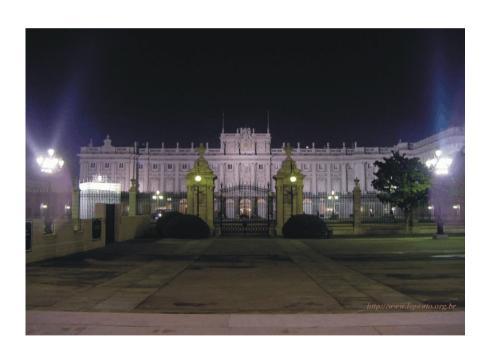
Open-Charm results on gluon polarisation from COMPASS

DIS 2009 - MADRID

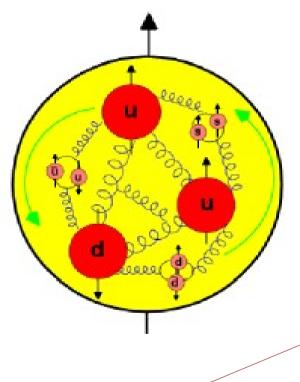


Celso Franco (LIP – Lisboa) on behalf of the COMPASS collaboration

Nucleon spin structure

• Nucleon spin
$$\rightarrow \frac{1/2}{2} = \frac{1/2}{2} \Delta \Sigma + \Delta G + L_q + L_g$$

quarks gluons orbital angular momentum (quarks/gluons)



• Assuming the static quark model wave function:

$$|p\uparrow\rangle = \frac{1}{\sqrt{18}} \Big\{ 2|u\uparrow u\uparrow d\downarrow\rangle - |u\uparrow u\downarrow d\uparrow\rangle - |u\downarrow u\uparrow d\uparrow\rangle - |u\downarrow u\uparrow d\uparrow\rangle + (u\leftrightarrow d) \Big\}$$

$$\Delta u = \langle p \uparrow | N_{u\uparrow} - N_{u\downarrow} | p \uparrow \rangle = \frac{3}{18} (10 - 2) = \frac{4}{3}$$

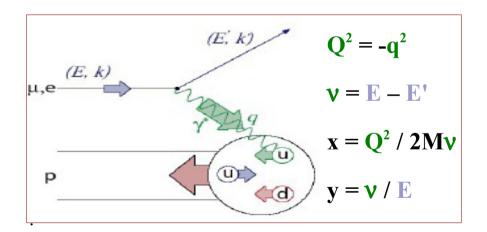
$$\Delta d = \langle p \uparrow | N_{d\uparrow} - N_{d\downarrow} | p \uparrow \rangle = \frac{3}{18} (2 - 4) = -\frac{1}{3}$$

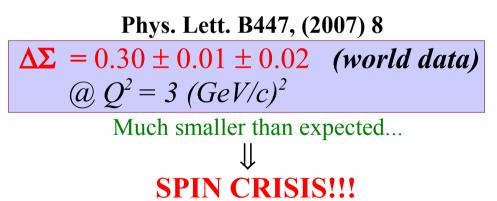
 $\bullet \quad \Delta \Sigma = \Delta \mathbf{u} + \Delta \mathbf{d} = \mathbf{1}$

⇒ Up and down quarks carry all the nucleon spin

Spin crisis

- However, applying relativistic corrections (and assuming SU(3) symmetry):
 - ΔΣ ~ 0.60
- Where is the remaining part of the nucleon spin? $(\Delta G?L_{q(G)}?)$
 - Gluons solved the nucleon missing momentum problem:
 - Will they be the solution too for this missing spin ? \Rightarrow Measure $\triangle G$
- Experimental $\Delta\Sigma$ (from polarised DIS):



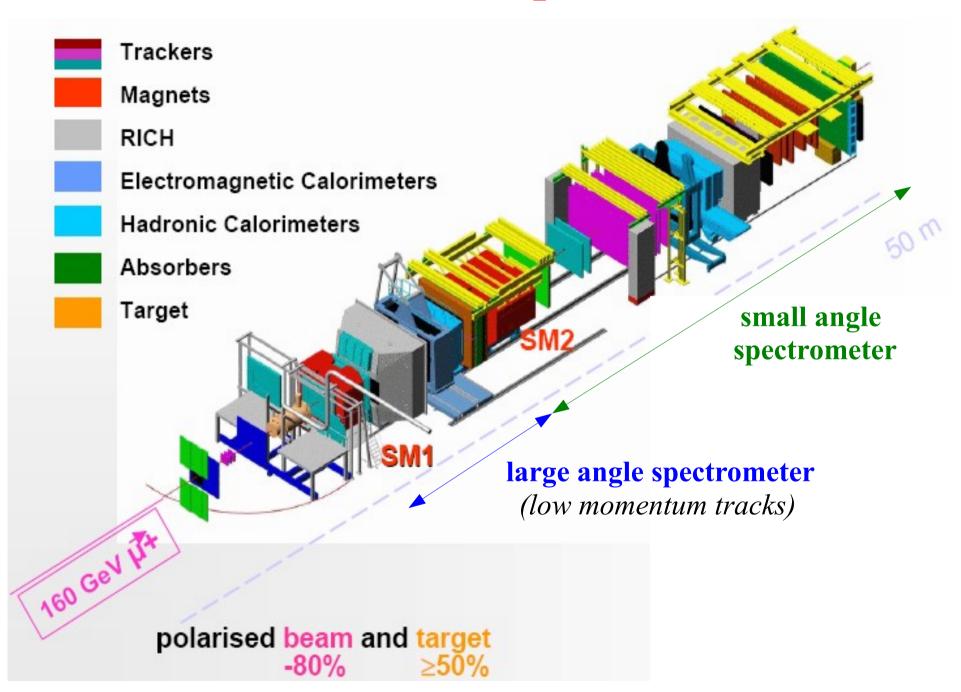


- Another reason for measuring the gluon spin contribution:
 - Due to the gluon axial anomaly, if ΔG is large (~2.5), it could explain why $\Delta \Sigma$ was found so small

The COMPASS experiment at CERN



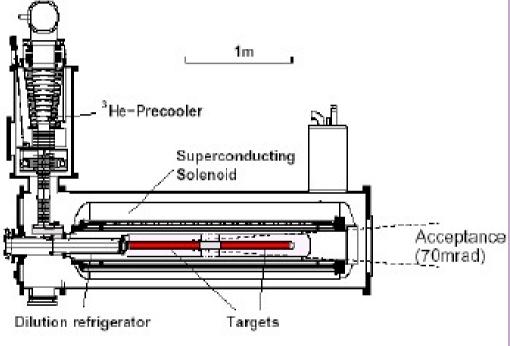
The COMPASS spectrometer



Polarised target (2002-2004)

- Target material: ⁶LiD
 - Solenoid field: 2.5 T
- Dilution factor: $f \sim 0.4$

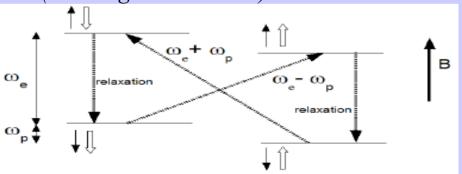
- Polarisation: $P_T > 50\%$ $^3He/^4He$: $T_{min} \sim 50 \text{ mK}$



4000 2000 -10001000 z [mm]

Dynamic nuclear polarisation:

- High electron polarisation (high magnetic moment)
- Microwave irradiation of material, for simultaneous flip of electron and nucleon spin
- After spin flip, electron relaxates to lower energy state
- Nucleon has long relaxation time (low magnetic moment)

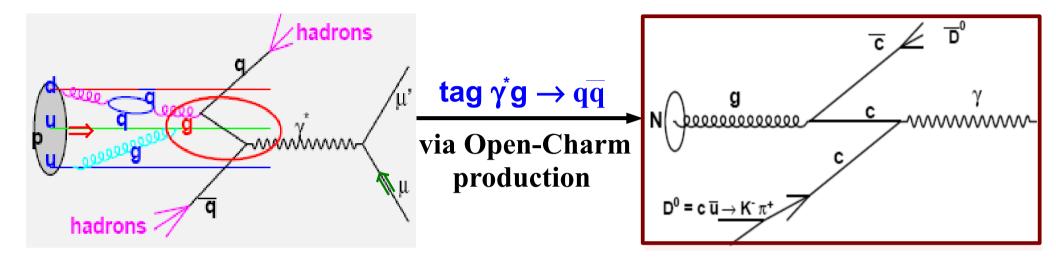


3 target cells were used in 2006!

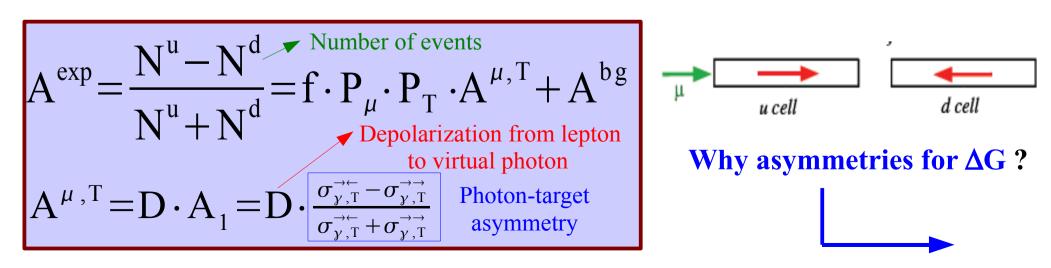
Open-Charm DIS production The photon-gluon fusion process (PGF)

How to measure ΔG ?

• Polarised collision in DIS (probing gluons through photon-gluon fusion):



- After reconstructing the invariant mass for charmed mesons (gluon tag):
 - Measure raw asymmetries for gluon spin information!



Gluon polarisation from Open-Charm channel

• Using
$$A_1 = \langle a_{LL} \rangle \langle \frac{\Delta G}{G} \rangle$$
 with $a_{LL} = \frac{\Delta \sigma^{PGF}}{\sigma^{PGF}}$

Asymmetries are less sensitive to experimental changes than cross section differences

than cross section differences

$$\frac{\Delta G}{G} = \frac{Considering A_B = 0}{2P_T P_\mu f a_{LL} S + B} \times (\frac{N^u - N^d}{N^u + N^d} + \frac{N^{d'} - N^{u'}}{N^{u'} + N^{d'}})$$

$$\omega = \text{event weight}$$

$$\frac{\Delta G}{N^u + N^d} = 8h$$

$$\frac{\partial G}{\partial u} = \frac{\partial G}{\partial u} \times (\frac{N^u - N^d}{N^u + N^d} + \frac{N^{d'} - N^{u'}}{N^{u'} + N^{d'}})$$

$$\omega = \text{equal acceptance for both cells}$$

partonic asymmetry

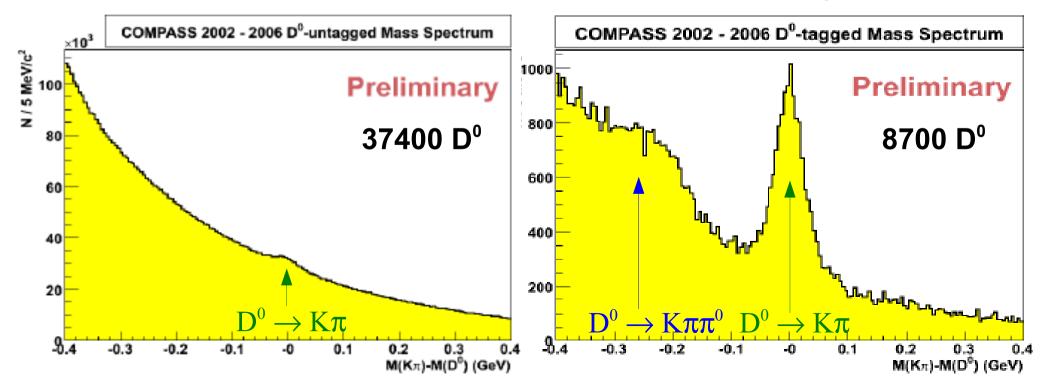
signal strength of Open-Charm events

- Events with small factors $(P_{U} \cdot P_{T} \cdot f \cdot a_{U} \cdot S/(S+B))$ contain less information about the asymmetry:
 - Weighting the events (with ω) minimizes de statistical error!

$$\frac{\Delta G}{G} = \frac{1}{2P_{T}} \times \left(\frac{\omega_{u} - \omega_{d}}{\omega_{u}^{2} + \omega_{d}^{2}} + \frac{\omega_{u'} - \omega_{d'}}{\omega_{u'}^{2} + \omega_{d'}^{2}}\right) \text{ with a statistical gain : } \frac{\langle \omega^{2} \rangle}{\langle \omega \rangle^{2}}$$

Open-Charm mesons reconstruction

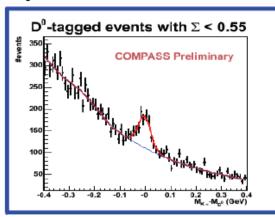
- Events considered (resulting from the c quarks fragmentation):
 - $D^0 \rightarrow K\pi (BR: 4\%)$
 - $D^* \to D^0 \pi_S \to K \pi \pi_S$ (30% D^0 tagged with D^*)
- Selection to reduce the combinatorial background:
 - Kinematical cuts: Z_D , D^0 decay angle, K and π momentum
 - RICH identification: K and π ID + electrons rejected from the π_s sample

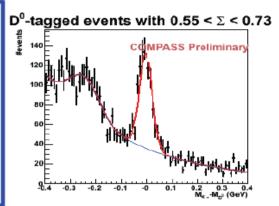


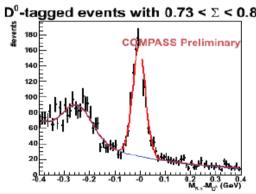
Σ (=S/(S+B)) as an Open-Charm event probability

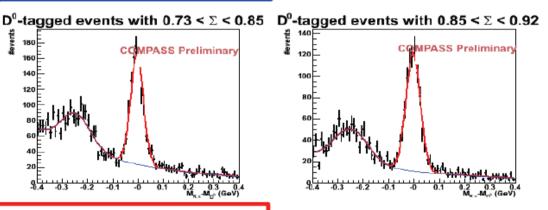
Why is better to have <u>S/(S+B)</u> for every event?

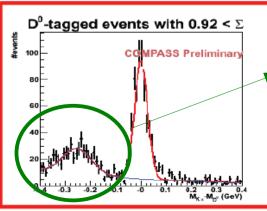
- Events with small $\Sigma \Rightarrow low$ weight
 - Mostly combinatorial background selected
- With Σ in the weight, the kinematical cuts can be loose:
 - More background events
 - Preserve signal events
- Events with large $\Sigma \Rightarrow$ high weight
 - Mostly Open-Charm events selected











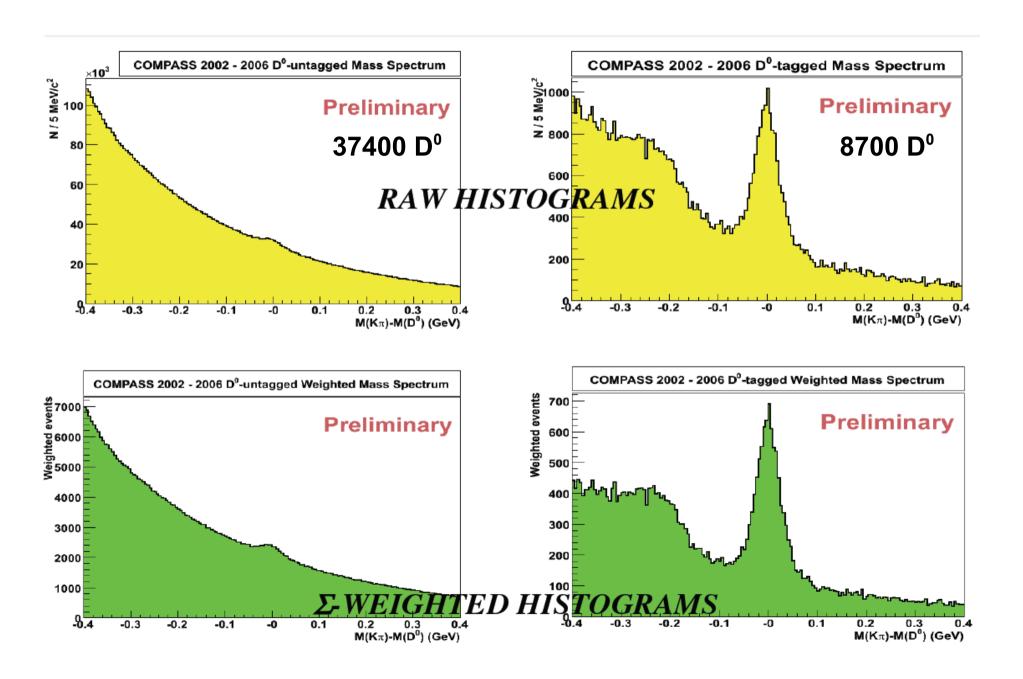
Possibility to include a new Open-Charm channel in the analysis for statistical error improvement

How to parameterize Σ ?

- A function to build $\sum_{p} = S/B$ is defined, and parameterized for every event:
 - Σ_{p} is built *(iteratively)* over some kinematic variables and RICH response:
 - $(\Sigma_{p})_{initial} = 1$
 - Mass spectra is divided in bins of each variable (binning needed for statistical gain)
 - Fit all D⁰ and D^{*} mass spectra <u>inside each bin of each variable</u>
 - Σ_{p} is a justed (for every event inside each bin) to (S/B)_{fit}
 - After convergence, parameterization is checked:
 - No artificial peak produced in wrong charge mass spectra
 - Mass dependence \Rightarrow Included in Σ after convergence of Σ_{p} (in bins of Σ)

•
$$\Sigma = \sum_{p} / (\sum_{p} + 1)$$
 in the weight — probability for a given event to be Open-Charm

\(\Sigma\) parameterization: S/B improvement

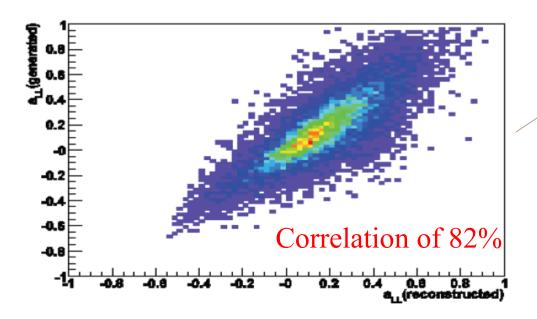


Partonic (muon-gluon) asymmetry a_{LL}

• $a_{_{\rm LL}}$ is dependent on the full knowledge of the partonic kinematics:

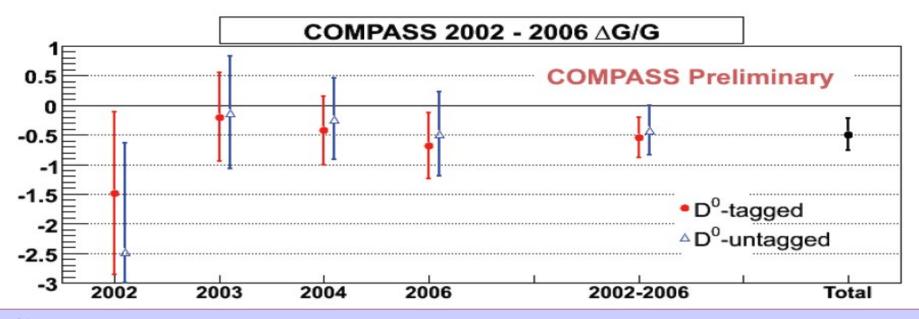
•
$$a_{LL} = \frac{\Delta \sigma^{PGF}}{\sigma_{PGF}} (y, Q^2, x_g, z_C, \phi)$$

- Can't be experimentally obtained!⇒ Only one charmed meson is reconstructed
- a_{LL} is obtained from Monte-Carlo (in LO), to serve as input for a Neural Network parameterization on reconstructed kinematical variables: y, x_{Bi} , Q^2 , z_D and $p_{T,D}$
- With the help of parameterised a_{LL} (real data), $\Delta G/G$ can be estimated in LO!

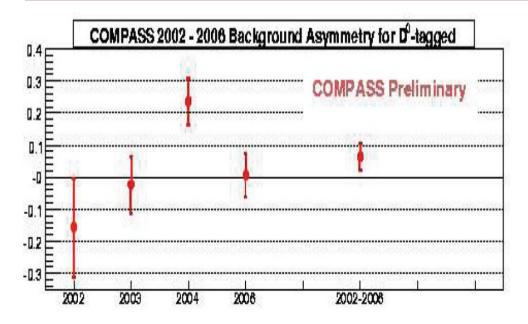


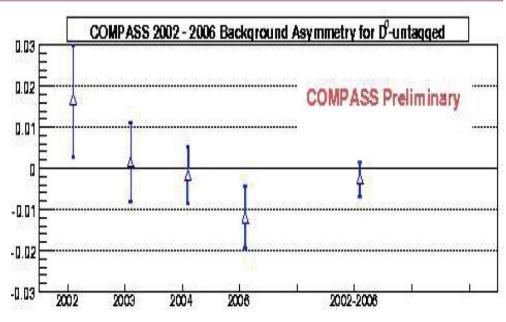
Parameterized a_{LL} (by NN), shows a strong correlation with the generated one (comparison with generated a_{LL} using AROMA)

Preliminary results (2002-2006): PLB – in press



$$\frac{\Delta G}{G} = -0.49 \pm 0.27(stat) \pm 0.11(sys) \rightarrow (a) < x_g > = 0.11, < \mu^2 > = 13 \text{ GeV}^2$$





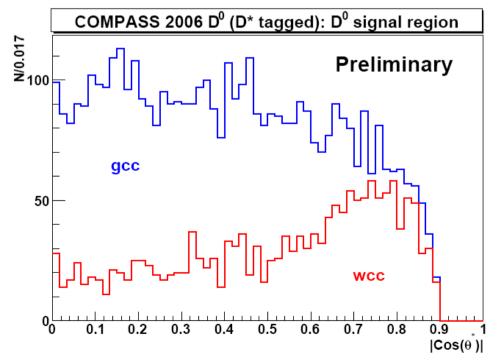
More contributions from the D^* channel $\rightarrow NEW$

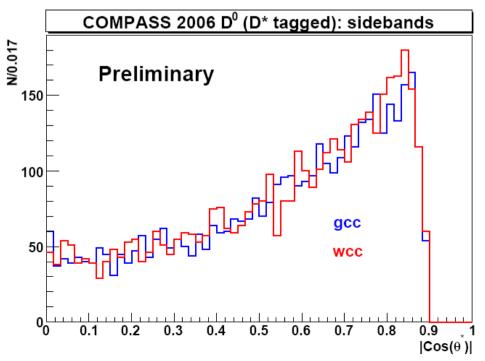
- Because the channel is very clean from background contamination (due to a 3-body mass cut), the following contributions can be added:
 - π^0 reflection "bump": $D^0 \to K\pi\pi^0$
 - RICH sub-threshold Kaons events: Candidates with p < 9 GeV/c (no RICH ID for Kaon mass) \rightarrow Recover D⁰ if there is no positive pion or electron ID (for the Kaon candidate)
- Signal strength parameterization $(\underline{\Sigma} = S/(S+B))$:
 - Problem:
 - Low purity samples with low statistics \Rightarrow Very difficult to build Σ in several bins of several variables
 - Solution:
 - Multi-dimentional parameterization using a Neural Network (all kinematic and RICH dependences are taken into account at same time)

Neural Network qualification of events

- Two real data samples (with same cuts) are compared by the Neural Network (giving as input some kinematic variables as a learning vector):
 - Signal model \rightarrow gcc = $\mathbf{K}^+\pi^-\pi_s^- + \mathbf{K}^-\pi^+\pi_s^+$ (D^0 spectrum: $\underline{signal + bg}$.)
 - Background model \rightarrow wcc = $\mathbf{K}^+ \pi^+ \pi_s^- + \mathbf{K}^- \pi^- \pi_s^+$ (no D^0 is allowed)
- If the background model is good enough: Net is able to distinguish the signal from the combinatorial background on a event by event basis (inside gcc)

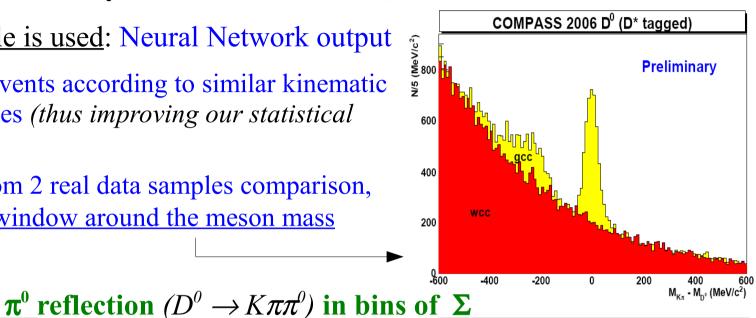
Example of a good learning variable

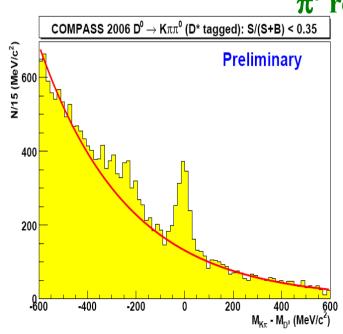


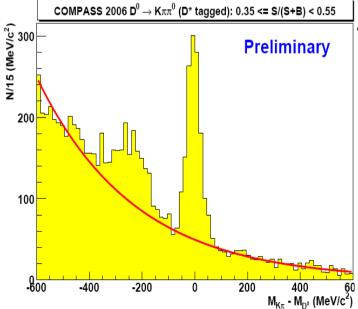


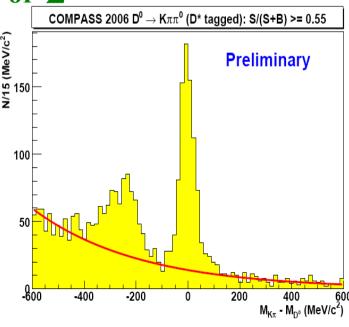
π^0 reflection "bump": Probability behaviour

- Σ is built in the same way as for main channels, BUT:
 - Only 1variable is used: Neural Network output
 - Sorts the events according to similar kinematic dependences (thus improving our statistical precision)
 - Results from 2 real data samples comparison, in a mass window around the meson mass



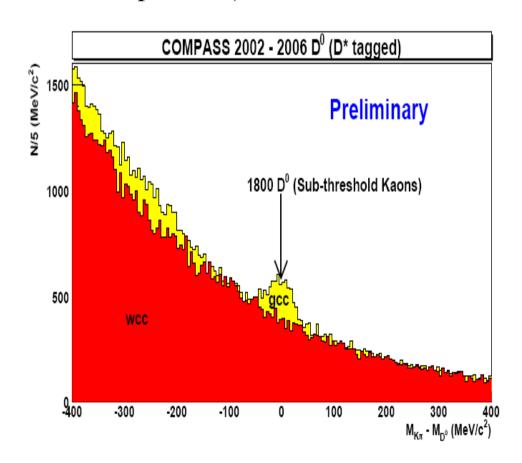


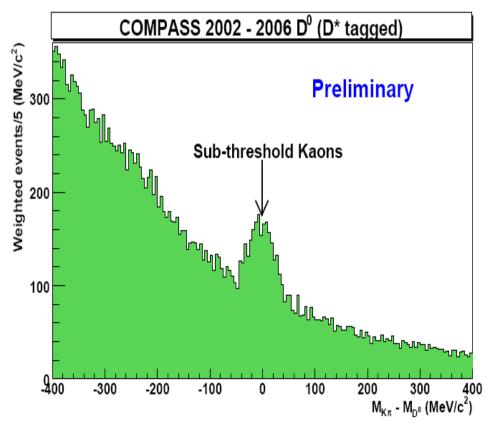




Sub-threshold Kaons: S/B improvement

- Events considered: $D^0 \to K\pi$ with p(K) < 9 GeV/c
- Σ is built in the same way as for the π^0 reflection channel:
 - The gain introduced by this parameterization can clearly be seen (green spectrum)





Preliminary results including all channels

For the π^0 reflection channel, <u>a</u> COMPASS 2006 MC: $D^0 \rightarrow K\pi(\pi^0) D^*$ tagged LL(generated) specific parameterization for the 76% of correlation 80 70 partonic asymmetry (a_{II}) was used 60 50 40 -0.2 30 New channels contributions to $\Delta G/G$: 20 -0.6 10 -0.8 Δ G/G: -0.15 ± 0.63 **Bg.** Asymmetry: 0.02 ± 0.03 ► 2002–2006 data: π^0 reflection "bump" Δ G/G: 0.57 ± 1.02 Bg. Asymmetry: -0.04 ± 0.05 ► 2002–2006 data: Sub-threshold Kaons

• Final result (including also the main channels: D^0 and D^0 tagged with a D^*):

$$\frac{\Delta G}{G}$$
 = -0.39 ± 0.24(stat) ± 0.11(sys) \rightarrow (a) $\langle x_g \rangle$ = 0.11, $\langle \mu^2 \rangle$ = 13 GeV²

10 % improvement in our statistical significancy

Conclusions and prospects

• Gluon polarisation was obtained directly from the data, in LO, and in a model independent way

• Small values of ΔG are preferred:

• Gluon polarisation compatible with zero within 2σ

• Under study:

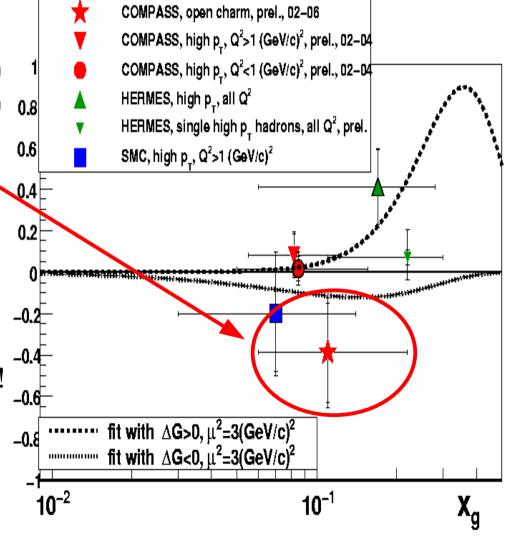
• 2007 data

• Extended Neural Network approach to all channels, in a fit independent way:

• Low systematic uncertainties!

• NLO analysis is ongoing:

• First results expected soon



SPARES

Why measure gluon spin from Open-Charm?

• cc production is dominated by the PGF process (in LO), and is <u>free from physical background</u> (ideal for probing gluon polarisation):

- In our center of mass energy, the contribution from intrinsic charm (c quarks not coming

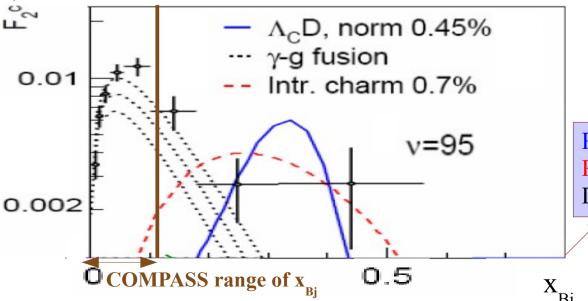
from hard gluons) in the nucleon is negligible

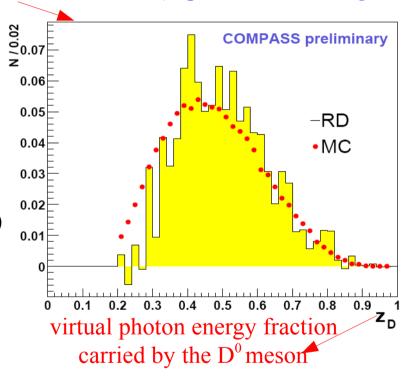
Perturbative scale set by charm mass: 4m²

Nonperturbative sea models predict at most 0.7% for intrinsic charm contribution

• Expected at high x_{Bi} (compass $x_{Bi} < 0.1$)

cc supressed during fragmentation (at our energies)





Ref. Hep-ph/0508126 and hep-ph/9508403 Phys. Lett. B93 (1980) 451 Data from EMC:Nucl.Phys.B213, 31(1983)

Systematic errors: D⁰ and D^{*} channels

- Possible errors of experimental systematics (false asymmetries), Σ and $\mathbf{a}_{\rm LL}$ in weights definitions:
 - Results in an error which is proportional to $\Delta G/G$
- Σ was obtained in different mass windows (around the peak), different fit functions were used, different order for the variables on which the parameterization is applied, and different number of iterations
- a_{LL} was estimated with different values for the charm quark mass and different pdf
 - For a nominal analysis with weight w^0 , and uncertainty in the weight w^i , the spread in $\Delta G/G$ is given by the spread of: $(w^0)^2 > 0$

All systematic contributions for $\Delta G/G$

Source	\mathbf{D}^0	\mathbf{D}^*
Beam polarisation	0.025	0.025
Target polarisation	0.025	0.025
Dilution factor	0.025	0.025
False asymmetry	0.05	0.05
Σ	0.07	0.01
$\mathbf{a}_{_{\mathrm{LL}}}$	0.05	0.03
Total	0.11	0.07

Method for $\Delta G/G$ and polarised A_B extraction

• The number of events comes from the asymmetries in the following way:

$$N_{u,d} = a \phi n (S+B)(1+P_T P_\mu f (a_{LL} \frac{S}{S+B} \frac{\Delta G}{G} + a_{LL}^B \frac{B}{S+B} A_B))$$

$$a = \text{acceptance}, \ \phi = \text{muon flux}, \ n = \text{number of target nucleons}$$

- We have 4 cell configurations (2 cells oppositely polarised + field reversal for acceptance normalization):
 - Weight the 4 $N_{u,d}$ equations by ω_s and by $\omega_B = P_u f \cdot D(y) \cdot (B/S+B)$:

$$\langle \Sigma_{k=1}^{N_{cell}} \omega_{i}^{k} \rangle = \hat{a}_{cell,i} (1 + (\langle \beta_{cell,S} \rangle \omega_{i}) A_{S} + (\langle \beta_{cell,B} \rangle \omega_{i}) A_{B}) = f_{cell,i}$$

$$(cell = \mathbf{u}, \mathbf{d}, \mathbf{u}', \mathbf{d}')$$

$$(\Delta G/G)$$

$$(\mathbf{i} = \mathbf{S}, \mathbf{B})$$

$$\hat{a} = \mathbf{a} \phi \mathbf{n} \sigma = \mathbf{a} \phi \mathbf{n} (\sigma_{PGF} + \sigma_{B}) = \mathbf{a} \phi \mathbf{n} (\mathbf{S} + \mathbf{B})$$

$$\beta_{S} = P_{B} P_{T} \mathbf{f} \mathbf{a}_{LL} \frac{\mathbf{S}}{\mathbf{S} + \mathbf{B}}$$

$$\beta_{S} = P_{B} P_{T} \mathbf{f} \mathbf{D} \frac{\mathbf{B}}{\mathbf{S} + \mathbf{B}}$$

$$8 \text{ eq. with } 10 \text{ unknowns}$$

How to solve the equations for simultaneous $\Delta G/G$ and $A_{_B}$ extraction?

• Possible acceptance changes with time are the same for both cells (also the muon flux is the same for both cells):

$$10 \Rightarrow \underline{8 \text{ unknowns}}: 6 \hat{a}, A_{s} \text{ and } A_{\overline{B}} \longrightarrow \frac{\hat{a}_{u,S} \hat{a}_{d',S}}{\hat{a}_{u',S} \hat{a}_{d,S}} = 1 , \frac{\hat{a}_{u,B} \hat{a}_{d',B}}{\hat{a}_{u',B} \hat{a}_{d,B}} = 1$$

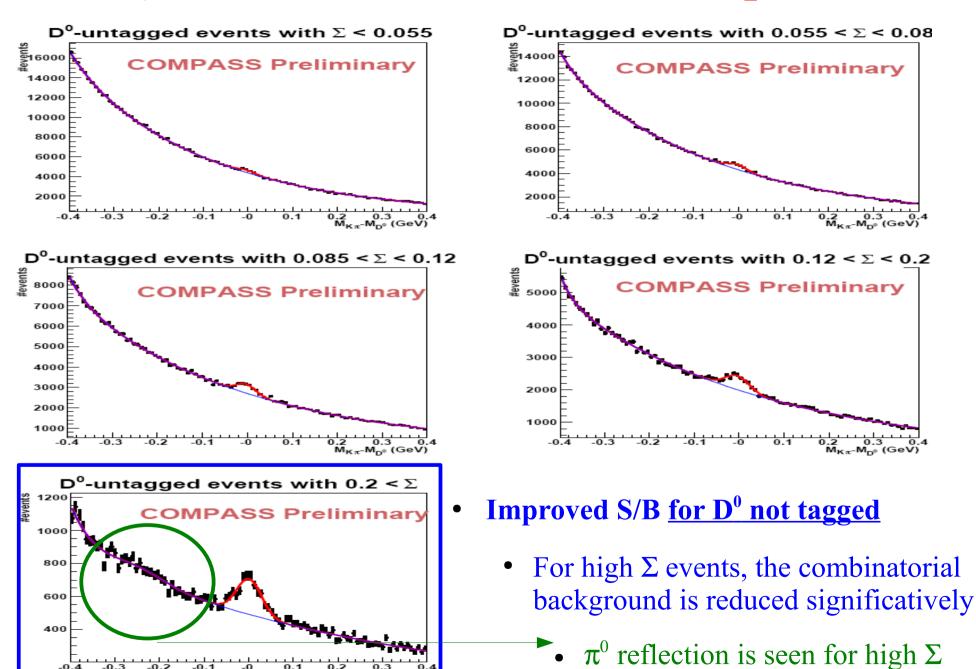
• Signal and background events are affected in the same way before and after a field reversal:

$$8 \Rightarrow \underline{\text{7 unknowns}} : 5 \, \hat{\mathbf{a}} , \mathbf{A}_{S} \text{ and } \mathbf{A}_{B} \longrightarrow \boxed{\frac{\hat{\mathbf{a}}_{u,S}}{\hat{\mathbf{a}}_{u,B}} = \frac{\hat{\mathbf{a}}_{u',S}}{\hat{\mathbf{a}}_{u',B}}}, \quad \frac{\hat{\mathbf{a}}_{d,S}}{\hat{\mathbf{a}}_{d,B}} = \frac{\hat{\mathbf{a}}_{d',S}}{\hat{\mathbf{a}}_{d',B}}$$

• Unknowns are obtained by a χ^2 minimization:

$$\chi^{2} = (\overrightarrow{N} - \overrightarrow{f})^{T} \operatorname{Cov}^{-1} (\overrightarrow{N} - \overrightarrow{f})$$

Σ (=S/(S+B)) effect in D⁰ mass spectra



Validation of parameterization (2006 example)



Data vs. Σ-Parameterization in weight bins (2006 D⁰-tagged)

