Beyond Collins and Sivers: further measurements of the target transverse spin-dependent azimuthal asymmetries in semi-inclusive DIS from COMPASS

Aram Kotzinian

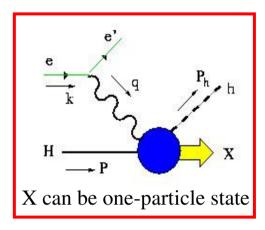
INFN Torino

On leave in absence from YerPhI, Armenia and JINR, Russia

on behalf of the COMPASS Collaboration

- General expression for polarized SIDIS cross-section
- Target transverse spin dependent azimuthal asymmetries
- COMPASS results
- Parton model for SIDIS in CFR
- Conclusions

General expression of polarized SIDIS cross-section

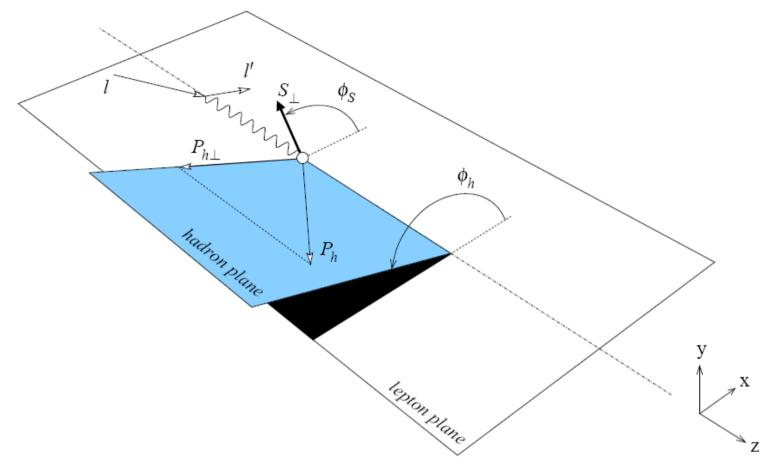


One photon exchange approximation:

$$\mathcal{M} \propto J_{~\mu}^{~lept} \, rac{1}{q^{~2}} J_{~hadr}^{~\mu}$$

- 1) New quark distributions and semi-inclusive electroproduction on polarized nucleons. A.K. NP B441 (1995) 234
 - General expression is derived
 - * Parton model: 6 twist-two TMD DFs & FFs + ~k_T/Q kinematical (Cahn) corrections
 - All possible (except Sivers and Boer-Mulders) azimuthal asymmetries appear in this approximation
- 2) Semi-inclusive deep inelastic scattering at small transverse momentum. Bacchetta, Diehl, Goeke, Metz, Mulders and Schlegel JHEP 0702:093,2007
 - General expression: new notations
 - * Parton model: all twist-two and twist-three tree level contributions are considered

General expression of polarized SIDIS cross-section (2)



Using current conservation + parity conservation + hermiticity one can show that 18 independent Structure Functions describe one particle SIDIS.

Moreover, the dependences on azimuthal angle of produced hadron and of the target nucleon polarization were calculated explicitly and factorized

General expression of polarized SIDIS cross-section (3)

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2}\,\frac{y^2}{2\left(1-\varepsilon\right)}\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h}\right. \\ &+\varepsilon\cos(2\phi_h)\,F_{UU}^{\cos2\phi_h}+P_{beam}\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h}\right. \\ &+P_L\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_h\,F_{UL}^{\sin\phi_h}+\varepsilon\sin(2\phi_h)\,F_{UL}^{\sin2\phi_h}\right] \\ &+P_LP_{beam}\,\left[\sqrt{1-\varepsilon^2}\,F_{LL}+\sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_h\,F_{LL}^{\cos\phi_h}\right] \\ &+|P_T|\left[\sin(\phi_h-\phi_S)\left(F_{UT,T}^{\sin(\phi_h-\phi_S)}+\varepsilon\,F_{UT,L}^{\sin(\phi_h-\phi_S)}\right)\right. \\ &+\varepsilon\sin(\phi_h+\phi_S)\,F_{UT}^{\sin(\phi_h+\phi_S)}+\varepsilon\sin(3\phi_h-\phi_S)\,F_{UT}^{\sin(3\phi_h-\phi_S)}\right. \\ &+\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_S\,F_{UT}^{\sin\phi_S}+\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_h-\phi_S)\,F_{UT}^{\sin(2\phi_h-\phi_S)}\right] \\ &+|P_T|P_{beam}\left[\sqrt{1-\varepsilon^2}\,\cos(\phi_h-\phi_S)\,F_{LT}^{\cos(\phi_h-\phi_S)}+\sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_S\,F_{LT}^{\cos\phi_S}\right. \\ &\left.+\sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_h-\phi_S)\,F_{LT}^{\cos(2\phi_h-\phi_S)}\right]\right\}, \end{split}$$

$$\varepsilon = \frac{1 - y - \frac{1}{4}y^2\gamma^2}{1 - y + \frac{1}{2}y^2 + \frac{1}{4}y^2\gamma^2}$$
$$\gamma = 2x_{\rm B}M_p/Q$$

This is a general expression which is also valid for exclusive reactions and for entire phase space of SIDIS (TFR, CFR)

Azimuthal modulations:

2 polarization independent

1 single beam polarization dependent

2 single target longitudinal polarization dependent

1 double beam + target longitudinal polarization dependent

5 single target transverse polarization dependent

3 double beam + target transverse polarization dependent

Target transverse spin dependent azimuthal asymmetries

$$d\sigma(\phi_h, \phi_s, ...) \propto (1 + |S_T| \sum_{i=1}^{5} D^{w_i(\phi_h, \phi_s)} A_{UT}^{w_i(\phi_h, \phi_s)} w_i(\phi_h, \phi_s)$$

$$+ P_{beam} |S_T| \sum_{i=6}^{8} D^{w_i(\phi_h, \phi_s)} A_{LT}^{w_i(\phi_h, \phi_s)} w_i(\phi_h, \phi_s) + ...)$$

$$A_{BT}^{w_i(\phi_h,\phi_s)} \equiv \frac{F_{BT}^{w_i(\phi_h,\phi_s)}}{F_{UU,T}}$$

Collins

Sivers

$$w_1(\phi_h, \phi_s) = \sin(\phi_h - \phi_s),$$

$$w_2(\phi_h, \phi_s) = \sin(\phi_h + \phi_s),$$

$$w_3(\phi_h, \phi_s) = \sin(3\phi_h - \phi_s),$$

$$w_4(\phi_h, \phi_s) = \sin(\phi_s),$$

$$w_5(\phi_h, \phi_s) = \sin(2\phi_h - \phi_s),$$

$$w_6(\phi_h, \phi_s) = \cos(\phi_h - \phi_s),$$

$$w_7(\phi_h, \phi_s) = \cos(\phi_s),$$

$$w_8(\phi_h, \phi_s) = \cos(2\phi_h - \phi_s)$$

$$D^{\sin(\phi_h - \phi_s)}(y) = 1,$$

$$D^{\sin(\phi_h + \phi_s)}(y) = D^{\sin(3\phi_h + \phi_s)}(y) = D_{NN}(y) = \frac{2(1 - y)}{1 + (1 - y)^2},$$

$$D^{\sin(2\phi_h - \phi_s)}(y) = D^{\sin(\phi_s)}(y) = \frac{2(2 - y)\sqrt{1 - y}}{1 + (1 - y)^2},$$

$$D^{\cos(\phi_h - \phi_s)}(y) = D(y) = \frac{y(2 - y)}{1 + (1 - y)^2},$$

$$D^{\cos(2\phi_h - \phi_s)}(y) = D^{\cos(\phi_s)}(y) = \frac{2y\sqrt{1 - y}}{1 + (1 - y)^2}.$$

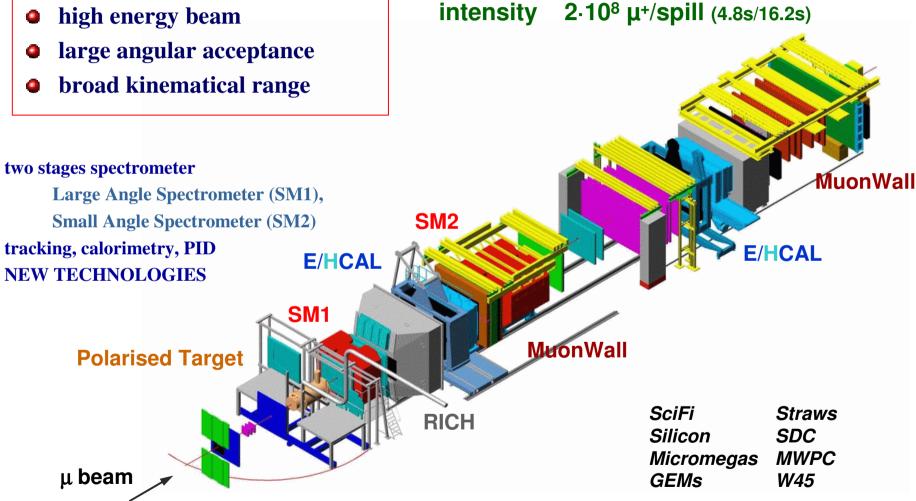
The COMPASS experiment @ CERN

beam: 160 GeV/c

longitudinal polarisation -76%

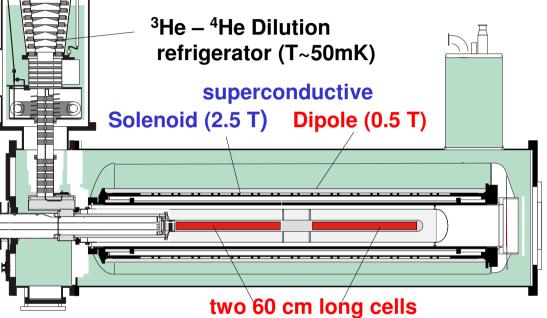
hep-ex/0703049

high energy beam



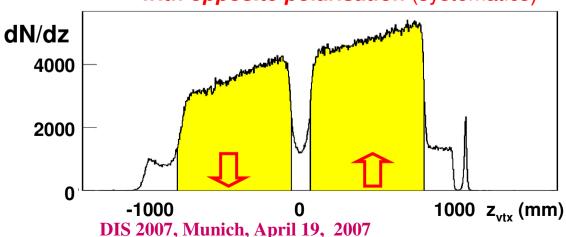
COMPASS target system (2002-2004)

solid state target operated in frozen spin mode



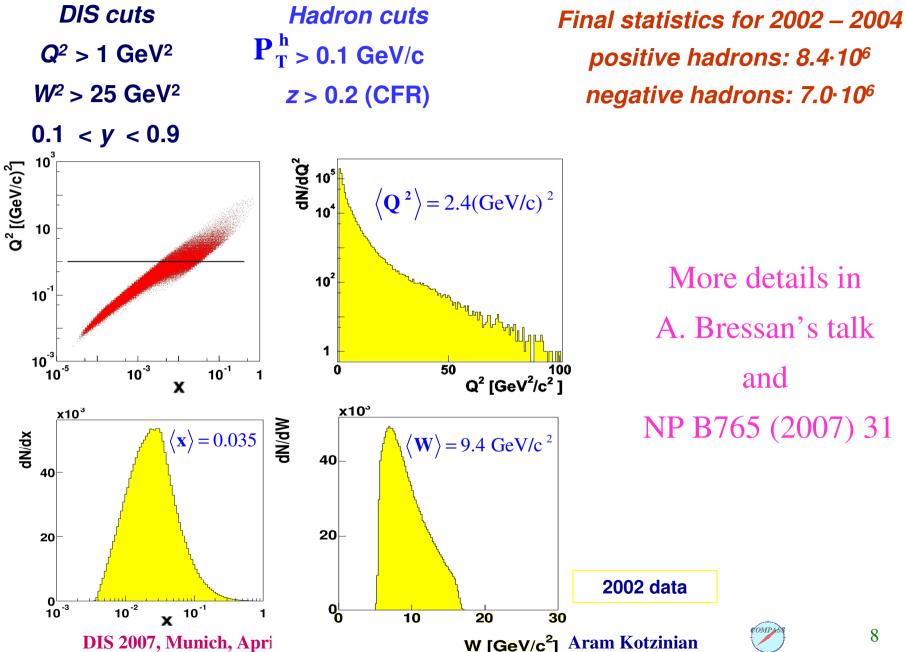
2002-2004: ⁶LiD dilution factor f = 0.38 polarization P_T = 50% ~20% of the time transversely polarised

with opposite polarisation (systematics)



during data taking with transverse polarization polarization reversal in the 2 cells after ~ 5 days

EVENT SELECTION



Asymmetry extraction

The number-of-events
$$A_{UT, \ raw}^{w_i(\phi_h, \phi_s)} = D^{w_i(\phi_h, \phi_s)}(y) f |S_T| A_{UT}^{w(\phi_h, \phi_s)}, \ (i = 1, 5),$$
 asymmetries $A_{LT, \ raw}^{w(\phi_h, \phi_s)} = D^{w(\phi_h, \phi_s)}(y) f P_{beam} |S_T| A_{LT}^{w(\phi_h, \phi_s)}, \ (i = 6, 8)$

$$\Phi_1 = \phi_h - \phi_s$$

$$\Phi_2 = \phi_h + \phi_s$$

$$\Phi_3 = 3\phi_h - \phi_s$$

$$\Phi_4 = \phi_s$$

$$\Phi_5 = 2\phi_h - \phi_s$$

Azimuthal
$$W_{1}(\Phi_{1}) = A_{raw}^{w_{1}(\phi_{h},\phi_{s})} \sin(\Phi_{1}) + A_{raw}^{w_{6}(\phi_{h},\phi_{s})} \cos(\Phi_{1})$$

$$W_{2}(\Phi_{2}) = A_{raw}^{w_{2}(\phi_{h},\phi_{s})} \sin(\Phi_{2})$$

$$W_{3}(\Phi_{3}) = A_{raw}^{w_{3}(\phi_{h},\phi_{s})} \sin(\Phi_{3})$$

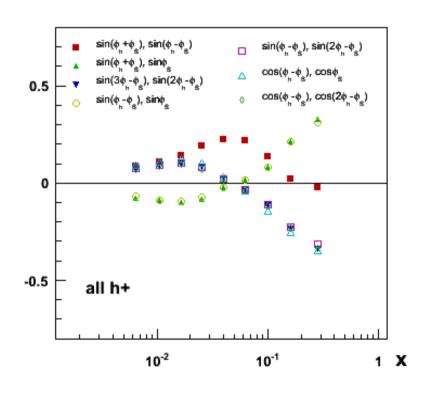
$$W_{4}(\Phi_{4}) = A_{raw}^{w_{4}(\phi_{h},\phi_{s})} \sin(\Phi_{4}) + A_{raw}^{w_{7}(\phi_{h},\phi_{s})} \cos(\Phi_{4})$$

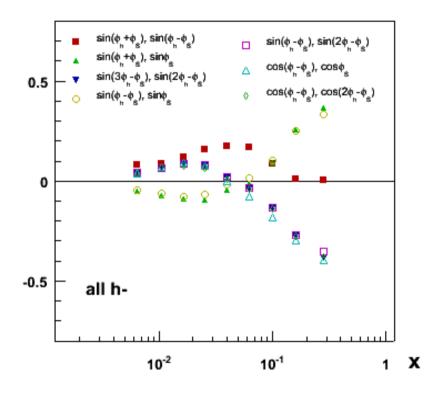
$$W_{5}(\Phi_{5}) = A_{raw}^{w_{5}(\phi_{h},\phi_{s})} \sin(\Phi_{5}) + A_{raw}^{w_{8}(\phi_{h},\phi_{s})} \cos(\Phi_{5})$$

We have used the double ratio method (as for Sivers and Collins asymmetries extraction)

Correlations

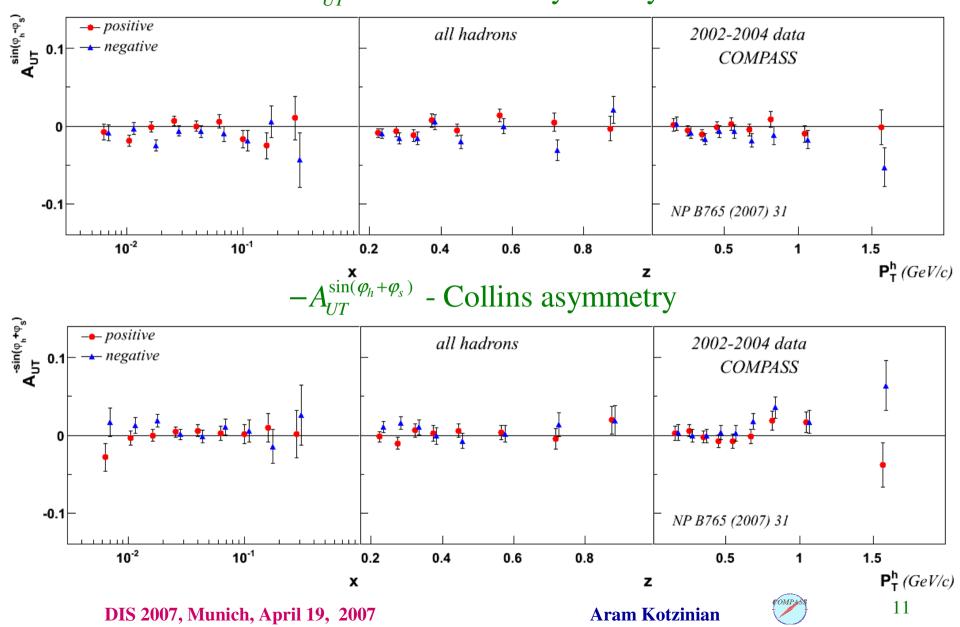
2D fit: correlations between different modulations are small



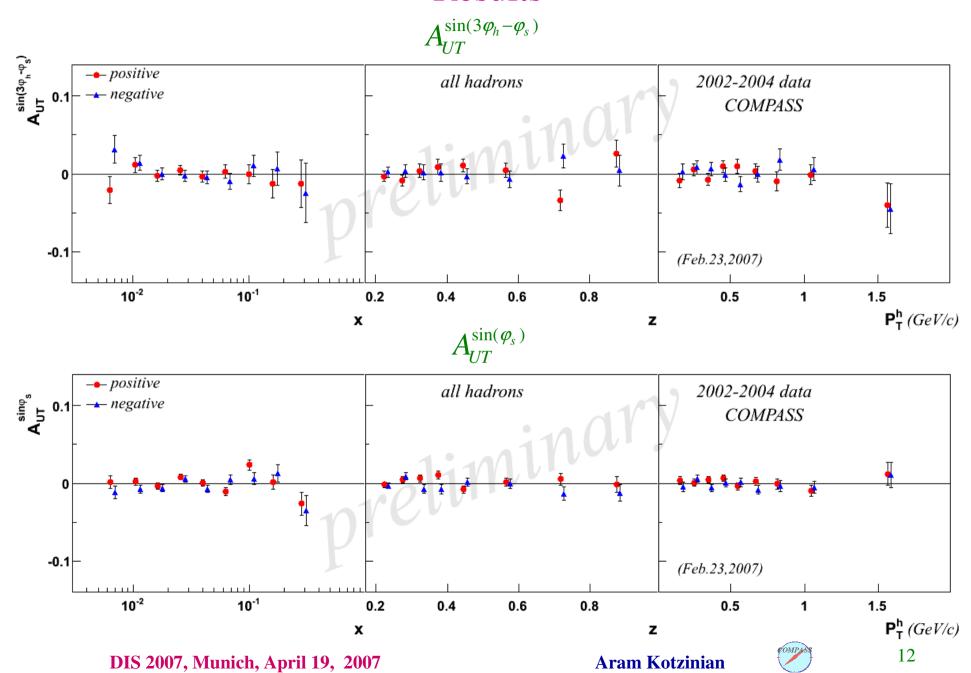


Results (talks by Bressan & D'Alesio)

 $A_{UT}^{\sin(\varphi_h-\varphi_s)}$ - Sivers asymmetry

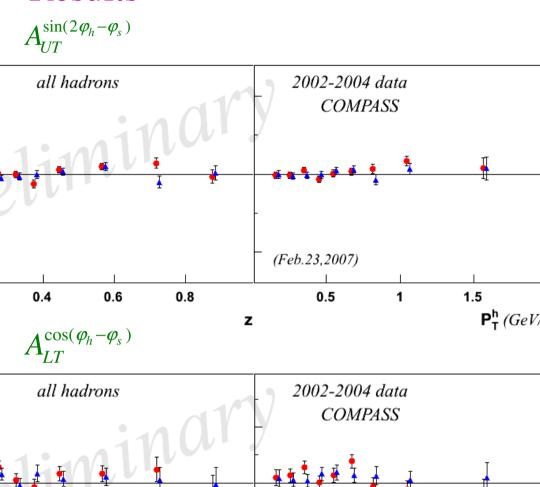


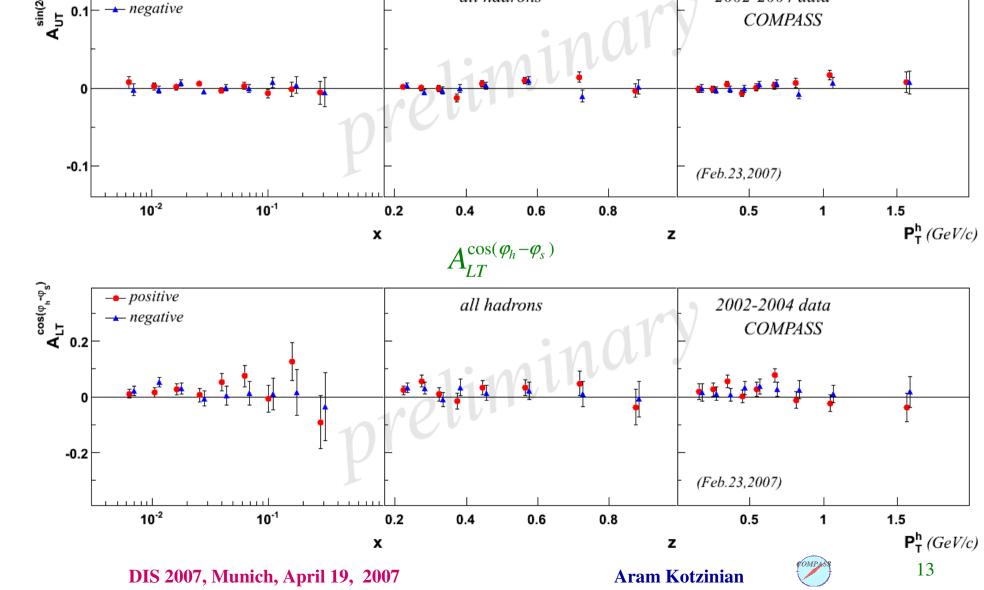
Results



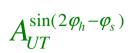
Results

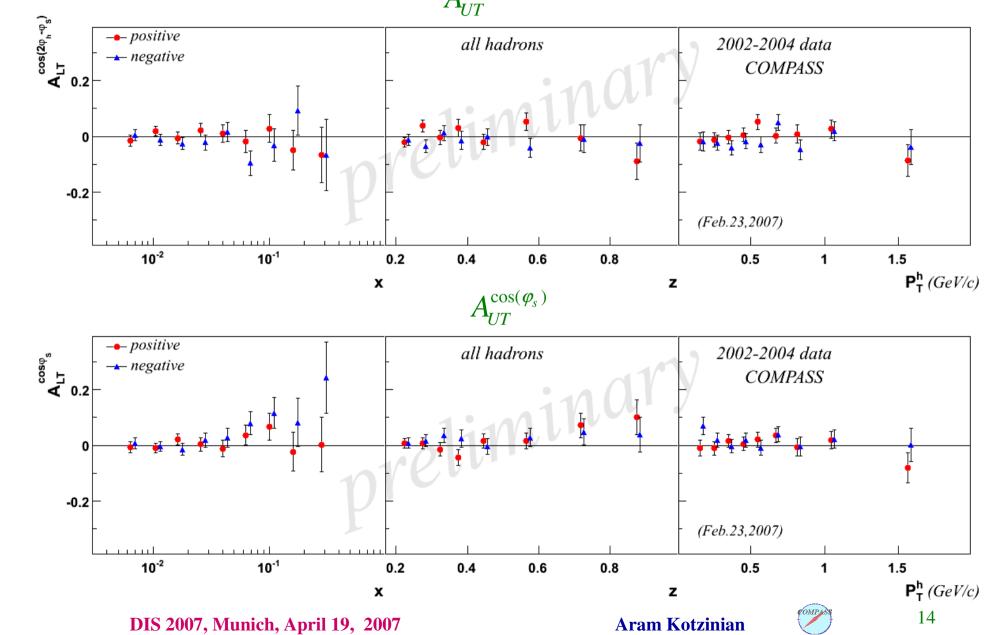
--- positive





Results





Parton model for SIDIS in CFR

$$d\sigma^{l+N\to l'+h+X} \propto DF \otimes d\sigma^{l+q\to l'+q'} \otimes FF$$

Factorization theorem for TMD SIDIS is proven only at twist-two

At twist-two

Sivers

$$\mathcal{P}_N^q(x,\mathbf{k}_T) = f_1^q(x,k_T^2) + f_{1T}^{\perp q}(x,k_T^2) \frac{[\mathbf{k}_T \times \hat{\mathbf{P}}_N] \cdot S_T^N}{M},$$

$$f_1^q(x,k_T^2)s_L^q(x,\mathbf{k}_T) = g_{1L}^q(x,k_T^2)\lambda_N + g_{1T}^{\perp q}(x,k_T^2)\frac{\mathbf{k}_T \cdot \mathbf{S}_T^N}{M},$$

$$f_1^q(x, k_T^2)\mathbf{s}_T^q(x, \mathbf{k}_T) = h_{1T}^q(x, k_T^2)\mathbf{S}_T^N + [h_{1L}^{\perp q}(x, k_T^2)\lambda_N + h_{1T}^{\perp q}(x, k_T^2)\frac{\mathbf{k}_T \cdot \mathbf{S}_T^N}{M}]\frac{\mathbf{k}_T}{M} + h_1^{\perp q}(x, k_T^2)\frac{[\mathbf{k}_T \times \mathbf{P}_N]}{M}$$

Often used:

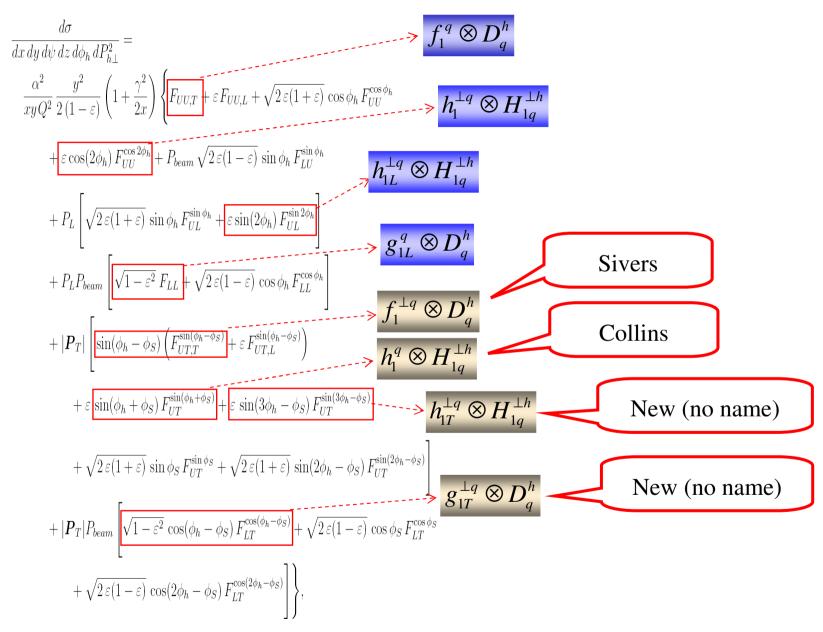
$$h_1^q(x, k_T^2) = h_{1T}^q(x, k_T^2) + \frac{k_T^2}{2M^2} h_{1T}^{\perp q}(x, k_T^2)$$

Boer-Mulders

Collins

$$\mathcal{P}_{q\uparrow}^{h}(z,\mathbf{P}_{Tq}^{h}) = D_{q}^{h}(z,P_{Tq}^{h}) + H_{1q}^{\perp h}(z,P_{Tq}^{h}) \frac{[\mathbf{P}_{Tq}^{h} \times \hat{\mathbf{k}'}] \cdot \mathbf{s}_{T}'}{M} = D_{q}^{h}(z,P_{Tq}^{h}) + s_{T}' \frac{P_{Tq}^{h}}{M} H_{1q}^{\perp h}(z,P_{Tq}^{h}) \sin(\phi_{Collins})$$

Twist-two contributions



Interpretation of target transverse spin asymmetries

$$A_{UT}^{\sin(\varphi_h-\varphi_s)} \propto f_{1T}^{\perp q} \otimes D_{1q}^h$$

Twist-2:

$$A_{UT}^{\sin(\varphi_h + \varphi_s)} \propto h_1^q \otimes H_{1q}^{\perp h}$$

$$A_{LT}^{\cos(\varphi_h-\varphi_s)} \propto g_{1T}^q \otimes D_{1q}^h$$

$$A_{UT}^{\sin(3\varphi_h-\varphi_s)} \propto h_{1T}^{\perp q} \otimes H_{1q}^{\perp h}$$

BDGMMSch: Whether and how the tree-level factorization used in the present paper extends to subleading level in 1/Q is presently not known.

Twist-2 + k_T/Q kinematical corrections:

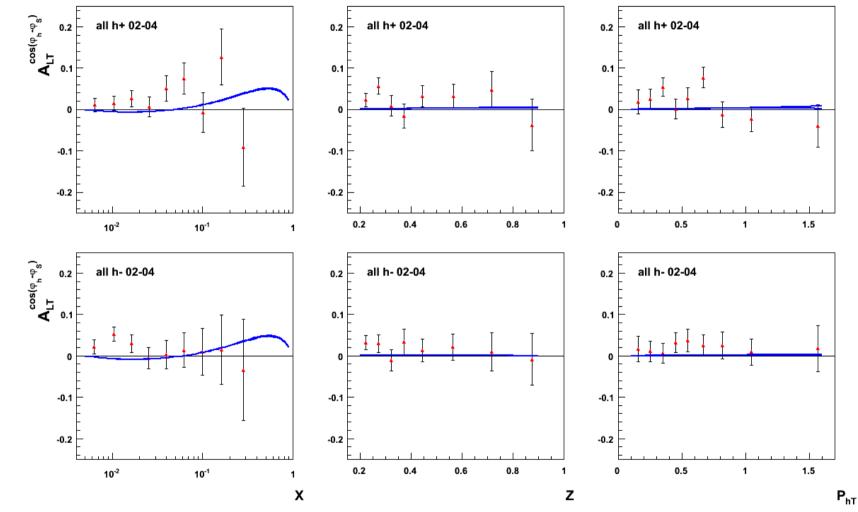
$$A_{LT}^{\cos(\varphi_s)} \propto \frac{M}{Q} g_{1T}^q \otimes D_{1q}^h$$

$$A_{LT}^{\cos(2\varphi_h-\varphi_s)} \propto \frac{M}{Q} g_{1T}^q \otimes D_{1q}^h$$

$$A_{UT}^{\sin(\varphi_s)} \propto \frac{M}{Q} \Big(h_1^q \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h \Big)$$

$$A_{UT}^{\sin(2\varphi_h-\varphi_s)} \propto \frac{M}{Q} \Big(h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h \Big)$$

Double spin $cos(\phi_h - \phi_s)$ asymmetry



Predictions by

A.K., Parsamyan & Prokudin,

Phys.Rev.D73:114017,2006

$$g_{1T}^{q(1)}(x) \approx x \int_{x}^{1} dy \frac{g_{1}^{q}(y)}{y}$$

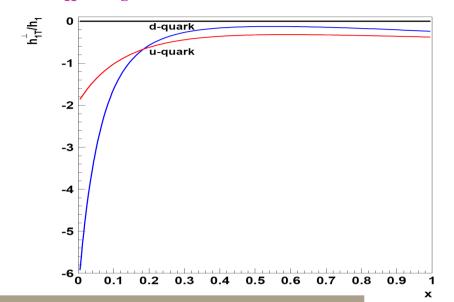
Estimation of $\sin(3\varphi_h - \varphi_s)$ asymmetry

Quark-Diquark model

R. Jakob, P. Mulders & Rodrigues

NP A626, 937 (1997)

$$R = \frac{A_{UT}^{\sin(3\varphi_h - \varphi_s)}}{A_{UT}}$$



$$R(x,z,P_{T}^{h}) \approx \frac{\langle k_{T}^{2} \rangle^{2} z^{2}}{(\langle p_{T}^{2} \rangle + z^{2} \langle k_{T}^{2} \rangle)^{2}} \frac{(P_{T}^{h})^{2}}{2M^{2}} \frac{\sum_{q} h_{1T}^{\perp q}(x) H_{q}^{h}(z)}{\sum_{q} h_{1}^{q}(x) H_{q}^{h}(z)}$$

At COMPASS

$$\langle z \rangle \approx 0.4, \ \langle P_T^h \rangle \approx 0.5 \text{ GeV/c}$$

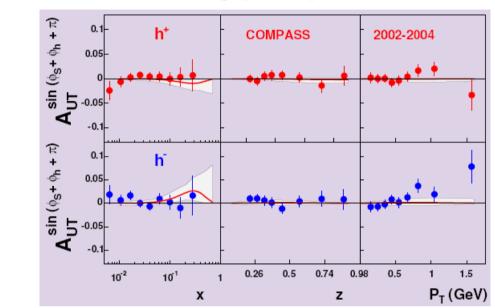
$$\langle R(x) \rangle \approx 0.02 \frac{\sum_{q} h_{1T}^{\perp q}(x) H_{q}^{h}(0.4)}{\sum_{q} h_{1}^{q}(x) H_{q}^{h}(0.4)} \ll 1$$

Conclusions

- There are 8 target transverse spin dependent azimuthal modulations in one particle SIDIS
 - # HERMES & COMPASS have already published the results on Collins and Sivers asymmetries
 - # Here we presented the remaining 6 physical asymmetries extracted from COMPASS data with transversely polarized deuteron target
 - *Two twist-2 asymmetries can be interpreted in QCD parton model and will allow to extract unexplored DFs g_{1T}^{q} and $h_{1T}^{\perp q}$
 - *Remaining four can be interpreted as twist-3 contributions
- There are more data to come soon from COMPASS and other experiments that will yield further understanding of TMD formulation of SIDIS and other processes in QCD

Additional slides

Collins



Analysis by

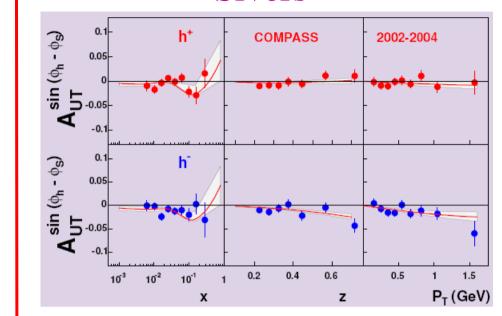
M. Anselmino, M. Boglione,

U. D'Alesio, F. Murgia, A.K.,

A. Prokudin, C. Türk

Phys.Rev.D75:054032,2007.

Sivers



Analysis by

M. Anselmino, M. Boglione,

U. D'Alesio, F. Murgia, A.K.,

A. Prokudin

Phys.Rev.D72:094007,2005.

Asymmetry extraction (2)

Counting rates:

$$N_{u/d}^{\pm}(\Phi_{j}) = F_{u/d}^{\pm} n_{u/d}^{\pm} a_{u/d}^{\pm}(\Phi_{j}) \sigma (1 \pm W_{j}(\Phi_{j}))$$

Double ratio method:

$$F(\Phi_j) = \frac{N_u^{+}(\Phi_j)N_d^{+}(\Phi_j)}{N_u^{-}(\Phi_j)N_d^{-}(\Phi_j)},$$

with

$$\sigma_F(\Phi_j) = \sqrt{\frac{1}{N_u^+(\Phi_j)} + \frac{1}{N_d^+(\Phi_j)} + \frac{1}{N_u^-(\Phi_j)} + \frac{1}{N_d^-(\Phi_j)}}$$

Assuming for acceptance:
$$\frac{a_u^+(\Phi_j)}{a_d^-(\Phi_j)} = \frac{a_u^-(\Phi_j)}{a_d^+(\Phi_j)}$$

$$F(\Phi_j) = const \frac{(1 + W_j(\Phi_j))(1 + W_j(\Phi_j))}{(1 - W_j(\Phi_j))(1 - W_j(\Phi_j))}$$

$$F(\Phi_j) = par(0)(1 + 4par(1)\sin\Phi_j + 4par(2)\cos\Phi_j)$$

Subleading twist (from paper (2))

$$\begin{split} F_{UT,T}^{\sin(\phi_h-\phi_S)} &= \mathcal{C}\left[-\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T}{M}f_{1T}^\perp D_1\right], \\ F_{UT,L}^{\sin(\phi_h-\phi_S)} &= 0, \\ F_{UT}^{\sin(\phi_h+\phi_S)} &= \mathcal{C}\left[-\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T}{M_h}h_1H_1^\perp\right], \\ F_{UT}^{\sin(\phi_h+\phi_S)} &= \mathcal{C}\left[\frac{2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T\right)\left(\boldsymbol{p}_T\cdot\boldsymbol{k}_T\right) + \boldsymbol{p}_T^2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T\right) - 4\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T\right)^2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T\right)}{2M^2M_h}h_1^\perp H_1^\perp\right], \\ F_{UT}^{\sin(\phi_h-\phi_S)} &= \frac{2M}{Q}\,\mathcal{C}\left\{\left(xf_TD_1 - \frac{M_h}{M}h_1\frac{\hat{H}}{z}\right) - \left(xh_T^\perp H_1^\perp - \frac{M_h}{M}f_{1T}^\perp\frac{\hat{D}^\perp}{z}\right)\right]\right\}, \\ F_{UT}^{\sin(2\phi_h-\phi_S)} &= \frac{2M}{Q}\,\mathcal{C}\left\{\frac{2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T\right)^2 - \boldsymbol{p}_T^2}{2M^2}\left(xf_T^\perp D_1 - \frac{M_h}{M}h_1^\perp\frac{\hat{H}}{z}\right) - \frac{2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T\right)\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T\right) - \boldsymbol{k}_T\cdot\boldsymbol{p}_T}{2MM_h}\left[\left(xh_TH_1^\perp + \frac{M_h}{M}g_{1T}\frac{\hat{G}^\perp}{z}\right) + \left(xh_T^\perp H_1^\perp - \frac{M_h}{M}f_{1T}^\perp\frac{\hat{D}^\perp}{z}\right)\right]\right\}, \\ F_{LT}^{\cos(\phi_h-\phi_S)} &= \mathcal{C}\left[\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T}{M}g_{1T}D_1\right], \\ F_{LT}^{\cos\phi_S} &= \frac{2M}{Q}\,\mathcal{C}\left\{-\left(xg_TD_1 + \frac{M_h}{M}h_1\frac{\hat{\boldsymbol{E}}}{z}\right) + \left(xe_T^\perp H_1^\perp + \frac{M_h}{M}f_{1T}^\perp\frac{\hat{G}^\perp}{z}\right)\right]\right\}, \\ F_{LT}^{\cos(2\phi_h-\phi_S)} &= \frac{2M}{Q}\,\mathcal{C}\left\{-\frac{2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T\right)^2 - \boldsymbol{p}_T^2}{2M^2}\left(xg_T^\perp D_1 + \frac{M_h}{M}h_1^\perp\frac{\hat{\boldsymbol{E}}}{z}\right) + \left(xe_T^\perp H_1^\perp + \frac{M_h}{M}f_{1T}^\perp\frac{\hat{\boldsymbol{G}}^\perp}{z}\right)\right]\right\}, \\ F_{LT}^{\cos(2\phi_h-\phi_S)} &= \frac{2M}{Q}\,\mathcal{C}\left\{-\frac{2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T\right)^2 - \boldsymbol{p}_T^2}{2M^2}\left(xg_T^\perp D_1 + \frac{M_h}{M}h_1^\perp\frac{\hat{\boldsymbol{E}}}{z}\right) - \left(xe_T^\perp H_1^\perp + \frac{M_h}{M}g_{1T}^\perp\frac{\hat{\boldsymbol{G}}^\perp}{z}\right)\right]\right\}. \\ &+ \frac{2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T\right)\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T\right) - \boldsymbol{k}_T\cdot\boldsymbol{p}_T}{2M^2}\left(xg_T^\perp D_1 + \frac{M_h}{M}h_1^\perp\frac{\hat{\boldsymbol{E}}}{z}\right) - \left(xe_T^\perp H_1^\perp + \frac{M_h}{M}f_1^\perp\frac{\hat{\boldsymbol{G}}^\perp}{z}\right)\right]\right\}. \end{aligned}$$

$$xe = x\tilde{e} + \frac{m}{M}f_{1},$$

$$xf^{\perp} = x\tilde{f}^{\perp} + f_{1},$$

$$xg_{T}^{\perp} = x\tilde{g}_{T}^{\perp} + \frac{m}{M}h_{1T},$$

$$xg_{T}^{\perp} = x\tilde{g}_{T}^{\perp} + g_{1T} + \frac{m}{M}h_{1T}^{\perp},$$

$$xg_{T} = x\tilde{g}_{T}^{\perp} - \frac{p_{T}^{2}}{2M^{2}}g_{1T} + \frac{m}{M}h_{1},$$

$$xg_{L}^{\perp} = x\tilde{g}_{L}^{\perp} + g_{1L} + \frac{m}{M}h_{1L}^{\perp},$$

$$xh_{L} = x\tilde{h}_{L} + \frac{p_{T}^{2}}{M^{2}}h_{1L}^{\perp} + \frac{m}{M}g_{1L},$$

$$xh_{T} = x\tilde{h}_{T}^{\perp} - h_{1} + \frac{p_{T}^{2}}{2M^{2}}h_{1T}^{\perp} + \frac{m}{M}g_{1T},$$

$$xh_{T}^{\perp} = x\tilde{h}_{T}^{\perp} + h_{1} + \frac{p_{T}^{2}}{2M^{2}}h_{1T}^{\perp},$$

$$xe_{L} = x\tilde{e}_{L},$$

$$xe_{T} = x\tilde{e}_{L},$$

$$xe_{T} = x\tilde{e}_{T}^{\perp},$$

$$xf_{T}^{\perp} = x\tilde{f}_{T}^{\perp} + \frac{p_{T}^{2}}{M^{2}}f_{1T}^{\perp},$$

$$xf_{T}^{\perp} = x\tilde{f}_{T}^{\perp} + f_{1T}^{\perp},$$

$$xf_{T} = x\tilde{f}_{L}^{\perp} + \frac{p_{T}^{2}}{2M^{2}}f_{1T}^{\perp},$$

$$xf_{L}^{\perp} = x\tilde{f}_{L}^{\perp},$$

$$xg^{\perp} = x\tilde{g}^{\perp} + \frac{m}{M}h_{1}^{\perp},$$

$$xh = x\tilde{h} + \frac{p_{T}^{2}}{M^{2}}h_{1}^{\perp}.$$

Physics

with heavy

notations

Asymmetry extraction (3)

Two dimensional fit

$$N_{u/d}^{\pm}(\phi_h, \phi_s) = F_{u/d}^{\pm} n_{u/d}^{\pm} a_{u/d}^{\pm}(\phi_h, \phi_s) \sigma \{ 1 \pm \sum_{i=1}^{8} A_{raw}^{w_i(\phi_h, \phi_s)} w_i(\phi_h, \phi_s) \}$$

$$F(\phi_h, \phi_s) = \frac{N_{up}^{\uparrow}(\phi_h, \phi_s) N_{down}^{\uparrow}(\phi_h, \phi_s)}{N_{up}^{\downarrow}(\phi_h, \phi_s) N_{down}^{\downarrow}(\phi_h, \phi_s)},$$

$$\sigma_F(\phi_h, \phi_s) = \sqrt{\frac{1}{N_{up}^{\uparrow}(\phi_h, \phi_s)} + \frac{1}{N_{down}^{\uparrow}(\phi_h, \phi_s)} + \frac{1}{N_{up}^{\downarrow}(\phi_h, \phi_s)} + \frac{1}{N_{up}^{\downarrow}(\phi_h, \phi_s)} + \frac{1}{N_{down}^{\downarrow}(\phi_h, \phi_s)}}$$

Fitting function:

$$F(\phi_h, \phi_s) = par(0)[1 + 4[par(1)sin(\phi_h + \phi_s - \pi) + par(2)sin(3\phi_h - \phi_s) + par(3)sin(\phi_h - \phi_s) + par(4)cos(\phi_h - \phi_s) + par(5)sin(\phi_s) + par(6)sin(2\phi_h - \phi_s) + par(7)cos(\phi_s) + par(8)cos(2\phi_h - \phi_s)]]$$

For each of 9 x-bins, 8 z-bins and 9 P_{hT} -bins -- 64 (ϕ_h, ϕ_S) -bin