Measurement of the Pion and Kaon Polarisabilities at COMPASS

Jan Friedrich

Technische Universität München

International Workshop on Structure and Spectroscopy
Freiburg
March 2007

Outline

- Compton scattering and polarisabilities
 - Motivation
 - Related processes for unstable particles
 - Primakoff kinematics
- The COMPASS 2004 pilot hadron run
- Data analysis

Hadron structure

• How are hadrons built up in terms of their constituents?

Static properties ⇔ form factors

Hadron structure

• How are hadrons built up in terms of their constituents?

Static properties ⇔ form factors

• How do hadrons react to (small) external forces?

Non-pointlike response ⇔ polarisabilities

classical

$$\vec{d} = (eZ)2\ell = \bar{\alpha}\vec{E}$$

$$K\ell = (eZ)E$$
$$\bar{\alpha} = \frac{2(eZ)^2}{K}$$

$$\bar{\alpha} = \frac{2(eZ)^2}{K}$$

- for point-like target completely determined by QED
- polarisability contribution starting at $\mathcal{O}(E_{\gamma})$ (for spin- $\frac{1}{2}$)

- for point-like target completely determined by QED
- polarisability contribution starting at $\mathcal{O}(E_{\gamma})$ (for spin- $\frac{1}{2}$)

- for point-like target completely determined by QED
- polarisability contribution starting at $\mathcal{O}(E_{\gamma})$ (for spin- $\frac{1}{2}$)

Proton data

$$egin{aligned} ar{lpha}_p &= 12.1 \pm 0.3_{
m stat} \mp 0.4_{
m syst} \ &\pm 0.3_{
m mod} \!\cdot\! 10^{-4} {
m fm}^3 \end{aligned}$$

$$eta_p = 1.6 \pm 0.4_{
m stat} \pm 0.4_{
m syst} \ \pm 0.4_{
m mod} \cdot 10^{-4} {
m fm}^3$$

(cancellation of para- and diamagnetic contributions)

- for point-like target completely determined by QED
- polarisability contribution starting at $\mathcal{O}(E_{\gamma})$ (for spin- $\frac{1}{2}$)

Pion case

$$\mathcal{M} = 8\pi i \cdot m_\pi \left[\left(-rac{lpha}{m_\pi} \ + ar{m{lpha}} \cdot \omega_1 \omega_2
ight) ec{\epsilon_1} \cdot ec{\epsilon_2} + ar{m{eta}} \cdot (ec{q}_1 imes ec{\epsilon_1}) \cdot (ec{q}_2 imes ec{\epsilon_2})
ight]$$

Pion

- Low-energy expansion of QCD: Chiral perturbation theory
 Pion has a special role as the Goldstone boson (massless in the chiral limit)
- are the basic features correctly described?

Pion

- Low-energy expansion of QCD: Chiral perturbation theory
 Pion has a special role as the Goldstone boson (massless in the chiral limit)
- are the basic features correctly described?

ChPT 1-loop for π^{\pm}

$$\begin{array}{rcl} \bar{\alpha} + \bar{\beta} & = & 0 \\ \bar{\alpha} - \bar{\beta} & = & \frac{2e^2}{\pi m_{\pi} f_{\pi}^2} \left(L_9^r + L_{10}^r \right) \\ & = & +5.4 \pm 0.8 \cdot 10^{-4} \text{fm}^3 \end{array}$$

Pion

- Low-energy expansion of QCD: Chiral perturbation theory
 Pion has a special role as the Goldstone boson (massless in the chiral limit)
- are the basic features correctly described?

ChPT 2-loop for π^{\pm}

$$\bar{\alpha} + \bar{\beta} = 0.3 \pm 0.1 \cdot 10^{-4} \text{fm}^3$$

 $\bar{\alpha} - \bar{\beta} = 4.4 \pm 1.0 \cdot 10^{-4} \text{fm}^3$

Pion

- Low-energy expansion of QCD: Chiral perturbation theory
 Pion has a special role as the Goldstone boson (massless in the chiral limit)
- are the basic features correctly described?

ChPT 2-loop for π^{\pm}

$$\bar{\alpha} + \bar{\beta} = 0.3 \pm 0.1 \cdot 10^{-4} \text{fm}^3$$

 $\bar{\alpha} - \bar{\beta} = 4.4 \pm 1.0 \cdot 10^{-4} \text{fm}^3$

Dispersion sum rules π^\pm

$$\bar{\alpha} + \bar{\beta} = 0.39 \pm 0.4 \cdot 10^{-4} \text{fm}^3$$

 $\bar{\alpha} - \bar{\beta} \approx 10 \cdot 10^{-4} \text{fm}^3$

Pion

- Low-energy expansion of QCD: Chiral perturbation theory
 Pion has a special role as the Goldstone boson (massless in the chiral limit)
- are the basic features correctly described?

ChPT 2-loop for π^{\pm}

$$\bar{\alpha} + \bar{\beta} = 0.3 \pm 0.1 \cdot 10^{-4} \text{fm}^3$$

 $\bar{\alpha} - \bar{\beta} = 4.4 \pm 1.0 \cdot 10^{-4} \text{fm}^3$

Dispersion sum rules π^{\pm}

$$\begin{array}{rcl} \bar{\alpha} + \bar{\beta} & = & 0.39 \pm 0.4 \cdot 10^{-4} \mathrm{fm}^3 \\ \bar{\alpha} - \bar{\beta} & \approx & 10 \cdot 10^{-4} \mathrm{fm}^3 \end{array}$$

Kaon

- Higher mass \Leftrightarrow smaller polarisability by a factor ~ 5
- theoretically very exciting need for experimental data!

test the particle during its production process

A)
$$e^+e^- \rightarrow e^+e^- \pi^+\pi^ (\gamma\gamma \rightarrow \pi^+\pi^-)$$

test the particle during its production process

A) $e^+e^- \to e^+e^- \, \pi^+\pi^- \qquad (\gamma\gamma\to\pi^+\pi^-)$

1st option

test the particle during its production process

A)
$$e^+e^- \to e^+e^- \pi^+\pi^- (\gamma\gamma \to \pi^+\pi^-)$$

B) radiative pion photoproduction on the nucleon $\gamma p \longrightarrow \gamma n \pi^+$

2nd option

use ultra-relativistic particle beam (quasi-stable)

on "photon target":

Coulomb photon of a heavy nucleus participates in (semi-)hadronic interaction – Primakoff effect

Pion-nucleus scattering at small Q²

$\pi + Pb \rightarrow X^- + Pb$

diffractive scattering:

- → meson spectroscopy
- \rightarrow exotics

$Q^2 < 0.001 \, \text{GeV}^2/\text{c}^2$

•
$$\pi + \gamma^{(*)} \to \pi' + \pi^0$$

• $\pi + \gamma^{(*)} \rightarrow \pi' + \gamma$ Primakoff reaction \rightarrow pion polarisability

Pion-nucleus scattering at small Q²

$\pi + Pb \rightarrow X^- + Pb$

diffractive scattering:

- \rightarrow meson spectroscopy
- \rightarrow exotics

e.m./strong Interference

Recently approached in eikonal approx. (G. Faeldt)

$Q^2 < 0.001 \, \text{GeV}^2/\text{c}^2$

•
$$\pi + \gamma^{(*)} \to \pi' + \pi^0$$

•
$$\pi + \gamma^{(*)} \rightarrow \pi' + \gamma$$

Primakoff reaction

 $\rightarrow pion\ polarisability$

Data on the Pion Polarisability

	$\alpha + \beta$	$\alpha - \beta$
	$[10^{-4} \text{fm}^3]$	$[10^{-4} \text{fm}^3]$
Bürgi (ChPT)	0.3 ± 0.1	4.4 ± 1.0
Mark II	$0.22 \pm 0.07 \pm 0.04$	4.8 ± 1.0
CELLO	$0.33 \pm 0.06 \pm 0.01$	
Serpukhov	$1.8\pm3.1\pm2.5$	12.3 ± 2.6
MAMI		$11.6 \pm 1.5 \pm 3.0 \pm 0.5$
COMPASS	?	?

- different reactions with different systematics
- challenging measurements (Mainz ~ 1000 h beam time!)
- no coherent picture of pion polarisability yet

Layout of the COMPASS 2004 pilot hadron run

- 4 weeks data taking in autumn 2004
- 190 GeV π^-/μ^- -beam, 10^6 particles/s
- Targets: Pb ($X_0 = 0.29, 0.5$), Cu (0.25), C (0.12)

Target region

Target region

Primakoff Reaction

Selection of
$$\pi^- + \gamma^{(*)} \rightarrow \pi^- + \gamma$$

- exactly one primary vertex in the target ($p_{T,\pi^-} > 15 \text{ MeV}$)
- exactly one π^- track of high quality, E_{π^-} <170 GeV
- exactly one Ecal2 cluster as photon candidate

•

Primakoff Reaction

Selection of $\pi^- + \gamma^{(*)} \rightarrow \pi^- + \gamma$

- exactly one primary vertex in the target ($p_{T,\pi^-} > 15 \text{ MeV}$)
- exactly one π^- track of high quality, E_{π^-} <170 GeV
- exactly one Ecal2 cluster as photon candidate
- $Q^2 < 0.0015 \text{ GeV}^2/c^2$

Q² distribution for different targets

luminosity weighted: $\sigma_{\text{Primakoff}} \sim \mathbf{Z^2}$

Invariant mass

- Used expansion valid up to $m_{\pi\gamma} < 550 \text{ MeV}$
- Contribution from kaon and ρ background visible (statistically subtracted by vertex sideband method)

2-dimensional $E_{\gamma}-\theta_{\gamma}$ raw spectrum

with MC-correction

(mainly γ conversion, π^- decay, Ecal2 beam hole)

 \rightarrow determination of α and β without $\alpha + \beta = 0$ constraint

Possible improvements

Analysis

- new production of data
 - alignment
 - vertexing (for z<-100cm)
 - time-dependent Ecal2 calibration
 - retrieve scaler information
- refined Monte Carlo for different settings

New measurement

- CEDAR for incoming particle ID
- stable setup
- optimized material budget

Summary

Expected statistics of COMPASS pilot run \rightarrow 60000 Primakoff events statistical error $< 10^{-4}$ fm³

Summary

Expected statistics of COMPASS pilot run \rightarrow 60000 Primakoff events statistical error < 10^{-4} fm³

work in progress

- angle-energy-distribution
- time-dependent Ecal2 calibration
- acceptance corrections → muon data
- Subtraction of diffractive background

Summary

Expected statistics of COMPASS pilot run \rightarrow 60000 Primakoff events statistical error < 10^{-4} fm³

work in progress

- angle-energy-distribution
- time-dependent Ecal2 calibration
- acceptance corrections → muon data
- Subtraction of diffractive background

Outlook: First release of values very soon!

