Open-Charm results on gluon
polarisation from COMPASS

DIS 2009 - MADRID

Celso Franco (L/P — Lisboa)
on behalf of the COMPASS collaboration



Nucleon spin structure

e Nucleon spin -

V= 1/2AZ+AG-|-Lq-|-Lg
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quarks gluons orbital angular momentum (quarks/gluons)

* Assuming the static quark model wave function:

1
pt) = s/—l’_B{EMT ut di) —|utul dt)
—|ul ut dt)+ (u < d)}

Au = (p 1t |Ny— Nylp 1) = 1%{:1{] -2) = %

i

3

/ﬂn‘ = (P 1 INgt — Ngglp D) = & 2-4) = -

e A2=Au+Ad =1

[1 Up and down quarks carry all the nucleon spin




Spin Crisis
However, applying relativistic corrections (and assuming SU(3) symmetry):
A [10.60

Where is the remaining part of the nucleon spin? (AG?L
Gluons solved the nucleon missing momentum problem:

?
q(G) )

* Will they be the solution too for this missing spin ? [1 Measure AG

Experimental AZ (from polarised DIS):

(E, k), o Q*=-¢ Phys. Lett. B447, (2007) 8
NGLR f_{,xf"’ - A2 =0.30+0.01 £0.02 (world data)
N T @ Q= 3 (GeV/c)
d jif ”“*;\ x=Q%/2Mv Much smaller than expected...
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* Another reason for measuring the gluon spin contribution:

* Due to the gluon axial anomaly, if AG is large (~2.5), it could explain why A2 was found

so small



The COMPASS experiment at CERN
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The COMPASS spectrometer
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Polarised target (2002-2004)

- Target material: ‘LiD - Solenoid field: 2.5 T - Dilution factor: f ~ 0.4
- Polarisation: P_>50% - He/'He: T _~50 mK

n

Dynamic nuclear polarisation:

. LL - High electron polarisation
(high magnetic moment)
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. - simultaneous flip of electron and
uperconducting .
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- After spin flip, electron relaxates to lower
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Open-Charm DIS production
The photon-gluon fusion process
(PGF)
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How to measure AG?

* Polarised collision in DIS (probing gluons through photon-gluon fusion):

/;{hadruns
TG _ u’ tag y*g - qﬁ
P b v haem
g Pl via Open-Charm
i production

hadrons ~7

ol

e After reconstructing the invariant mass for charmed mesons (g/uon tag):

e Measure raw asymmetries for gluon spin information!

A

d v Number of events

=f.P,-P,-A" + A"

Depolarization from lepton
/ to virtual photon

ep_ N'=N
N+ N*
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Why asymmetries for AG ?
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Gluon polarisation from Open-Charm channel

e Using

LO

> A, =<a [ ><—

G

> ‘

with a [ =

PGF
Ao

PGF

Asymmetries are less sensitive to experimental changes
than cross section differences

AG_

Considering A_=0
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partonic asymmetry
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signal strength of Open-Charm events

= i —_—

equal acceptance for both cells

« Events with small factors (PH-PT- f-a -S5/(S+B)) contain less information
about the asymmetry:

e Weighting the events (with a)) minimizes de statistical error !

AG 1 wu_w wu'_w ! 0 e . 5 <0U2>
= X(— (21+ 5 (21 ) with a statistical gain : ;
G 2Py w tw; w.+w <w>
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Open-Charm mesons reconstruction
 Events considered (resulting from the c quarks fragmentation):
- D’ - K1t (BR: 4%)
- D" - D'~ Kt (30% D' tagged with D’)

* Selection to reduce the combinatorial background:

- Kinematical cuts: Z D’ decay angle, K and Tt momentum

— RICH identification: K and TtID + electrons rejected from the Tt sample
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2 (=S/(S+B)) as an Open-Charm event probability

Why is better to have S/(S+B) for every event?

D"-tagged events with = < 0.55 D°-tagged events with 0.55 <X < 0.73

* Events withsmall Z0 low |7 comwsrcimne | | Ew
weight

COMPASS Preliminany

— Mostly combinatorial
background selected
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* With 2 in the weight, the f ., g ol
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kinematical cuts can be loose: ..

— More background events -

20

— Preserve signal events »
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* Events with large 2 [1 high
weight

Possibility to include
__wanew Open-Charm
channel in the analysis
for statistical error
improvement

— Mostly Open-Charm
events selected




How to parameterize 2 ?

e A function to build Zp = S/B is defined, and parameterized for every event:

. Zp 1s built (iteratively) over some kinematic variables and RICH response:

° (Z) =1

p 7 initial

Mass spectra is divided in bins of each variable (binning needed for statistical gain)

Fit all D® and D" mass spectra inside each bin of each variable

Zp is ajusted (for every event inside each bin) to (S/B)_
e After convergence, parameterization is checked:

* No artificial peak produced in wrong charge mass spectra

e Mass dependence [1 Included in X after convergence of Zp (in bins of 2)

- : : probability for a given event
¢« > = + w >
2 Zp/ (Zp 1) in the weight T 72 @) pon e




2. parameterization: S/B improvement
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Partonic (muon-gluon) asymmetry a_

e a_is dependent on the full knowledge of the partonic kinematics:

PGF
Ao

(Y9Q2,Xg92C9¢)

ar

O pGF

* Can't be experimentally obtained!l] Only one charmed meson is reconstructed

« a_ 1s obtained from Monte-Carlo (in LO), to serve as input for a Neural Network

parameterization on reconstructed kinematical variables: vy, X Q’, Z and P,

« With the help of parameterised a_ (real data), AG/G can be estimated in LO!

gmi— Parameterized a  (by NN), shows
aoa - LL
o2 / a strong correlation with the
o generated one (comparison with
::: i generated a, using AROMA)
::: "= """ Correlation of 82%
b
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Preliminary results (2002-2006): PLB — in press

, COMPASS 2002 - 2006 AG/G
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More contributions from the D" channel - NEW

e Because the channel is very clean from background contamination (due
to a 3-body mass cut), the following contributions can be added:

- 70 reflection “bump”: D' - Kmu?’

— RICH sub-threshold Kaons events: Candidates with p <9 GeV/c (no
RICH ID for Kaon mass) - Recover D' if there is no positive pion or
electron ID (for the Kaon candidate)

* Signal strength parameterization (2 =S5/(S+B)):

— Problem:

* Low purity samples with low statistics [1 Very difficult to build 2 1n
several bins of several variables

— Solution:

e Multi-dimentional parameterization using a Neural Network (all
kinematic and RICH dependences are taken into account at same time)



N/0.017

Neural Network qualification of events

 Two real data samples (with same cuts) are compared by the Neural
Network (giving as input some kinematic variables as a learning vector):

- Signal model - gee =K'~ + Knt'rr "™ (D’ spectrum: signal + bg.)
- Background model » wee=K'rr'rr” + K™ (no D' is allowed)

* If the background model is good enough: Net is able to distinguish the signal
from the combinatorial background on a event by event basis (inside gcc)

Example of a good learning variable
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10 reflection “bump”: Probability behaviour

* 2 is builtin the same way as for main channels, BUT:
| COMPASS 2006 D’ (D* tagged)

— Only lvariable is used: Neural Network output

Preliminary
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* Sorts the events according to similar kinematic
dependences (thus improving our statistical
precision)

e Results from 2 real data samples comparison,
in a mass window around the meson mass
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N/S (MeVWic?)

Sub-threshold Kaons: S/B improvement

* Events considered: D' - Kt with p(K) <9 GeV/c

* X is built in the same way as for the T reflection channel:

— The gain introduced by this parameterization can clearly be seen (green

spectrum)
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Preliminary results including all channels

* For the T reflection channel, a | compass 2006 MC: D’ >Kn(x’) D* tagged |
specific parameterization for the - 76% of correlation St L

a  (generated)
e & 0 b
N b c‘)‘ ‘ Ico -

partonic asymmetry (¢, ) was used

 New channels contributions to AG/G: -oaf

06

-0.8F

AG/G: -0.15 £ 0.63 B

Preliminary

Illll‘llll | \‘I
-1 -08 -0.6 -D

Bg' Asymmetry: 0.02 + 0.03 a , (parameterized)

| I N I | Illl\llll\‘lllllll 0
4 -02 0O 0.2 04 06 038 1

—»2002-2006 data: TC reflection “bump”

AG/G: 0.57 =1.02
Bg. Asymmetry: -0.04 £ 0.05 | » 2002-2006 data: Sub-threshold Kaons

 Final result (including also the main channels: D’ and D’ tagged with a D’):

ATG =-0.39 + 0.24(sta) £ 0.11(sys) » @ <x > = 0.11, <[> = 13 GeV’

10 % improvement in our statistical significancy



Conclusions and prospects

* Gluon polarisation was obtained directly from the data, in LO, and in a
model independent way

* COMPASS, open charm, prel., 02-06
* Small values of AG are preferred: Y CONPASShighp, Gt (Gae prol 2-3
o . . . 2 )
e Gluon polarisation compatible & 1 @  COMPASShighp, 0;1 (Gevicy’,prel, 02-
. o D o A HERMEShighp el PARN
with zero within 20 q Y HERMES, single high p_hadrons, all Q’, prel. .," ‘.'
e Under study: 08 @ swMchighp, G (Geviey s \
4 '
e 2007 data 0 ¢

e Extended Neural Network
approach to all channels, in
a fit independent way:

0
-0.2

-04

e Low systematic uncertainties!

* NLO analysis is ongoing: g fit with AG>D, jI%=3(GeVic)

................. : 2
e First results expected soon & i with AG<D, ' -3(GeVic}

1072 107 X




SPARES



Why measure gluon spin from Open-Charm?

e cc production is dominated by the PGF process (in LO), and is free from
physical background (ideal for probing gluon polarisation):

— In our center of mass energy, the contribution from intrinsic charm (c quarks not coming

from hard gluons) in the nucleon is negligible N\ e N
S _E COMPASS preliminary
~ Perturbative scale set by charm mass: 4m * =
0.06—
— | Nonperturbative sea models predict at most 0.05--
0.7% for intrinsic charm contribution 0.0 )
« Expected at high X, (compass Xy < 0.1) 0.03- .
0.02— °
- cc supressed during fragmentation (at our energies) he -
i h — AcD, norm 0.45% R I K ¥ R R R
++ --- g fusion virtual photon energy frac;i(V %o
-0 = i - - Intr. charm 0.7% carried by the D’ meso
%_-
5 v=95 Ref. Hep-ph/0508126 and hep-ph/9508403
i Phys. Lett. B93 (1980) 451
0.002F A Data from EMC:Nucl.Phys.B213, 31(1983)
i"' 1 L /

Bj



Systematic errors: D’ and D™ channels

« Possible errors of experimental systematics (false asymmetries), 2 and a__

in weights definitions:

* Results in an error which is proportional to AG/G

* |2 was obtained in different mass windows (around the peak), different
fit functions were used, different order for the variables on which the
parameterization is applied, and different number of iterations

* a_ was estimated with different values for the charm quark mass and
different pdf

* For a nominal analysis with weight w’, and uncertainty in the weight w',

the spread in AG/G is given by the spread of: | <w'w'>/< ( w’ )2 >
Source D° D’
Beam polarisation 0.025 0.025
. L Target polarisation 0.025 0.025
All systematic contributions Dilution factor 0.025 0.025
for AG/G > False asymmetry 0.05 0.05
2 0.07 0.01
L 0.05 0.03
Total 0.11 0.07




Method for AG/G and polarised A  extraction

 The number of events comes from the asymmetries in the following way:

S AG+3B B
LL'S+B G  "S+B

a= acce\ftgnce, Q= Muon flux, n= number of target nucleons

N, =a¢n(S+B)(1+P.P,f(a

Ag))

* We have 4 cell configurations (2 cells oppositely polarised + field reversal
for acceptance normalization):

« Weight the 4 N equations by w and by W, = Pfi f-D(y)- (B/S+B):

<Z 1“) == a1(1+(<Bcell,S>wi)E <<Bcell >w,;) Ag)=f cell i
(cell=u,d,u',d") (AG/G)  ™i=S,B)

d=apno=a¢pn(o,;+0z)=a¢pn(S+B)

S B
5s:PBPTfaLLS_|_—B' Bs=PyP fDS—B

8 eq. with 10 unknowns




How to solve the equations for simultaneous
AG/G and A  extraction?

* Possible acceptance changes with time are the same for both cells (also
the muon flux is the same for both cells):

10 [0 8 unknowns: 6 a, AS and AB—v

* Signal and background events are affected in the same way before and

after a field reversal:
A é S é S éidS éid S
8 [ 7unknowns:5a,ASandABH 2= 2=
A5 duB A48 4B

* Unknowns are obtained by a X* minimization:

- o

X*=(N—f) Cov ' (N—F)




2 (=S/(S+B)) effect in D’ mass spectra

Do—untagged events with = < 0.055
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* Improved S/B for D’ not tagged

* For high 2 events, the combinatorial
background 1s reduced significatively

"« 10 reflection is seen for high ¥



S/(S+B)

Validation of parameterization (2006 example)

Data vs. Z-Parameterization in  bins (2006 D“-tagged) Data vs. I-Parameterization in weight bins (2006 D°-tagged)
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