_{IL}^{\perp}(x) \oplus H_1^{\perp}(z)$, where h_{1L}^{\perp} is a PDF not seen yet.

RESULTS (5)

Dependence of the AA parameter a₃ for h⁺ and h⁻ on kinematic variables:

 $-a_3$ are small, compatible with zero.

REMIND: $a_3 \propto d\sigma_{0T} \propto x h_{1T}^{\perp} \oplus H_1^{\perp}(z)$, where h_{1T}^{\perp} is pretzelosity PDF ,additionally suppressed by $\sin \theta_{\gamma} \sim \frac{M}{Q}$.

RESULTS (6)

Dependence of the AA parameter a_4 for h^+ and h^- on kinematic variables:

- $-\alpha_4(x)$ increasing with x in absolute value,
- $-a_4(z)$ and $a_4(p_h^T)$ small, flat and consistent with zero,
- $-a_4(x, z, p_h)$ are studied for the first time.

REMIND: $a_4 \propto d\sigma_{LL} \propto \frac{M}{Q} x^2 \left(g_L^{\perp}(x) \oplus D_1(z)_4 + ... \right)$, where g_L^{\perp} is a pure twist-3

PDF (analog to the Cahn effect in unpolarized SIDIS).

RESULTS (1)-(6) DO NOT DEPEND ON Z-CUT (0.05 or 0.2).

CONCLUSIONS & PROSPECTS (1)

- 1. The azimuthal asymmetries (AA) in the h⁻ and h⁺ production on L-polarized target are observed and parameterized with $\sin(\phi)$, $\sin(2\phi)$, $\sin(3\phi)$ and $\cos(\phi)$. For the AA integrated over-all-kinematical-variables, these amplitudes are consistent with zero within errors.
- 2. The behaviour of the AA parameters are studied in the available region of kinematical variables which have shown that:
 - the constant term of the AA parameterization, $A_0(x)$, is in good agreement with the COMPASS data on $A_d^{h\pm}$;
 - the values of the $\sin(\phi)$ parameter $a_1(x, z, p_h^T)$ are small and in general do not contradict to the HERMES data, if one takes into account the difference in Q^2 between the two experiments;
 - the values of the sin (2ϕ) parameter $a_2(x, z, p_h^T)$, sin (3ϕ) parameter $a_3(x, z, p_h^T)$ and $\cos(\phi)$ parameter $a_4(x, z, p_h^T)$ are consistent with zero.

THE REPORTED DATA ARE PRELIMINARY.

NEW DATA of 2006 on D and NEW DATA of 2007 on H, obtained with 3-cells target (smaller systematics) will be added

BACK UP SLIDES (1)

PDF & FF APPEARING IN SIDIS:

 $f_1(x) = q(x)$ is the PDF of non-polarized quarks in a non-polarized target,

 $g_{1L}(x) = g_1(x) = \Delta q(x)$ is the PDF of the longitudinally polarized quarks in the longitudinally polarized target (helicity PDF),

 $g_{17}(x)$ is the same as $g_1(x)$ but in the transversely polarized target,

 $h_1(x)$ is the PDF of the transversely polarized quark with polarization parallel to that one of a transversely polarized target (so-called transversity PDF),

 $h_{1L}^{\perp}(x)(h_{1T}^{\perp})$ is the PDF of the transversely polarized quark in direction of transverse momentum in longitudinally (transversely) polarized target (so-called pretzelosity PDF),

 $h_1^{\perp}(x)$ is the PDF of the transversely polarized quark (perpendicular to transverse momentum) in the non-polarized target (so-called Boer-Mulders PDF),

 $f_{1T}^{\perp}(x)(f_{1L}^{\perp})$ is the PDF responsible for a left-right asymmetry in the distibution of the non-polarized quarks in the transversely (longitudinally) polarized target (so-called Sivers PDF),

 $D_1(z)$ is the PFF of the non-polarized quark in the non-polarized or spinless produced hadron,

 $H_1^{\perp}(z)$ is the PFF responsible for a left-right asymmetry in the fragmentation of a transversely polarized quark into a non-polarized or spinless produced hadron (so-called Collins PFF),

 $e, e_L, g^\perp, g_L^\perp, h, h_L, f^\perp$ and f_L^\perp are pure twist-3 trms entering the cross section with a factor M/Q and having no clear physical interpretation.

BACK UP SLIDES (2)

Sources of false asymmetries are identified using a simplified expression for $A(\phi)$:

$$A(\phi) \approx \frac{dN_{+}(\phi)}{N_{+}d\phi} - \frac{dN_{-}(\phi)}{N_{-}d\phi} \approx p_{0} + p_{1}\sin(\phi) + p_{2}\sin(2\phi) + p_{3}\sin(3\phi) + p_{4}\cos(\phi) + \dots$$
$$\approx p_{0} + p_{1}\sin(\phi).$$

Remind, that

$$\phi = \arccos\left(\frac{\left(\vec{\ell} \times \vec{\ell}'\right) \cdot \left(\vec{q} \times \vec{p}_{h}\right)}{\left|\vec{\ell} \times \vec{\ell}'\right| \left|\vec{q} \times \vec{p}_{h}\right|}\right) \cdot sign\left[\vec{p}_{h} \cdot \left(\vec{\ell} \times \vec{\ell}'\right)\right]$$

 $Sin(\phi)$ appears from the vector product $(\vec{\ell} \times \vec{p}_h)$, which is pseudo-vector. But it could appear only being multiplied by another pseudo-vector:

spin of the target
$$\vec{S}$$
, with a fraction p_s spin of the muon $\vec{\mu}$, p_μ target magnetic field \vec{H} , p_H

target magnetic field \vec{H} , " p_H product $(\vec{H} \times \vec{\mu})$, " $p_{H\mu}$ product $(\vec{H} \times \vec{S})$, " p_{HS}

physics asym.

false asym., due to incomplete knowledge of \vec{H} and/or misalignments

So, $p_1 \sim p_s + p_u + p_{Hu} + p_{Hs} + p_H$, where false asim depend on:

- directions of the field.
- track extrapolations,
- sign of particles.

different for U and D cells.

BACK UP SLIDES (3)

The distributions of events, passed all data selection cuts, vs. Q^2 (left) and vs. y (right). Cuts are shown by red lines.

The distributions of identified good charged hadrons vs. z (left) and vs. p_h^T (right).

BACK UP SLIDES (4)

x bins	z bins	p_h^T bins (GeV)
	0.05(0.120)0.200	
0.004(0.010)0.012	0.200(0.216)0.234	0.100(0.177)0.239
0.012(0.020)0.022	0.234(0.253)0.275	0.239(0.289)0.337
0.022(0.031)0.035	0.275(0.299)0.327	0.337(0.385)0.433
0.035(0.053)0.076	0.327(0.361)0.400	0.433(0.485)0.542
0.076(0.098)0.132	0.400(0.455)0.523	0.542(0.610)0.689
0.132(0.190)0.700	0.523(0.661)0.900	0.689(0.814)1.000

The size of each bin is optimized to have ≥ 1 M of events