

The Nucleon Spin Structure

Gerhard Mallot

Plan

- Lecture I
 - Introduction
 - DIS and structure functions, sum rules
 - Why contribute the quark spin so little?
 - Principle of measurements, experiments

Spin Experiments are Puzzling

Wolfgang Pauli and Niels Bohr, 1954

wondering about a tippe top toy

A theory of the nucleon needs to describe the dynamics of quarks and gluons including spin.

Imagine the theory of the atom without spin!

1. Introduction

- electron scattering at SLAC in the late 1960ies revealed point-like partons in the nucleon \rightarrow quarks
- structure function is Q^2 independent (scaling)

Friedman, Kendall, Taylor

1990

Quark model wave function

 $SU_{spin}(2) \times SU_{flavour}(3)$

$$|p\uparrow\rangle = \frac{1}{\sqrt{18}} \Big\{ 2|u\uparrow u\uparrow d\downarrow\rangle - |u\uparrow u\downarrow d\uparrow\rangle - |u\downarrow u\uparrow d\uparrow\rangle + (u\leftrightarrow d) \Big\}$$

$$\Delta u = \langle p\uparrow |N_{u\uparrow} - N_{u\downarrow}|p\uparrow\rangle = \frac{3}{18}(10-2) = \frac{4}{3}$$

$$\Delta d = \langle p\uparrow |N_{d\uparrow} - N_{d\downarrow}|p\uparrow\rangle = \frac{3}{18}(2-4) = -\frac{1}{3}$$

$$\Delta \Sigma = \Delta u + \Delta d = 1$$

\rightarrow up and down quarks carry the nucleon spin!

G. Mallot/CERN

Weak baryon decays

• weak decay constants are linked to quark polarisations via the axial vector currents matrix elements

$$2MS_{\mu}\Delta q = \langle P, S | \bar{q}\gamma_{\mu}\gamma_{5}q | P, S \rangle$$

• SU(3) flavour symmetry assumed

Decay	Rate($10^6 \mathrm{s}^{-1})$	g_1/f_1	
$A \rightarrow B\ell\nu$	$\ell = e^{\pm}$	$\ell = \mu^-$	$\ell = e^-$	
$n \rightarrow p$	1.1291 ± 0.0010		1.2670 ± 0.0030	$\Delta u - \Delta d$
$\Lambda^0 ightarrow p$	3.161 ± 0.058	0.60 ± 0.13	0.718 ± 0.015	$2\Delta u - \Delta d - \Delta s$
$\Sigma^- \rightarrow n$	6.88 ± 0.23	3.04 ± 0.27	-0.340 ± 0.017	$\Delta d - \Delta s$
$\Sigma^- \rightarrow \Lambda^0$	0.387 ± 0.018			
$\Sigma^+ \rightarrow \Lambda^0$	0.250 ± 0.063			
$\Xi^- ightarrow \Lambda^0$	3.35 ± 0.37	2.1 ± 2.1	0.25 ± 0.05	$\Delta u + \Delta d - 2\Delta s$
$\Xi^- \rightarrow \Sigma^0$	0.53 ± 0.10			$\Delta u - \Delta d$
$\Xi^0 \rightarrow \Sigma^+$	0.876 ± 0.071	0.012 ± 0.007 *	1.32 ± 0.21	$\Delta u - \Delta d$

P. Ratcliffe, Czech. J. Phys. 54 (2004)

From weak baryon decays

Fit to decay data:

$$\Delta u + \Delta d - 2\Delta s = 0.58 \pm 0.03 \qquad (\Xi^- \to \Lambda)$$

assuming $\Delta s = 0$: $\Delta \Sigma = \Delta u + \Delta d = 0.58 \pm 0.03$

→ up and down quarks carry 58% of the nucleon spin! deviation from 100% due to relativistic motion

Spin puzzle: EMC 1987

→ quark spin contribution to nucleon spin is consistent with zero! Strange quark polarisation negative.

2. DIS and structure functions

- What did the EMC actually measure?
- How severe is the spin puzzle?
- Can the Quark Model expectation

$$\Delta\Sigma=0.6$$

be restored?

Deep inelastic scattering

- probing partons
 - $\ell N \to \ell' X$

- inclusive lepton nucleon scattering
- large momentum and energy transfer Q^2 and v
- finite ratio Q^2/v
- large c.m. energy of the hadronic final state W > 2 GeV

Deep Inelastic Scattering

Bjorken-*x*: fraction of longitudinal momentum carried by the struck quark in infinitemomentum frame (Breit)

Kinematics

G. Mallot/CERN

Distance scales

- longitudial
- transverse

$$\frac{1/Mx}{1/\sqrt{Q^2}}$$

- for $x \simeq 0.2$ the longitudinal scale is 1 fm
- for $Q^2 = 1 (\text{GeV}/c)^2$ the transverse scale is 0.2 fm

DIS cross section

$$\begin{split} W^{\mu\nu} &= -\left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2}\right)F_1(x,Q^2) + \left(P^{\mu} - \frac{P \cdot q}{q^2}q^{\mu}\right)\left(P^{\nu} - \frac{P \cdot q}{q^2}q^{\nu}\right)\frac{1}{P \cdot q}F_2(x,Q^2) \\ &-i\epsilon^{\mu\nu\lambda\sigma}q_\lambda\left(\frac{MS_{\sigma}}{P \cdot q}\left(g_1(x,Q^2) + g_2(x,Q^2)\right) - \frac{M(S \cdot q)P_{\sigma}}{P \cdot q}g_2(x,Q^2)\right) \end{split}$$

Quark-Parton Model

• in the QPM: $\mathcal{W}^{\mu\nu}$ for massless spin- $\frac{1}{2}$ partons

$$F_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} \left\{ q_{i}^{+}(x) + q_{i}^{-}(x) \right\}$$
 unpolarised SF,
momentum distributions
$$F_{2}(x) = x \sum_{i} e_{i}^{2} \left\{ q_{i}^{+}(x) + q_{i}^{-}(x) \right\}$$
$$g_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} \left\{ q_{i}^{+}(x) - q_{i}^{-}(x) \right\}$$
$$polarised SF,$$
$$g_{2}(x) = 0$$
 polarised SF,
spin distributions

- no Q^2 dependence (scaling)
- Calan–Gross relation $F_2(x) = 2xF_1(x)$
- **g**₂ twist-3 quark–gluon correlations

Sum rules for g_1

• first moment Γ_1 of g_1 with $\Delta q = \int_0^1 \Delta q(x) dx$

$$\Gamma_{1} = \int_{0}^{1} g_{1}(x) dx \stackrel{proton}{=} \frac{1}{2} \left\{ \frac{4}{9} \Delta u + \frac{1}{9} \Delta d + \frac{1}{9} \Delta s \right\}$$

From Γ_1 , a_3 and a_8 we obtain $\Delta \Sigma$ without assuming $\Delta s = 0$

Sum Rules

The First Moment of g_1

• first moment of g_1 $\Gamma_1 = \int_0^1 g_1(x) dx$

"Spin crisis" EMC 1987

3. Why is $\Delta\Sigma$ so small

(1988)

CHIRAL SYMMETRY AND THE SPIN OF THE PROTON \star

Stanley J. BRODSKY a, John ELLIS a, b1 and Marek KARLINER a

* Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305, USA

b CERN, CH-1211 Geneva 23, Switzerland

1000

PLB 206 (1988) 309

A crisis in the parton model: where, oh where is the proton's spin?

E2-88-287

A.V.Efremov, O.V.Teryaev*

AND TRIANGLE ANOMALY

E. Leader¹ and M. Anselmino² Birkbeck College, University of London, London, UK Dipartimento di Fisica Teorica, Università di Torino, I-10125 Torino, Italy

Received 18 March 1988

ZPC 41 (1988) 239

THE ANOMALOUS GLUON CONTRIBUTION TO POLARIZED LEPTOPRODUCTION

G. ALTARELLI and G.G. ROSS ¹ CERN, CH-1211 Geneva 23, Switzerland

PLB 212 (1988) 391

SPIN STRUCTURE OF THE NUCLEON

Received 29 June 1988

Considered Options

• Skyrmions: model,

all orbital angl. mom. (BEK) maybe

- Bjorken sum rule broken? Measurement wrong? (LA) no!
- Large $\Delta G \sim 2-3-6$ at EMC Q^2 could mask measure quark spin via axial anomaly (ET, AR) gluon!

requires fine tuning of cancelation of ΔG and orbital angular momentum (orb. ang. mom. is generated at gluon emision)

Axial anomaly contribution

- The contribution of the quark spins $\Delta \Sigma$ is NOT an observable. The observable is a_0 , the flavour-singlet axial vector ME.
- The singlet axial vector current is not conserved and receives a gluon contribution via the **axial anomaly** (à la $\pi^0 \rightarrow 2\gamma$). The contribution vanishes for the triplet and octet currents.
- A conserved current can be constructed in next-to-leading order QCD by subtracting the anomalous gluon contribution, however, not in a gauge invariant way.
- The corresponding ME is then independent of Q^2 .

Obergurgl, October 2007

Axial anomaly (continued)

• in the MS renormalisation scheme

 $a_0 = \Delta \Sigma_{MS}$

• in the so-called Alder–Bardeen and the jet scheme:

$$a_0 = \Delta \Sigma_{AB} - n_f \frac{\alpha_s}{2\pi} \Delta G$$

• thus a large gluon polarisation could mask the quark spin contribution to the nucleon spin and the parton model value of 0.6 could be restored by $\Delta \Sigma_{AB}$

Lepton-Photon 1989

To summarise, let us return to the fit of Fig. 7 and 8. At Q²=10GeV² this corresponds to $\Delta g=6.3$ and so the proton helicity is given by

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta g + L_Z$$

= 0.35 + 6.3 - 6.15

Need $\Delta \mathbf{G} \approx \mathbf{6}$ at $Q^2 = 10 \text{ GeV}^2$ for $\Delta \Sigma = 0.7$, to be compared to $\frac{1}{2}$ => measure $\Delta \mathbf{G}$

ΔG and $\Delta \Sigma$ in AB/jet scheme

$$\Delta \Sigma \leftarrow a_0 + \frac{3\alpha_s}{2\pi} \Delta G$$
$$\Delta s \leftarrow \Delta s + \frac{3\alpha_s}{2\pi} \Delta G$$

 α_s strong coupling constant

Now: $a_0 \simeq 0.3$

Need: $\Delta G \simeq 2.5$

Spin sum rule

- naive QPM: only valence quarks
- QCD: sea quarks and gluons

gluons carry 50% of momentum!

• orbital angular momentum:

$$L_q$$
, L_g

 Δq_v

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

Where is the proton spin?

Riddle

What is similar and what is different between the following two sets?: The first set consists of a farmer, his pig and the truffles:

The second set consists of the theorist, the experimentalist and the big discoveries

Answer

- The farmer takes his pig to the woods. The pig snifs around looking for a truffle. When the pig gets it and is about to eat it, the farmer kicks the pig on the head with his club and steals the truffle. Those are the similarities...
- The difference is that the farmer always takes the pig to woods where there are truffles, while more often than not, the suggestions by the theorists take the experimentalists to "woods" where there are no "truffles"...
- ... often while looking for the theorists' "truffles" the experimentalists find "gold"...

http://public.web.cern.ch/Public/Content/Chapters/AboutCERN/WhoWorksThere/ThinkersMakers/Theorists/Theorists-en.html terms/t

4. Principle of measurements

• Photoabsorption:

(flavours ignored)

1/2

- only quarks with opposite helicity can absorb the polarised photon via spin-flip
- # quarks in direction $\frac{\sigma_{1/2}}{\sigma_{1/2}}$

 $\frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$

need polarised photons & nucleons

Obergurgl, October 2007

Cross Section Asymmetries

unpolarised:

longitudinally polarised nucleon: $\beta=0,\pi$

transversely polarised nucleon: $\beta = \pi/2$

$$\frac{\mathrm{d}^{3}\overline{\sigma}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}\varphi} = \frac{4\alpha^{2}}{Q^{2}}\left\{\frac{y}{2}F_{1} + \frac{1}{2xy}\left(1 - y - \frac{y^{2}\gamma^{2}}{4}\right)F_{2}\right\}$$
$$\frac{\mathrm{d}^{3}\Delta_{\parallel}\sigma}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}\varphi} = \frac{4\alpha^{2}}{Q^{2}}\left\{\left(1 - \frac{y}{2} - \frac{y^{2}\gamma^{2}}{4}\right)g_{1} - \frac{y}{2}\gamma^{2}g_{2}\right\}$$
$$\frac{\mathrm{d}^{3}\Delta_{\perp}\sigma}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}\varphi} = \frac{4\alpha^{2}}{Q^{2}}\left\{\gamma\sqrt{1 - y - \frac{y^{2}\gamma^{2}}{4}}\left(\frac{y}{2}g_{1} + g_{2}\right)\right\}$$

 $A_{\parallel}(x,Q^{2};E) = \frac{\Delta_{\parallel}\sigma}{\overline{\sigma}} = \frac{\sigma^{\overrightarrow{\leftarrow}} - \sigma^{\overrightarrow{\Rightarrow}}}{\sigma^{\overrightarrow{\leftarrow}} + \sigma^{\overrightarrow{\Rightarrow}}},$ $A_{\perp}(x,Q^{2};E) = \frac{\Delta_{\perp}\sigma}{\overline{\sigma}} = \frac{\mathcal{H}_{\ell}}{\cos\varphi} \cdot \frac{\sigma(\varphi) - \sigma(\pi \pm \varphi)}{\sigma(\varphi) + \sigma(\pi \pm \varphi)}$

Measure asymmetries:

Scattering Plane

Experimental essentials

- up to now only fixed-target pol. DIS experiments
- need polarised targets and beams
- need detection of scattered lepton, energy, direction, identification
- need to know energy and direction of incoming lepton
 - detection or given by machine
 - measurable asymmetries very small
 - need excellent control of fake asymmetries, e.g. time variations of detector efficiency

Experiment essentials

• Beams & targets:

		target	beam pol	$x_{min}(1 \text{ GeV}^2)$
•	SLAC 48 GeV,	solid/gas	e, pol. source	0.01
•	DESY 28 GeV,	gas internal	e, Sokolov-Ternov	0.02
•	CERN 200 GeV,	solid	μ, pion decay	0.0025
(RHIC 100 – 100 GeV	pp col	lider)

- fake asymmetries:
- rapid variation of beam polarisation (SLAC)
- rapid variation of target polarisation (HERMES)
- simultaneous measurement of two oppositely polarised targets (CERN)
- bunch trains of different polarisation (RHIC)

(1 - 1)

Measurable asymmetries

$$A_{meas} = P_t P_b f A$$

 P_b , P_t beam and target polarisations,ftarget dilution factor = polarisable N/total Nnote: linear in error: f=1/2 => requires 4 times statistics

$$g_1 \simeq \frac{A_{\parallel}}{D} F_1 \simeq \frac{A_{\parallel} F_2}{D 2x}$$
 huge rise of $F_2/2x$ at small x

D depolarisation factor, kinematics, polarisation transfer from polarised lepton to photon, *D* ≈ *y* Even big *g*₁ at small *x* means small asymmetries

Pol. DIS experiments

	Lab	Exp	Year	Energy	Beam	P_b	target	P_t	f	result
	SLAC	E80	75	10–16 GeV	e^-	0.85	H-butanol	0.50	0.13	A_1^{p}
Spin Crisis	SLAC	E130	80	16–23 GeV	e^-	0.81	H-butanol	0.58	0.15	$A_1^{\bar{p}}$
	CERN	EMC	85	200 GeV	μ^+	0.79	NH ₃	0.78	0.16	$g_1^{\overline{p}}$
ŗ	CERN	SMC	92	100 GeV	μ^+	0.81	D-butanol	0.40	0.19	g_1^{d}
	SLAC	E142	92	19–26 GeV	e^-	0.39	³ He	0.35	0.12	$g_1^{\bar{n}}$
	CERN	SMC	93	190 GeV	μ^+	0.80	H-butanol	0.86	0.12	g_{1}^{p}, g_{2}^{p}
	SLAC	E143	93	10–29 GeV	e^-	0.85	NH ₃	0.70	0.15	g_1^{p}
	SLAC	E143	93	10–29 GeV	e^-	0.85	ND ₃	0.25	0.24	g_1^{d}
	CERN	SMC	94/5	190 GeV	μ^+	0.80	D-butanol	0.50	0.20	g_1^d , g_2^d
	SLAC	E154	95	48 GeV	e^-	0.83	³ He	0.38	0.18	g_1^{n}
	DESY	HERMES	95	28 GeV	e^+	0.55	³ He	0.46	0.33	g_1^{n}
	CERN	SMC	96	190 GeV	μ^+	0.80	NH ₃	0.89	0.16	g_1^{p}
	DESY	HERMES	96/97	28 GeV	e^+	0.55	Н	0.88	1.00	g_1^{p}
	SLAC	E155	97	48 GeV	e^-	0.81	NH_3	0.80	0.15	g_1^{p}
	SLAC	E155	97	48 GeV	e^-	0.81	⁶ LiD	0.22	0.36	g_1^{d}
	DESY	HERMES	98–00	28 GeV	e^{\pm}	0.55	D	0.85	1.00	g_1^d , b_1^d
	SLAC	E155X	99	29/32 GeV	e^-	0.81	NH ₃	0.70	0.16	g_2^p
	SLAC	E155X	99	29/32 GeV	e^-	0.81	⁶ LiD	0.22	0.36	g_2^{d}
	DESY	HERMES	≥ 01	28 GeV	e^{\pm}	0.55	H/D	0.85	1.00	
	CERN	COMPASS	≥ 01	160 GeV	μ^+	0.80	⁶ LiD	0.50	0.40	
running	BNL	RHIC	≥ 01	coll.	р		р		1.00	

SLAC E155 Spectrometer

E155 Target

cryogenic target ⁶LiD, NH₃

1K evaporator fridge 5 T magnetic field

HERMES

HERMES

The COMPASS Spectrometer Compass Hodoscopes E/HCAL2 E/HCAL1 SM2 RICH1 Muon Wall 2, **MWPC SM1 Polarised Target** MWPC, Gems, Scifi, W45 (not shown) **SPS 160 GeV** Muon Wall 1 μ beam Straws, Gems Micromegas, SDC, Scifi Scifi, Silicon

G. Mallot/CERN

Spectrometer

G. Mallot/CERN

COMP

Polarised target

ÇOMP 🗛

Target system

G. Mallot/CERN

COMPA

Polarized target performances

G. Mallot/CERN

Gems

©OMP

- 20 triple Gems detectors
- in 10 stations
- 40 coordinates
- size 30x30 cm²
- 12 ns time resolution
- 50 µm space resolution
- efficiency ~ 97 %
- Ar/CO₂ 70/30 %

Gem foil

ÇOMP AS

RICH

- 80 m³ (3 m C_4F_{10} radiator)
- 116 VUV mirrors
- 5.3 m² VUV detectors
 - MWPC CsI photosensitive cathodes
 - 8x8 mm² pads
- 84k analog r/o channels
- 2006 inner quarter with maPMTs

Compa

RICH

¢OMP 🔬

ÇOMPAS

G. Mallot/CERN

Lecture 2

- Experimental status
 - Q² evolution, scaling violations, DGLAP
 - status of g_1 and QCD analyses
 - interplay: g₂
 - semi-inclusive data
 - $-\Delta G$ from hadron pairs

