Generalized Parton Distributions

at COMPASS

• Prospects
• Experimental Setup
2010 - 2015

F.-H. Heinsius (Ruhr-Universität Bochum)
on behalf of the COMPASS collaboration

Generalized Parton Distributions:
Coherent description of the nucleon

\[\mu p \rightarrow \mu p \gamma (\mu p \rho) \]

- \(x \): longitudinal quark momentum fraction \(\neq x_{Bj} \)
- \(2\xi \): longitudinal momentum transfer: \(\xi = x_{Bj}/(2-x_{Bj}) \)
- \(t \): momentuim transfer squared to the target nucleon (Fourier conjugate to the transverse impact parameter \(r \))

\[\int H(x,\xi,t)dx = F(t) \]

- Elastic Form Factors
- Ji’s sum rule
 \[2J_q = \int x(H_q + E_q)(x,\xi,0)dx \]
 \[1/2 = 1/2 \Delta \Sigma + L_q + \Delta G + L_g \]

- “ordinary” parton density
 \[H(x,0,0) = q(x) \]
 \[\tilde{H}(x,0,0) = \Delta q(x) \]
Polarized beam: $E_\pi=110$ GeV \rightarrow $E_\mu=100$ GeV

$P(\mu^+) = -0.8$ \hspace{1cm} $2 \cdot 10^8$/spill

$P(\mu^-) = +0.8$ \hspace{1cm} $2 \cdot 10^8$/spill

Maximize
- muon flux
- interference
Advantage of $\vec{\mu}^+$ and $\vec{\mu}^-$ for DVCS (+BH)

$$A_{DVCS}^{(\mu p \rightarrow \mu p \gamma)} = \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi + i \epsilon} = P \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi} - i \pi H(x = \xi, \xi, t)$$

d$\sigma^{(\mu p \rightarrow \mu p \gamma)} =$

$$(d\sigma^{BH} + d\sigma^{DVCS_{unpol}}) + e_\mu a^{BH} Re A^{DVCS} \times \cos n \phi$$

$$+ P_\mu d\sigma^{DVCS_{pol}} + e_\mu P_\mu a^{BH} Im A^{DVCS} \times \sin n \phi$$

$P_{\mu^+} = -0.8$ $P_{\mu^-} = +0.8$
Advantage of $\bar{\mu}^+$ and $\bar{\mu}^-$ for DVCS (+BH)

\[
\mathcal{A}_{DVCS}^{(\mu p \rightarrow \mu p \gamma)} = \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi + i\varepsilon} = \mathcal{P} \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi} - i \pi H(x = \xi, \xi, t)
\]

\[
d\sigma_{(\mu p \rightarrow \mu p \gamma)} = \left(d\sigma_{BH} + d\sigma_{DVCS, unpol} \right) + e_\mu a_{BH}^B \Re A_{DVCS}^B \times \cos n\phi
\]

\[
+ P_\mu d\sigma_{DVCS, pol} + e_\mu P_\mu a_{BH}^B \Im A_{DVCS}^B \times \sin n\phi
\]

\[
\sigma^{\bar{\mu}^+} + \sigma^{\bar{\mu}^-} \sim H(x = \xi, \xi, t)
\]

$P_{\mu^+} = -0.8$ $P_{\mu^-} = +0.8$
Advantage of μ^+ and μ^- for DVCS (+BH)

$$A_{DVCS}^{(\mu p \to \mu p \gamma)} = \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi + i\epsilon} = \mathcal{P} \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi} - i\pi H(x = \xi, \xi, t)$$

$$d\sigma_{(\mu p \to \mu p \gamma)} =$$

$$(d\sigma_{BH} + d\sigma_{DVCS\, unpol}) + e_\mu a_{BH} \mathcal{R}e A_{DVCS} \times \cos n\varphi$$

$$+ P_\mu d\sigma_{DVCS\, pol} + e_\mu P_\mu a_{BH} \mathcal{I}m A_{DVCS} \times \sin n\varphi$$

$P_{\mu^+} = -0.8$ $P_{\mu^-} = +0.8$
DVCS and Models of GPDs

\[
A_{DVCS}^{(\mu p \rightarrow \mu p \gamma)} = \int_{-1}^{+1} \frac{H(x, \xi, t)}{x - \xi + i \epsilon} = P \int_{-1}^{+1} \frac{H(x, \xi, t)}{x - \xi} - i \pi H(x = \xi, \xi, t)
\]

Cross-section measurement and beam charge asymmetry (ReA) integrate GPDs over \(x \)

Beam or target spin asymmetry contain only \(\text{Im}A \), therefore GPDs at \(x = \xi \) and \(-\xi \)

Quark distribution \(q(x), -q(-x) \)

M. Vanderhaeghen
Simulations with 2 Model Variations

Double Distribution Parametrizations of GPDs
(Vanderhaeghen, Guichon, Guidal)

Model 1: \[H(x,\xi,t) \sim q(x) F(t) \]

Vanderhaeghen et al., PRD60 (1999) 094017

Model 2: includes correlation between x and t
considers fast partons in the small valence core
and slow partons at larger distance (wider meson cloud)

\[H(x,0,t) = q(x) e^{t <b^2>} = q(x) / x^{\alpha't} \] (\(\alpha'\)slope of Regge traject.)

\[<b^2> = \alpha' \ln 1/x \] transverse extension of partons in hadronic collisions

This ansatz reproduces the
Chiral quark-soliton model: Goeke et al., NP47 (2001) 401
DVCS Simulations for COMPASS at 100 GeV

$$\sigma^{\mu^+} - \sigma^{\mu^-} \sim \mathcal{P} \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi}$$

- 6 bins in Q^2 from 1.5 to 7.5 GeV2
- 3 bins in $x_{Bj}=0.05,0.1,0.2$

- Assumptions
 - $L=1.3 \times 10^{32}$ cm$^{-2}$s$^{-1}$
 - 150 days
 - efficiency=25%

COMPASS: valence and sea quarks, gluons
DVCS Simulations for COMPASS at 100 GeV

\[\sigma^{\mu^+} - \sigma^{\mu^-} \sim P \int_{-1}^{1} dx \frac{H(x, \xi, t)}{x - \xi} \]

Model 1: \(H(x, \xi, t) \sim q(x) F(t) \)

Model 2: \(H(x,0,t) = q(x) e^{t \langle b_{\perp}^2 \rangle} = q(x) / x^{\alpha' t} \)

- 6 bins in \(Q^2 \) from 1.5 to 7.5 GeV\(^2\) (3 shown)
- 3 bins in \(x_{Bj} = 0.05, 0.1, 0.2 \) (2 shown)

Assumptions
- \(L = 1.3 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1} \)
- 150 days
- efficiency=25%

Beam Charge Asymmetry

\[\int^{+} - \int^{-} \]

- \(x = 0.05 \pm 0.02 \)
- \(Q^2 = 2 \pm 0.5 \)

- \(x = 0.1 \pm 0.03 \)
- \(Q^2 = 2 \pm 0.5 \)

- \(Q^2 = 4 \pm 0.5 \)
- \(Q^2 = 4 \pm 0.5 \)
- \(Q^2 = 6 \pm 0.5 \)
- \(Q^2 = 6 \pm 0.5 \)

\(\phi \) (deg)
Beam Charge Asymmetry: Other Model and HERMES

- Dual parameterization
- Mellin moments decomposition, QCD evolution
- separation of x, ξ and ξ, t

Guzey, Teckentrup PRD74(2006)054027

Only $A^{\cos \phi}$
Dominant contribution at twist-2

HERMES, PRD75(2007)011103

Compass
Experimental Setup: Target & Detektor

2.5 m Liquid H₂ target to be designed and built $t>0.06 \text{ GeV}^2$

Recoil detector to insure exclusivity to be designed and built

$\mathcal{L} = 1.3 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

all COMPASS trackers: SciFi, Si, MM, GEM, DC, Straw, MWPC

COMPASS equipment with additional calorimetry at large angle (π^0 bkg)

ECAL1/2 $\theta_\gamma \leq 12^\circ$
Experimental Setup: Target & Detectors

- **2.5 m Liquid H₂ target** to be designed and built
 \[t > 0.06 \text{ GeV}^2 \]

Recoil detector to insure exclusivity to be designed and built

- \[\mathcal{L} = 1.3 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1} \]

Fall 2006:
Test of recoil detector full size prototype at COMPASS: \(\sigma_t = 310 \text{ ps} \)
Goal: 300 ps for 10 bins in \(t \)
Hard Exclusive Meson Production ($\rho, \omega, \phi..., \pi, \eta...$)

Collins et al. (PRD56 1997):

1. factorization applies only for γ^*_L
2. $\sigma_T \ll \sigma_L$

Scaling predictions:

p^0 largest production, presently studied with COMPASS
Outlook for GPDs at COMPASS

- Currently: Simulations and preparation of proposal
- 2007-2009: Construction of
 - recoil detector (prototype tested)
 - LH$_2$ target
 - ECAL0
- 2010-2015: Study of GPDs at COMPASS
- >2014: JLab12, FAIR, EIC

COMPASS advantage:
sensitivity in the valence quark – sea quark region of x_{Bj}