Measurement of the Pion Polarisability at COMPASS

Jan Friedrich TU München

for the COMPASS collaboration

HADRON07 Frascati October 2007

Outline

- Compton scattering and polarisabilities
 - Motivation
 - Related processes for unstable particles
 - Primakoff kinematics
- The COMPASS 2004 pilot hadron run
- Data analysis and preliminary results

Hadron structure

• How are hadrons built up in terms of their constituents?

Static properties \Leftrightarrow form factors

Hadron structure

• How are hadrons built up in terms of their constituents?

Static properties \Leftrightarrow form factors

• How do hadrons react to (small) external fields?

Non-pointlike response \Leftrightarrow polarisabilities

classical

$$\vec{d} = (eZ)2\vec{\ell} = \alpha \vec{E}$$

$$K\vec{\ell} = (eZ)\vec{E}$$

$$\alpha = \frac{2(eZ)^2}{K}$$

Compton scattering

- for point-like target completely determined by QED
- polarisability contribution starting at $\mathcal{O}(E_{\gamma})$ (for spin- $\frac{1}{2}$)

Pion case

1-Loop chiral Lagrangian

$$\mathcal{M} \propto \left(-rac{lpha}{m_\pi} \ + lpha_\pi \cdot \omega_1 \omega_2
ight) ec{\epsilon}_1 \cdot ec{\epsilon}_2 + rac{oldsymbol{eta}_\pi}{m_\pi} \cdot (ec{q}_1 imes ec{\epsilon}_1) \cdot (ec{q}_2 imes ec{\epsilon}_2)$$

Pion

- Low-energy expansion of QCD: Chiral perturbation theory
 Pion has a special role as the Goldstone boson (massless in the chiral limit)
- are the basic features correctly described?

Pion

- Low-energy expansion of QCD: Chiral perturbation theory
 Pion has a special role as the Goldstone boson (massless in the chiral limit)
- are the basic features correctly described?

ChPT 1-loop for π^{\pm}

$$\begin{array}{rcl} \alpha_{\pi} + \beta_{\pi} & = & 0 \\ \alpha_{\pi} - \beta_{\pi} & = & \frac{8\alpha_{em}}{m_{\pi}f_{\pi}^{2}} \left(L_{9}^{r} + L_{10}^{r} \right) \\ & = & +5.4 \pm 0.8 \cdot 10^{-4} \text{fm}^{3} \end{array}$$

Pion

- Low-energy expansion of QCD: Chiral perturbation theory
 Pion has a special role as the Goldstone boson (massless in the chiral limit)
- are the basic features correctly described?

ChPT 2-loop for π^{\pm}

$$\alpha_{\pi} + \beta_{\pi} = 0.2 \pm 0.1 \cdot 10^{-4} \text{fm}^3$$

 $\alpha_{\pi} - \beta_{\pi} = 5.7 \pm 1.0 \cdot 10^{-4} \text{fm}^3$

Pion

- Low-energy expansion of QCD: Chiral perturbation theory
 Pion has a special role as the Goldstone boson (massless in the chiral limit)
- are the basic features correctly described?

ChPT 2-loop for π^{\pm}

$$\alpha_{\pi} + \beta_{\pi} = 0.2 \pm 0.1 \cdot 10^{-4} \text{fm}^3$$

 $\alpha_{\pi} - \beta_{\pi} = 5.7 \pm 1.0 \cdot 10^{-4} \text{fm}^3$

Dispersion sum rules π^{\pm}

$$\alpha_{\pi} + \beta_{\pi} = 0.39 \pm 0.4 \cdot 10^{-4} \text{fm}^3$$

 $\alpha_{\pi} - \beta_{\pi} \approx 10 \cdot 10^{-4} \text{fm}^3$

Pion

- Low-energy expansion of QCD: Chiral perturbation theory
 Pion has a special role as the Goldstone boson (massless in the chiral limit)
- are the basic features correctly described?

ChPT 2-loop for π^{\pm}

$$\alpha_{\pi} + \beta_{\pi} = 0.2 \pm 0.1 \cdot 10^{-4} \text{fm}^3$$

 $\alpha_{\pi} - \beta_{\pi} = 5.7 \pm 1.0 \cdot 10^{-4} \text{fm}^3$

Dispersion sum rules π^\pm

$$\begin{array}{rcl} \alpha_{\pi} + \beta_{\pi} & = & 0.39 \pm 0.4 \cdot 10^{-4} fm^{3} \\ \alpha_{\pi} - \beta_{\pi} & \approx & 10 \cdot 10^{-4} fm^{3} \end{array}$$

Kaon

- Higher mass \Leftrightarrow smaller polarisability by a factor ~ 5
- theoretically very exciting need for experimental data!

Compton scattering on unstable particles

Pion-nucleus scattering at small Q²

$\pi + Pb \rightarrow X^- + Pb$

diffractive scattering:

- \rightarrow meson spectroscopy
- \rightarrow exotics

$Q^2 < 0.001 \, \mathrm{GeV^2/c^2}$

- $\pi + \gamma^{(*)} \to \pi' + \pi^0$
- $\pi + \gamma^{(*)} \rightarrow \pi' + \gamma$ Primakoff reaction \rightarrow pion polarisability

Polarisability Extraction

E_{γ} dependence assuming $\beta_{\pi} + \alpha_{\pi} = 0$

$$\frac{d\sigma_{Prim}}{dE_{\gamma}} = \frac{d\sigma_{pl}}{dE_{\gamma}} + \frac{d\sigma(\alpha_{\pi}, \beta_{\pi})}{dE_{\gamma}} = \frac{d\sigma_{pl}}{dE_{\gamma}} + \frac{d\sigma(\beta_{\pi})}{dE_{\gamma}} =$$

$$= \frac{4Z^{2}\alpha^{3}}{m_{\pi}^{2}} \cdot \frac{E_{\pi'}}{E_{Beam}E_{\gamma}} \cdot \left(\frac{2}{3}\ln\frac{Q_{max}^{2}}{Q_{min}^{2}} - \frac{19}{9} + 4\sqrt{\frac{Q_{min}^{2}}{Q_{max}^{2}}}\right) +$$

$$+ \frac{4Z^{2}\alpha^{3}}{m_{\pi}^{2}} \cdot \frac{E_{\gamma}}{E_{Beam}^{2}} \cdot \frac{\beta_{\pi}m_{\pi}^{3}}{\alpha} \cdot \left(\ln\frac{Q_{max}^{2}}{Q_{min}^{2}} - 3 + 4\sqrt{\frac{Q_{min}^{2}}{Q_{max}^{2}}}\right)$$

$$Q_{min} = rac{E_{\gamma} m_{\pi}^2}{2E_{Beam} E_{\pi'}}$$
 $\omega = rac{E_{\gamma}}{E_{Beam}}$

Ratio $R_{\pi}=d\sigma_{Prim}/d\sigma_{pl}$

$$R_{\pi}(\omega) pprox 1 + rac{3}{2} \cdot rac{m_{\pi}^3}{lpha} \cdot rac{\omega^2}{1 - \omega} eta_{\pi}$$

Data on the Pion Polarisability

	$\frac{\alpha_{\pi} + \beta_{\pi}}{[10^{-4} \text{fm}^3]}$	$\frac{\alpha_{\pi} - \beta_{\pi}}{[10^{-4} \text{fm}^3]}$
Bürgi/Gasser (ChPT)	0.2 ± 0.1	5.7 ± 1.0
$\begin{array}{c} e^+e^- \rightarrow e^+e^- \pi^+ \pi^- \\ \text{Mark II} \\ \text{CELLO} \end{array}$	$0.22 \pm 0.07 \pm 0.04 \\ 0.33 \pm 0.06 \pm 0.01$	4.8 ± 1.0
$ \begin{array}{c} \gamma p \to n\pi^+ \gamma \\ \mathbf{MAMI} \\ -7 \times 77^- Y \end{array} $		$11.6 \pm 1.5 \pm 3.0 \pm 0.5$
$\pi^{-Z \to Z\pi^{-}\gamma}$ Serpukhov COMPASS	$1.8 \pm 3.1 \pm 2.5$?	12.3 ± 2.6

Data on the Pion Polarisability

	$\alpha_{\pi} + \beta_{\pi}$	$\alpha_{\pi} - \beta_{\pi}$
	$[10^{-4} \text{fm}^3]$	$[10^{-4}{\rm fm}^3]$
Bürgi/Gasser	0.2 ± 0.1	5.7 ± 1.0
(ChPT)		
Mark II	$0.22 \pm 0.07 \pm 0.04$	4.8 ± 1.0
CELLO	$0.33 \pm 0.06 \pm 0.01$	
MAMI		$11.6 \pm 1.5 \pm 3.0 \pm 0.5$
Serpukhov	$1.8\pm3.1\pm2.5$	12.3 ± 2.6
COMPASS	?	?

- different reactions with different systematics
- challenging measurements
- no coherent picture of pion polarisability yet

OMPASS

CERN aerial view

SPS Beam: Protons up to 400 GeV, 4.2s/16.8s spills secondary hadron beams $(\pi, K,...)$ tertiary muons: 2 · 108/spill with 160 GeV/c, 80% polarisation

COMPASS Collaboration

Czech Republic, France, Germany, India, Israel, Italy, Japan, Poland, Portugal, Russia, CERN

240 physicists from 28 institutes

Bielefeld, Bochum, Bonn, Burdwan/Calcutta, CERN, Dubna, Erlangen, Freiburg, Lisboa, Mainz, Moscow, Munich, Nagoya, Parg, Protvino, Saclay, Tel Aviv, Torino, Trieste, Warsaw

Data acquisition 2002, 03, 04, 06 with muon beam on polarised LiD target Oct. 2004: pilot hadron run (π^-)

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

Layout of the COMPASS 2004 pilot hadron run

- 4 weeks commissioning / data taking in 2004
- 190 GeV π^-/μ^- -beam, $10^6/10^8$ particles/s
- Targets: Pb ($X_0 = 0.29, 0.5$), Cu (0.25), C (0.12)

Primakoff Reaction

Selection of $\pi^- + \gamma^{(*)} \rightarrow \pi^- + \gamma^-$

- exactly one primary vertex in the target ($p_{T,\pi^-} > 15 \text{ MeV}$)
- exactly one π^- track of high quality, $E_{\pi^-} < 170 \text{ GeV}$
- exactly one Ecal2 cluster as photon candidate
- $|E_{\pi^-} + E_{\gamma} E_{beam}| < 25 \text{ GeV}$
- $M_{\pi\gamma} < 3.75 m_{\pi}$, Q² < 0.0075 GeV²/c²

Background

- $K^- \longrightarrow \pi^- \pi^0$ (empty target subtraction)
- channels with one high-energetic photon (different *Q*² dependence)
- e^-, μ^- bremsstrahlung

Q² distribution

COMPASS 2004 π data

Q² distribution for different targets

Z^2 dependence of Primakoff cross section

COMPASS 2004 π data

$\omega = E_{\gamma}/E_{Beam}$ dependence of signal and background

COMPASS 2004 π data

Radiative corrections for π and μ data

Muon control measurement

COMPASS 2004 µ data

Pion measurement

COMPASS 2004 π data

Systematic error estimate

	Error, 10^{-4} fm ³
Setup description in MC (μ data)	± 0.5
Diffractive and empty target	
background subtraction	± 0.3
Muons background	+0.2
Electrons background	<+0.1
SYSTEMATIC TOTAL	±0.6

Result and Outlook

From COMPASS data taken in \sim 3 days of beam time (7300 events), the pion polarisability value

$$\beta_{\pi} = -2.5 \pm 1.7_{stat} \pm 0.6_{syst} \cdot 10^{-4} \text{fm}^3$$

is extracted (preliminary).

Outlook

- Refinement of analysis (necessary)
- Additional data on tape (adjusted MC needed)
- Independent extraction of α_{π} and β_{π}
- New improved measurement at COMPASS

Data on the Pion Polarisability

	$\alpha + \beta$	$\alpha - \beta$
	$[10^{-4} \text{fm}^3]$	$[10^{-4} \text{fm}^3]$
Bürgi/Gasser	0.3 ± 0.1	5.7 ± 1.0
(ChPT)		
Mark II	$0.22 \pm 0.07 \pm 0.04$	4.8 ± 1.0
CELLO	$0.33 \pm 0.06 \pm 0.01$	
Serpukhov	$1.8 \pm 3.1 \pm 2.5$	12.3 ± 2.6
MAMI		$11.6 \pm 1.5 \pm 3.0 \pm 0.5$
COMPASS	-	$5.0 \pm 3.4 \pm 1.2$

Q^2 for muon data

COMPASS 2004 data

Acceptance from MC simulation

COMPASS 2004 data

Virtual Empty Target Method

Empty target background subtraction

without,

preliminary spectra

with empty target subtraction

Possible improvements

Analysis

- new production of data
 - alignment
 - vertexing (for z<-100cm)
 - time-dependent Ecal2 calibration
 - retrieve scaler information
- refined Monte Carlo for different settings

New measurement

- CEDAR for incoming particle ID
- stable setup
- optimized material budget

