COMPASS results on the gluon polarisation in the nucleon

Beata Pawlukiewicz

University of Warsaw on behalf of the COMPASS collaboration

SYMMETRIES AND SPIN (Spin-Praha-2009) Prague July 28, 2009

Overview

- The Spin Puzzle
- The COMPASS experiment
- Direct gluon polarisation measurements
 - Open Charm analysis
 - High p_T hadron pairs analysis
- Results
- Summary and Outlook

The Spin Puzzle 20 years later

$$\frac{\hbar}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z$$

Definitions:

$$\Delta\Sigma = \Delta u + \Delta d + \Delta s$$

$$\Delta q = \int \Delta q(x) dx$$

$$\Delta G = \int \Delta g(x) dx$$

- In the naive QPM: $\Delta \Sigma = 1$
- Taking into account relativistic corrections and $\Delta s = 0$: $\Delta \Sigma \approx 0.6$
- The EMC: $\Delta\Sigma = 0.12 \pm 0.17$ [Nucl. Phys. B **328** (1989) 1]
- COMPASS NLO QCD fit to the world data: $\Delta \Sigma = 0.30 \pm 0.01 (\text{stat.}) \pm 0.02 (\text{evol.}) \text{ [PLB 647 (2007) 8-17]}$
- ullet Direct measurements can answer what is the contribution of ΔG to the nucleon spin...

- The Spin Puzzle
- The COMPASS experiment
- Direct gluon polarisation measurements
 - Open Charm analysis
 - High p_T hadron pairs analysis
- Results
- Summary and Outlook

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

The COMPASS setup

- Two stages: LAS and SAS
- Tracking (p > 0.5 GeV):
 Scifis, GEMs, Micromegas, Straws
- Particle identification: π , K, p separation (above 2, 9 and 18 GeV) with RICH, ECAL, HCAL, μ Filter
- Beam: 160 GeV μ^+ , $2 \cdot 10^8 \mu/5$ s, naturally polarised \sim 80 %
- Target (6 LiD): 2 (3) cells oppositely polarised $\sim 50 \% \Rightarrow$ observables \equiv cross-section asymmetries!

[NIMA 577 (2007) 455]

- The Spin Puzzle
- The COMPASS experiment
- Direct gluon polarisation measurements
 - Open Charm analysis
 - High p_T hadron pairs analysis
- Results
- Summary and Outlook

ullet Register DIS scattering polarised μ on polarised nucleon:

$$\mu$$
+ N $\rightarrow \mu'$ + X

• Register DIS scattering polarised μ on polarised nucleon:

$$\mu$$
+ N $\rightarrow \mu'$ + X

• Register DIS scattering polarised μ on polarised nucleon:

$$\mu$$
+ N $\rightarrow \mu'$ + X

• Look for processes with Photon-Gluon-Fusion:

$$\gamma^*+ \ \mathrm{g}
ightarrow \mathrm{q} \ \overline{\mathrm{q}}$$

ullet Register DIS scattering polarised μ on polarised nucleon:

$$\mu$$
+ N $\rightarrow \mu'$ + X

Look for processes with Photon-Gluon-Fusion:

$$\gamma^*+ \ \mathrm{g}
ightarrow \mathrm{q} \ \overline{\mathrm{q}}$$

- Tag PGF through special hadrons in the final state:
 - charmed mesons
 - hadrons with high transverse momenta (w.r.t. γ^*)

ullet Register DIS scattering polarised μ on polarised nucleon:

$$\mu$$
+ N $\rightarrow \mu'$ + X

Look for processes with Photon-Gluon-Fusion:

$$\gamma^*+ \ \mathrm{g} \to \mathrm{q} \ \overline{\mathrm{q}}$$

- Tag PGF through special hadrons in the final state:
 - charmed mesons
 - hadrons with high transverse momenta (w.r.t. γ^*)
- Measure double spin asymmetries:

$$A^{exp} = rac{N^{\uparrow \downarrow} - N^{\uparrow \uparrow \uparrow}}{N^{\uparrow \downarrow} + N^{\uparrow \uparrow \uparrow}} \propto rac{\Delta_g}{g}$$

• Register DIS scattering polarised μ on polarised nucleon:

$$\mu$$
+ N $\rightarrow \mu'$ + X

Look for processes with Photon-Gluon-Fusion:

$$\gamma^* + \mathrm{g} \to \mathrm{q} \; \overline{\mathrm{q}}$$

- Tag PGF through special hadrons in the final state:
 - charmed mesons
 - hadrons with high transverse momenta (w.r.t. γ^*)
- Measure double spin asymmetries:

$$A^{exp} = \frac{N^{\uparrow \Downarrow} - N^{\uparrow \Uparrow}}{N^{\uparrow \Downarrow} + N^{\uparrow \Uparrow}} \propto \frac{\Delta g}{g}$$

number of events $N^{\uparrow \downarrow \downarrow}$

• Register DIS scattering polarised μ on polarised nucleon:

$$\mu$$
+ N $\rightarrow \mu'$ + X

• Look for processes with Photon-Gluon-Fusion:

$$\gamma^* + \mathsf{g} \to \mathsf{q} \; \overline{\mathsf{q}}$$

- Tag PGF through special hadrons in the final state:
 - charmed mesons
 - hadrons with high transverse momenta (w.r.t. γ^*)
- Measure double spin asymmetries:

$$A^{\text{exp}} = \frac{\textit{N}^{\uparrow \Downarrow} - \textit{N}^{\uparrow \Uparrow}}{\textit{N}^{\uparrow \Downarrow} + \textit{N}^{\uparrow \Uparrow}} \propto \frac{\Delta g}{g}$$

$$\Delta g \equiv \Delta g(x, \mu^2)$$
 $g \equiv g(x, \mu^2)$

Tagging PGF process: charmed mesons

- $q \equiv c \Rightarrow D$ mesons in the final state
- clean channel:
 - intrinsic charm and charm in string fragmentation – suppressed
 - resolved photon negligible
- perturbative scale: $4(m_c^2 + p_T^2)$
- difficult measurement:
 - low statistics
 - huge combinatorial background
- NLO effects may be important

Tagging PGF process: high p_T hadron pairs, $Q^2 > 1$ (GeV/c)²

- q ≡ light quarks ⇒ a pair of hadrons with high transverse momenta in the final state
- perturbative scale: Q²
- simple measurement: large statistics
- QCD background processes
- strong dependence on the MC simulations

- The Spin Puzzle
- The COMPASS experiment
- Direct gluon polarisation measurements
 - Open Charm analysis
 - High p_T hadron pairs analysis
- Results
- Summary and Outlook

Interpretation of the charmed double spin asymmetry

In the LO approximation:

$$A^{exp} = rac{N^{\uparrow \downarrow} - N^{\uparrow \uparrow \uparrow}}{N^{\uparrow \downarrow} + N^{\uparrow \uparrow \uparrow}} = P_t P_b fa_{LL} rac{S}{S + B} rac{\Delta g}{g} + A^{bgd}$$

```
P<sub>t</sub> target polarisation: 50%
```

 P_b beam polarisation: 80%

target dilution factor: \approx 0.4 for 6 LiD

a_{LL} partonic cross-section asymmetry (analysing power)

 $\frac{S}{S+B}$ fraction of the signal

 A^{bgd} extracted simultaneously with A^{exp}

Partonic cross-section asymmetry a_{LL}

- $a_{LL} \equiv \frac{\Delta \hat{\sigma}}{\hat{\sigma}}$: partonic cross-section asymmetry, not accessible in the measurement
- it is determined from Monte Carlo (AROMA LO) and parameterised using Neural Network
- the trained NN is applied to data \Rightarrow obtain a_{LL} on the event-by-event basis

- standard channels: [PLB **676** (2009) 31-38]
 - $D^0 \rightarrow K\pi$ (D*-non-tagged; 37000 events)

- K, π identified using RICH
- ${\color{red} \bullet}$ 0.4 GeV/c^2 < $M_{K\pi}$ ${\rm M}_{D^0}$ < 0.4 GeV/c^2

- standard channels: [PLB **676** (2009) 31-38]
 - $D^0 o K\pi$ (D*-non-tagged; 37000 events)

- \bullet K, π identified using RICH
- $\bullet~$ 0.4 GeV/c 2 < $M_{K\pi}$ ${\rm M}_{D^0}$ < 0.4 GeV/c 2

- standard channels: [PLB **676** (2009) 31-38]
 - $D^0 \rightarrow K\pi$ (D*-non-tagged; 37000 events)
 - $D^* \rightarrow D^0 \pi_{slow} \rightarrow K \pi \pi_{slow}$ (D*-tagged; 8700 events)

- \bullet K, π identified using RICH
- ullet 0.4 GeV/ $c^2 < M_{K\pi}$ $M_{D^0} <$ 0.4 GeV/ c^2
- lacksquare 3.2 MeV/ $c^2 < M_{K\pi\pi s}$ $M_{K\pi}$ $M_{\pi} <$ 8.9 MeV/ c^2
- electrons rejected (avoid fake π_{slow})

- standard channels: [PLB 676 (2009) 31-38]
 - $D^0 o K\pi$

(D*-non-tagged; 37000 events)

• $D^* \rightarrow D^0 \pi_{slow} \rightarrow K \pi \pi_{slow}$ (D*-tagged; 8700 events)

- K, π identified using RICH
- 0.4 GeV/ $c^2 < M_{K\pi} M_{D0} < 0.4 \text{ GeV}/c^2$
- lacktriangle 3.2 MeV/ $c^2 < M_{K\pi\pi_S}$ $M_{K\pi}$ $M_{\pi} <$ 8.9 MeV/ c^2
- electrons rejected (avoid fake π_{slow})

- standard channels: [PLB 676 (2009) 31-38]
 - $D^0 \rightarrow K\pi$

(D*-non-tagged; 37000 events)

• $D^* \rightarrow D^0 \pi_{slow} \rightarrow K \pi \pi_{slow}$ (D*-tagged; 8700 events)

- K, π identified using RICH
- \bullet 0.4 GeV/ $c^2 < M_{K\pi}$ M_{D0} < 0.4 GeV/ c^2
- lacksquare 3.2 MeV/ $c^2 < M_{K\pi\pi_5}$ $M_{K\pi}$ $M_{\pi} <$ 8.9 MeV/ c^2
- electrons rejected (avoid fake π_{slow})

- new channels:
 - $D^* o D^0 \pi_{slow} o K\pi(\pi^0) \; \pi_{slow} \; ext{(D*-tagged; 6200 events)}$
 - $D^* \to D^0 \pi_{slow} \to K_{sub} \pi \pi_{slow}$ (D*-tagged; 1800 events)

Event weight

To select the signal in more efficient way:

- each event is weighted with the full weight: $fP_ba_{LL} \frac{S}{S+B}$
- at the same time event is weighted with the background weight $\left(\dots \frac{B}{S-B} \right)$
 - ⇒ simultaneous extraction of signal and background asymmetries
- $\Sigma \equiv \frac{S}{S+B}$ is parameterised event-by-event basis as a function of many variables (e.g. m_{D^0} , $p_{T_{D^0}}$, RICH likelihoods,...)

Open charm results (2002–2006)

sample	$\langle \Delta g/g angle_{ imes}$	
D*-tagged and non-tagged [PLB 676 (2009) 31-38]	-0.47 ± 0.27 (stat.) ± 0.11 (sys.)	
new! D^* with additional π^0	-0.15 ± 0.63 (stat.)	
new! D* with RICH-subtreshold kaons	$+0.57 \pm 1.02$ (stat.)	

Open charm results (2002–2006)

sample	$\langle \Delta g/g angle_{ imes}$	
D*-tagged and non-tagged [PLB 676 (2009) 31-38]	$-0.47 \pm 0.27 \; ext{(stat.)} \; \pm 0.11 \; ext{(sys.)}$	
new! D^* with additional π^0	-0.15 ± 0.63 (stat.)	
new! D* with RICH-subtreshold kaons	$+0.57 \pm 1.02 \; ext{(stat.)}$	

$$\langle \frac{\Delta g}{g} \rangle_X = -0.39 \pm 0.24 \text{ (stat.) } \pm 0.11 \text{ (syst.)}$$

at $\langle x_g \rangle = 0.11^{+0.11}_{-0.05}, \langle \mu^2 \rangle = 13 \text{ (GeV/c)}^2$

SYSTEMATICS:

STSTEWATICS.				
source	$\delta(\langle \Delta g/g \rangle_{x})D^{0}(D^{*})$	source	$\delta(\langle \Delta g/g \rangle_{\times}) D^0(D^*)$	
false asymmetry	0.05(0.05)	P_b	0.025	
S/(S+B)	0.07(0.01)	P_t	0.025	
aLL	0.05(0.03)	f	0.025	
Total: 0.11(0.07)				

- The Spin Puzzle
- The COMPASS experiment
- Direct gluon polarisation measurements
 - Open Charm analysis
 - High p_T hadron pairs analysis
- Results
- Summary and Outlook

- R_i fraction of sub-processes (PGF, LP, QCD-C)
- a_{II}^{i} analysing powers for PGF, LP and QCD-C
- D a depolarisation factor

•
$$A_1^{LO} = \sum e_i^2 \Delta q_i / \sum e_i^2 q_i$$

- R_i fraction of sub-processes (PGF, LP, QCD-C)
- a_{II}^{i} analysing powers for PGF, LP and QCD-C
- D − a depolarisation factor
- $A_1^{LO} = \sum e_i^2 \Delta q_i / \sum e_i^2 q_i$

- R_i fraction of sub-processes (PGF, LP, QCD-C)
- a_{II}^{i} analysing powers for PGF, LP and QCD-C
- D a depolarisation factor

•
$$A_1^{LO} = \sum_i e_i^2 \Delta q_i / \sum_i e_i^2 q_i$$

$$A^{2h} \sim rac{\Delta g}{g}(x_g) a_{LL}^{PGF} R_{PGF} + A_1^{LO}(x_{Bj}) DR_{LO} + A_1^{LO}(x_c) a_{LL}^{QCDC} R_{QCDC}$$

- R_i fraction of sub-processes (PGF, LP, QCD-C)
- a_{II}^{i} analysing powers for PGF, LP and QCD-C
- D a depolarisation factor

•
$$A_1^{LO} = \sum e_i^2 \Delta q_i / \sum e_i^2 q_i$$

$$A^{2h} \sim rac{\Delta g}{g}(x_g) a_{LL}^{PGF} R_{PGF} + A_1^{LO}(x_{Bj}) DR_{LO} + A_1^{LO}(x_c) a_{LL}^{QCDC} R_{QCDC}$$

- R_i fraction of sub-processes (PGF, LP, QCD-C)
- a_{LL}^i analysing powers for PGF, LP and QCD-C
- D − a depolarisation factor
- $A_1^{LO} = \sum e_i^2 \Delta q_i / \sum e_i^2 q_i$

$\Delta g/g$ extraction

$$\langle \frac{\Delta g}{g} \rangle_{x} = \frac{A^{2h} + A^{corr}}{\beta}$$

- $A^{2h} = A^{exp}/P_tP_bf$ directly from data
- A^{corr} combination of inclusive asymmetry A_1 , R_i and a_{LL}^i
- β factor a function of R_i and a_{LL}^i
- R_i and aⁱ_{LL} have to be obtained from MC simulation (LEPTO) for both inclusive and hight p_T samples
 ← good agreement between data and MC is crucial!

$\Delta g/g$ extraction

$$\langle \frac{\Delta g}{g} \rangle_X = \frac{A^{2h} + A^{corr}}{\beta}$$

- $A^{2h} = A^{exp}/P_tP_hf$ directly from data
- A^{corr} combination of inclusive asymmetry A_1 , R_i and a_{LL}^i
- β factor a function of R_i and a_{LL}^i
- R_i and aⁱ_{LL} have to be obtained from MC simulation (LEPTO) for both inclusive and hight p_T samples
 ← good agreement between data and MC is crucial!
- Event weight: fDP_bβ
- Parameterisation on the event-by-event basis: Neural Network

High p_T sample

- $Q^2 > 1 \; (\text{GeV}/c)^2$ (cuts 90% of the statistics)
- ullet $p_{\mathcal{T}_1} > 0.7 \; \mathrm{GeV}/c$ and $p_{\mathcal{T}_2} > 0.7 \; \mathrm{GeV}/c$
- 2002 2004: 500k events

Data and MC comparison: x_{Bj} , y, Q^2

Data (2002-2004) and MC comparison: p_{T_1} , p_{T_2} , $\sum p_{T^2}$

LEPTO tuning: k_T and parameters of fragmentation

NN parameterisation of R_i

The event probability to be PGF, LP or QCDC is evaluated from a NN parametrising R_i (R_i sum up to 1):

$$R_{PGF} = 1 - O_1 - \frac{1}{\sqrt{3}}O_2$$
 $R_{QCDC} = O_1 - \frac{1}{\sqrt{3}}O_2$ $R_{LP} = \frac{2}{\sqrt{3}}O_2$

High p_T hadron pairs results

$$Q^2 > 1 \text{ (GeV}/c)^2 \text{ (2002 - 2004)}$$
:

SYSTEMATICS:				
source	$\delta(\langle \Delta g/g \rangle_{\chi})$			
NN	0.006			
MC	0.040			
fP_bP_t	0.006			
false asymmetry	0.011			
A ₁	0.008			
formula	0.013			
Total	0.045			

$$\langle \frac{\Delta g}{g} \rangle_X = 0.08 \pm 0.10 \text{ (stat.) } \pm 0.05 \text{ (sys.)}$$
 $< x_g >= 0.082^{+0.041}_{-0.027}, < \mu^2 >= 3 \text{ (GeV/c)}^2$

High p_T hadron pairs results

$$Q^2 > 1 (GeV/c)^2 (2002 - 2004)$$
:

SYSTEMATICS:					
source	$\delta(\langle \Delta g/g \rangle_{\chi})$				
NN	0.006				
MC	0.040				
fP_bP_t	0.006				
false asymmetry	0.011				
A ₁	0.008				
formula	0.013				
Total	0.045				

$$\label{eq:sys_sigma} \big\langle \frac{\Delta g}{g} \big\rangle_X \, = \, 0.08 \, \pm \, 0.10 \, \left(\text{stat.} \right) \, \, \pm 0.05 \, \left(\text{sys.} \right) \, \\ \, < \, \mathsf{x_g} \, > = \, 0.082^{+0.041}_{-0.027}, \, < \, \mu^2 \, > = \, 3 \, \left(\text{GeV/c} \right)^2 \, \,$$

$$\begin{array}{l} {\sf Q}^2<1 \ ({\sf GeV}/c)^2 \ (2002-2003); \ \langle \frac{\Delta g}{g}\rangle_{\scriptscriptstyle X}=0.024\pm 0.089\pm 0.057 \ {\tiny [PLB \ 633 \ (2006) \ 25-32]} \\ {\sf Q}^2<1 \ ({\sf GeV}/c)^2 \ (2002-2004); \ \langle \frac{\Delta g}{g}\rangle_{\scriptscriptstyle X}=0.016\pm 0.058\pm 0.054 \ {\tiny preliminary} \end{array}$$

- The Spin Puzzle
- The COMPASS experiment
- Direct gluon polarisation measurements
 - Open Charm analysis
 - High p_T hadron pairs analysis
- Results
- Summary and Outlook

COMPASS results on $\Delta g/g$

- Direct COMPASS measurements on gluon polarisation: $\langle \Delta g/g \rangle_x$ compatible with 0 at $x_g \approx 0.1$
- The curves: COMPASS NLO QCD fits to world data on $g_1^d \Rightarrow$ fits with negative and positive ΔG describe data equally well

- The Spin Puzzle
- The COMPASS experiment
- Direct gluon polarisation measurements
 - Open Charm analysis
 - High p_T hadron pairs analysis
- Results
- Summary and Outlook

• Recent COMPASS results on the gluon polarisation have been presented:

- Recent COMPASS results on the gluon polarisation have been presented:
 - Open charm: $\langle \Delta g/g \rangle_{\scriptscriptstyle X} = -0.39 \pm 0.24 \pm 0.11 \; (\mu^2 = 13 \; ({\rm GeV}/c)^2)$

- Recent COMPASS results on the gluon polarisation have been presented:
 - Open charm: $\langle \Delta g/g \rangle_X = -0.39 \pm 0.24 \pm 0.11 \; (\mu^2 = 13 \; (\text{GeV}/c)^2)$
 - High p_T, Q² > 1 (GeV/c)²: $\langle \Delta g/g \rangle_X = 0.08 \pm 0.10 \pm 0.05 \; (\mu^2 = 3 \; (\text{GeV/c})^2)$

- Recent COMPASS results on the gluon polarisation have been presented:
 - Open charm: $\langle \Delta g/g \rangle_{\scriptscriptstyle X} = -0.39 \pm 0.24 \pm 0.11 \; (\mu^2 = 13 \; (\text{GeV}/c)^2)$
 - High p_T, Q² > 1 (GeV/c)²: $\langle \Delta g/g \rangle_X = 0.08 \pm 0.10 \pm 0.05 \; (\mu^2 = 3 \; (\text{GeV/c})^2)$
 - $\bullet \ \ \text{High p_T, Q}^2 < 1 \ (\text{GeV}/c)^2 \colon \ \langle \Delta g/g \rangle_{\scriptscriptstyle X} = 0.016 \pm 0.058 \pm 0.054 \ (\mu^2 = 3 \ (\text{GeV}/c)^2)$
- The results indicate $\langle \Delta g/g \rangle_x$ consistent with 0 at $x_g \approx 0.1$

- Open Charm:
 - NLO analysis is going on
 - add 2007 data
- High p_T pairs:
 - 2006 analysis is going on
 - add 2006 2007 data

- Open Charm:
 - NLO analysis is going on
 - add 2007 data
- High p_T pairs:
 - 2006 analysis is going onadd 2006 2007 data

- Open Charm:
 - NLO analysis is going on
 - add 2007 data
- High p_T pairs:
 - 2006 analysis is going on
 - add 2006 2007 data

- Open Charm:
 - NLO analysis is going on
 - add 2007 data
- High p_T pairs:
 - 2006 analysis is going on
 - add 2006 2007 data

- Open Charm:
 - NLO analysis is going on
 - add 2007 data
- High p_T pairs:
 - 2006 analysis is going on
 - add 2006 2007 data

COMPASS has presented recently to the SPSC the addendum to its original proposal and got positive feed-back.

It will run both longitudinal and transverse programs beyond 2009.

SPARES

Indirect $\Delta g/g$ Determination:

- World data: 9 experiments, 230 data points (43 from COMPASS)
- ullet Both solutions: $\Delta G > 0$ and $\Delta G < 0$ describe data equally well

[PLB **647** (2007) 330-340]

 ΔG from COMPASS data only: $\approx 0.2 - 0.3$

SPARES: Artificial Neural Network

- a multidimensional structure of the interconnected neurons:
 - input layer: vector of variables on which the parameterisation will be built
 - hidden layers with the possibility to change the number of neurons
 - \bullet output layer: usually 1 exit neuron contained the desired output (e.g. a_{LL}^{par})
- the desired output is provided on the event-by-event basis (supervised learning)
- the connections are weighted
- the training process: the iterative procedure of weights adaptation
- the training goal: to minimise the difference between the desired and obtained NN output
- the training results are simultaneously checked using the testing set
- once the net is trained frosen structure and weights it can be applied to solve the problem for the new input sets!

SPARES: Neural Network qualification of events

the slide from C. Franco DIS 2009, Madrid, Spain

- Two real data samples (with same cuts) are compared by the Neural Network (giving as input some kinematic variables as a learning vector):
 - Signal model \rightarrow gcc = K⁺ $\pi^-\pi^-_s$ + K⁻ $\pi^+\pi^+_s$ (D⁰ spectrum: signal + bg.)
 - Background model \rightarrow wcc = $\mathbf{K}^+\pi^+\pi^-_{s}$ + $\mathbf{K}^-\pi^-\pi^+_{s}$ (no D^0 is allowed)
- If the background model is good enough: Net is able to distinguish the signal from the combinatorial background on a event by event basis (inside gcc)

Example of a good learning variable

SPARES: The full formula for open-charm analysis

the slide from C. Franco DIS 2009, Madrid, Spain

The number of events comes from the asymmetries in the following way:

$$N_{\mathrm{u,d}} = a \phi \, n (S+B) (1 + P_{\mathrm{T}} P_{\mu} f \, (a_{\mathrm{LL}} \frac{S}{S+B} \frac{\Delta \, G}{G} + a_{\mathrm{LL}}^B \frac{B}{S+B} \, A_{\mathrm{B}}))$$

$$a = \text{acceptance, } \phi = \text{muon flux, } n = \text{number of target nucleons}$$

- We have 4 cell configurations (2 cells oppositely polarised + field reversal for acceptance normalization):
 - Weight the 4 $N_{u,d}$ equations by ω_{g} and by $\omega_{g} = P_{u} f \cdot D(y) \cdot (B/S+B)$:

$$\begin{array}{c|c} < \sum_{k=1}^{N_{ceil}} \omega_{i}^{k} > = \hat{a}_{\overline{ceil},i} \underbrace{(1 + (<\beta_{ceil,S} > \omega_{i})}_{A_{S}} + (<\beta_{ceil,B} > \omega_{i}) A_{B}) = f_{ceil,i} \\ (cell = \mathbf{u}, \mathbf{d}, \mathbf{u}', \mathbf{d}') & (\Delta G/G) & (\mathbf{i} = S, B) \\ \\ \hat{a} = \mathbf{a} \phi \, \mathbf{n} \, \sigma = \mathbf{a} \phi \, \mathbf{n} (\sigma_{PGF} + \sigma_{B}) = \mathbf{a} \phi \, \mathbf{n} (S + B) \\ \beta_{S} = P_{B} P_{T} \mathbf{f} \, \mathbf{a}_{LL} \frac{S}{S + B} & \beta_{S} = P_{B} P_{T} \mathbf{f} \, \mathbf{D} \frac{B}{S + B} \\ \end{array}$$

SPARES: Monte Carlo in high p_T analysis

- 2 MC samples were used: high p_T and inclusive
- simulation of the detector response and of the reconstruction

the MC chain: LEPTO generator (PDFs: MRST2004LO) and the full

- the part of the NLO corrections taken into account: gluon radiations in final and initial states
- to improve data/MC agreement LEPTO was tuned: k_T (transverse momentum of the $q\bar{q}$ pairs) and parameters of fragmentation (default parameters were used in the systematics studies)

	PARJ21	PARJ23	PARJ24	PARJ41	PARJ42
Default	0.36	0.01	2.0	0.3	0.58
COMPASS	0.3	0.02	3.5	0.6	0.1

SPARES: the full formula for high p_T analysis

the slide from K.Kurek SPIN 2008. Charlottesville, USA

$$\frac{\Delta G}{G}(x_G) = \frac{A_{LL}^{2h}(x_{Bj}) + A^{corr}}{\beta}$$

Note that inclusive sample also contains PGF and QCDC as well as LO process

$$\beta = a_{LL}^{PGF} R_{PGF} - a_{LL}^{PGF,incl} R_{PGF}^{incl} \left(\frac{R_L}{R_L^{incl}} + \frac{R_C}{R_L^{incl}} \frac{a_{LL}^c}{D} \right)$$

$$A^{corr} = -A_1(x_{Bj}) D \frac{R_L}{R_L^{incl}} - A_1(x_C) \beta_1 + A_1(x_C') \beta_2$$

$$\beta_1 = \frac{1}{R_L^{incl}} (a_{LL}^C R_C - a_{LL}^{C,incl} R_C^{incl} \frac{R_L}{R_L^{incl}}) \qquad \beta_2 = a_{LL}^{C,incl} \frac{R_C R_C^{incl}}{(R_L^{incl})^2} \frac{a_{LL}^C}{D}$$