

## Study of Kaonic Final State Events at COMPASS

**Matthias Schott** 

On behalf of the COMPASS Collaboration

Introduction Event Selection  $K_SK_S$  Final State  $K^+K^-$  Final States Conclusion M. Schott (CERN)



#### Motivation

- Primary Goal: Search for JPC exotic resonances and glueball candidates
- Centrally produced kaonic systems are interesting for the production of glueballs as they are considered to be
  - "glue-rich"
  - preferred due to chirality arguments
  - (Chanowitz, PRL 95:172001, 2005).
- We're currently looking at a number of kaonic final states
  - $K^-\pi^+\pi^-$  (kaon beam)
  - $-\pi^-K^+K^-$  (pion beam)
  - $-\pi^-K_S K_S$  (pion beam)

- The K<sub>S</sub>K<sub>S</sub> system selects a subset of the possible quantum numbers for KK, whereas K<sup>+</sup>K<sup>-</sup> exposes the whole set.
  - Studying both channels provides an excellent opportunity for cross-checks

| state        | allowed ${\cal J}^{PC}$ |   |          |   |          |
|--------------|-------------------------|---|----------|---|----------|
| $K_S^0K_S^0$ | 0++                     |   | $2^{++}$ |   | 4++      |
| $K^+K^-$     | 0++                     | 1 | $2^{++}$ | 3 | $4^{++}$ |

Introduction Event Selection K<sub>S</sub>K<sub>S</sub> Final State K<sup>+</sup>K<sup>-</sup> Final States Conclusion

M. Schott (CERN)

Page 2

#### Beam Particle Identification





- The incoming beam has an energy of 191 GeV. It consists of  $\pi^-$  (93%),  $K^-$  (2.5%),  $\mu^-$  (3%),  $p^-$  (0.6%) and  $e^-$ (0.1%)
- The CEDAR (ChErenkov Differential counter with Achromatic Ring focus)
  detectors before the target are used to select a specific beam particle, e.g.
  kaons

Introduction

**Event Selection** 

K<sub>S</sub>K<sub>S</sub> Final State

K<sup>+</sup>K<sup>-</sup> Final States

### Decay Particle Identification





- Pionic final states have overwhelming cross-section compared to charged kaonic final states. Hence a decay particle identification is required.
- The COMPASS RICH detector allows a pion/kaon/proton separation up to a momentum of 55 GeV/c

Introduction

## **Primary Event Selection**

#### Charged Kaonic Final States

- Unique primary vertex in the event
- 3 outgoing tracks with (+,-,-) charge assignment
- One negative charged track
- Clean RICH identification of one negative charged kaon below 30 GeV
- Exclusivity requirement

#### Neutral Kaonic Final States

- Reconstructed primary vertex
- 1 negative charged outgoing tracks
- Exactly 2 K<sub>s</sub> candidates
  - secondary vertex with two outgoing oppositely charged tracks
  - Invariant mass close to KS mass [PDG]





Introduction

**Event Selection** 

K<sub>S</sub>K<sub>S</sub> Final State

K<sup>+</sup>K<sup>-</sup> Final States

## **Exclusivity Requirement**





- The reconstructed final state is required to be exclusive, i.e. all final state particles have been detected and reconstructed
  - Momentum sum of all decay objects is required to be close to the incoming beam momentum (191±5GeV)
  - The angle difference in the φ-plane between the recoil proton and the vector sum of all reconstructed particles is required to be close to 0

Introduction

K<sup>+</sup>K<sup>-</sup> Final States

# K<sub>S</sub>K<sub>S</sub> invariant mass spectra





- Mass spectra reproduce known resonances well
  - KK:  $a_0(980)$ ,  $f_0(980)$ ,  $f_2(1270)$ ,  $f_0(1370)$ ,  $f_0(1500)$ ,  $f'_2(1525)$ ,  $f_0(2150)$ ;
  - Kπ: K\*(892), K\*(1410), K\*(1430).

Introduction

# Mass spectra when $\pi^{-}$ is the fastest particle





- Requiring that the fastest particle is  $\pi^-$  leads to different enhancement of the observed resonances compared to the previous selection
- Apparently we observe the selection of different production processes

Introduction

**Event Selection** 

K<sub>S</sub>K<sub>S</sub> Final State

K<sup>+</sup>K<sup>-</sup> Final States

## K+K- invariant mass spectra

- The  $\phi(1020)$  is clearly visible
  - A suppressed production is expected due to the OZI-rule
  - Large fraction of the φ(1020) is produced by the kaonic content of the incoming beam

- Clean peak at 1.5 GeV can be due to
  - $f_0(1500)$ : glueball candidate
  - Weak signal of  $f_0(1270)$
  - $f_2'(1525)$
  - Final answer can be given after detailed partial wave analysis





Introduction

**Event Selection** 

K<sub>S</sub>K<sub>S</sub> Final State

K<sup>+</sup>K<sup>-</sup> Final States

### K+K- invariant mass spectra





- Observed resonances
  - K\*(892)
  - $K_2^*(1430)$  (Possible admixture of  $K_0^*(1430)$  and  $K^*(1410)$ )
  - Peak around 1.7 GeV could be due to  $K^*(1680)$  or  $K^*_3(1780)$

 COMPASS allows the comparison of invariant mass spectra for hadron and muon beam data

Introduction

**Event Selection** 

K<sub>S</sub>K<sub>S</sub> Final State

K<sup>+</sup>K<sup>-</sup> Final States

#### Comparison of the Kaonic Channels





- Very nice similarity between invariant mass spectra of neutral and charged kaonic decay channels
- Differences can be explained by
  - Different allowed quantum numbers
  - Selection affects different phase-space regions and hence different production mechanisms

Introduction

**Event Selection** 

K<sub>S</sub>K<sub>S</sub> Final State

K+K- Final States

## Search for K\* decay resonances



- Search for resonances which decay into πK\*
  - Similar structure (factor 3 difference in statistics full 2008 analysis for both channels expected soon)
- Promising peaks at 1.8GeV and 2.2GeV under further study

Introduction Event Selection K<sub>S</sub>K<sub>S</sub> Final State K<sup>+</sup>K<sup>-</sup> Final States Conclusion

M. Schott (CERN)

Page 12

## Conclusion and Outlook

- Kaonic channel looks promising
  - Clean signature of a large variety of resonances in the charged and neutral decay channel
  - We will have unprecedented statistics for both channels at the COMPASS hadron run
- Nice agreement between charged and neutral decay channel
  - acceptance issues are fairly different due to particle selection
- need to repeat analysis with proton beam
- Partial Wave Analysis will start soon

**Event Selection** 

Introduction

K<sup>+</sup>K<sup>-</sup> Final States