Spin Physics with COMPASS

Jörg Pretz

Physikalisches Institut, Universität Bonn

Gordon Conference Photonuclear Reactions, Tilton, NH, Aug. 2006

1 The COMPASS Experiment

- Jutime.
 - 1 The COMPASS Experiment
 - 2 The Spin Structure of the Nucleon

Outline:

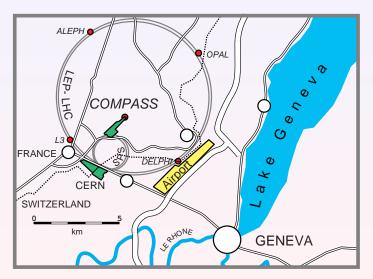
- 1 The COMPASS Experiment
- 2 The Spin Structure of the Nucleon
- 3 Results

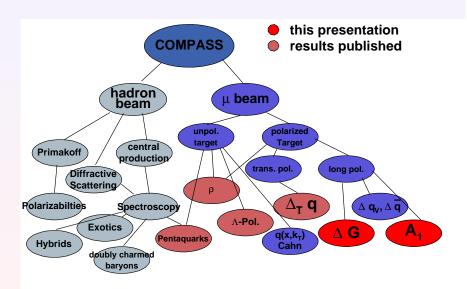
Outline:

- 1 The COMPASS Experiment
- 2 The Spin Structure of the Nucleon
- 3 Results
- 4 Summary & Outlook

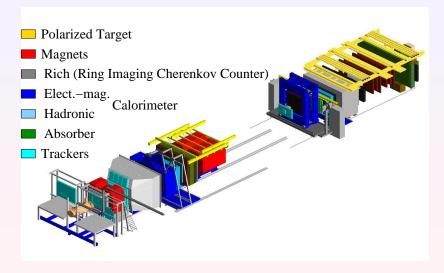
The COMPASS experiment

COMPASS


CO mmon
Muon and
Proton
Apparatus for
Structure and
Spectroscopy


Results

pprox 200 physicists pprox 30 institutes, at CERN SPS


COMPASS@CERN

Physics Goals

The COMPASS Experiment

Parameters of Experiment

Spectrometer: Two stages

1 GeV

tracking:

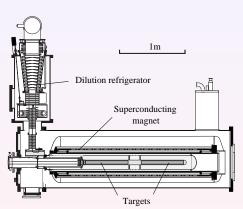
Scifis, GEMs, Micromegas, Straws

particle id.:

 K, π separation 9 < p < 60 GeV with RICH

ECAL, HCAL, μ Filter

Beam: 160 GeV μ , $2 \cdot 10^8/5 \mathrm{s}$,


naturally polarized Pol = -0.76 ± 0.04

190 GeV π , $5 \cdot 10^6/5 \mathrm{s}$

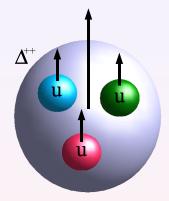
pol. Target: 2×65 cm cells, oppositely polarized

 6 LiD, Pol ≈ 0.5, DNP

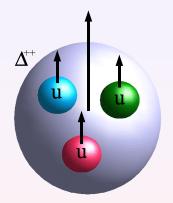
Polarized Target

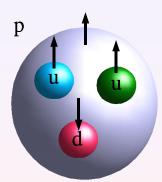
 polarization via Dynamic Nuclear **P**olarisation

- solid state target ^{6}LiD , $P_{tot} = 0.50$, f = 0.5 NH_3 , $P_{tgt} = 0.85$, f = 0.176
- two cells oppositely polarized
- Solenoid (B = 2.5T)
- Dipole (0.5 T)
- ³He-⁴He cryostat $(T_{min} = 50 \text{ mK})$
- measurement of polarization with 10 NMR - coils $(\frac{\sigma_P}{2} = 0.03)$


Summary: Experiment

- polarized μ beam of 100-200 GeV \rightarrow Deep Inelastic scattering
- polarized target
- Two stage spectrometer
 - momentum range 1-200 GeV
 - particle id.


Fulfills all requirements to study ...


Spin Structure of the Nucleon

Spin Structure of Baryons

Spin Structure of Baryons

Static Quark Model

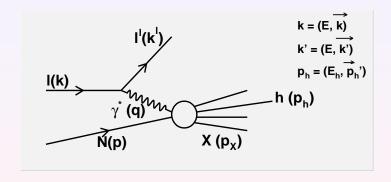
$$SU_{spin}(2) \times SU_{flavor}(3)$$
:

$$|p\uparrow> = \frac{1}{\sqrt{18}} (2|u\uparrow u\uparrow d\downarrow> -|u\uparrow u\downarrow d\uparrow> -|u\uparrow d\uparrow u\downarrow> +$$
permutations)

$$\Delta \Sigma = \Delta u + \Delta d = 1$$

Weak Baryon Decays

Weak Baryon decays are related to Δq :


$$n \to p: \qquad (\Delta u + \Delta \bar{u}) - (\Delta d + \Delta \bar{d}) = g_A = 1.2601 \pm 0.0025$$

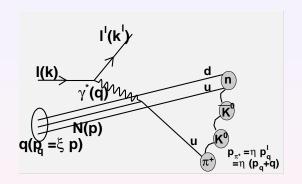
$$\Xi^- \to \Lambda: \qquad (\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d}) - 2(\Delta s + \Delta \bar{s}) = 0.58 \pm 0.03$$

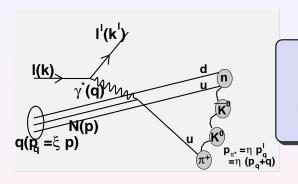
Assumption $\Delta s + \Delta \bar{s} = 0 \Rightarrow$

$$\Delta \Sigma = (\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d}) = 0.58 \pm 0.03$$

Polarized Deep Inelastic Scattering (pDIS) provides additional equation, assumption $\Delta s + \Delta \bar{s} = 0$ can be dropped

Deep Inelastic Scattering $I + N \rightarrow I' + X$


$$l + N \rightarrow l' + X$$
: inclusive process $l + N \rightarrow l' + h + X$: semi-inclusive process


Deep Inelastic Scattering $I + N \rightarrow I' + h + X$

For in all rations were asset.			
For inclusive process:			
$Q^2 = -(k - k')^2 = -q^2$	4 momentum transfer		
$\nu = \frac{p \cdot q}{M} = E - E'$	energy transfer in LAB (TRF)		
$x = \frac{Q^2}{2p \cdot q} = \frac{Q^2}{2M\nu}$	Bjorken variable $(0 < x < 1)$		
	momentum fraction of quark in QPM		
$y = \frac{p \cdot q}{p \cdot k} = \frac{\nu}{\overline{E}}$ $W^2 = (p+q)^2$	rel. energy transfer		
$W^2 = (p+q)^2$	mass of hadronic final state		
	$W \approx > 2 \text{ GeV} \Rightarrow DIS$		
For semi-inclusive process:			
$z = \frac{p \cdot p_h}{p \cdot q} = \frac{E_h}{\nu}$	energy fraction of virtual photon		
, ,	carried by hadron $(0 < z < 1)$		
ρ _T	transverse momentum with respect		
	to virtual photon		

DIS in Quark Parton Model

DIS in Quark Parton Model

Scattering off the Nucleon is incoherent sum of elastic scattering off Quarks!

Polarized DIS

$$\sigma_{\gamma N}^{\uparrow\downarrow} \propto q^{\uparrow}$$

$$\sigma_{\gamma N}^{\uparrow\uparrow} \propto q^{\downarrow}$$

$$\Longrightarrow$$

$$\Leftrightarrow$$

$$\Rightarrow$$

$$\Rightarrow$$

$$\downarrow$$

$$q^{\uparrow}$$

$$\Leftrightarrow$$

$$\downarrow$$

$$q^{\downarrow}$$

Measure double spin asymmetry:

$$A_1 = rac{\sigma_{\gamma N}^{\uparrow\downarrow} - \sigma_{\gamma N}^{\uparrow\uparrow}}{\sigma_{\gamma N}^{\uparrow\downarrow} + \sigma_{\gamma N}^{\uparrow\uparrow}} = rac{\Sigma_q e_q^2 \Delta q}{\Sigma_q e_q^2 q}$$

Results from pDIS

Add information from deep inelastic scattering

$$\Delta u + \Delta \bar{u} = 0.82 \pm 0.03$$
 $\Delta d + \Delta \bar{d} = -0.45 \pm 0.05$
 $\Delta s + \Delta \bar{s} = -0.11 \pm 0.03$
 $\Delta \Sigma = 0.25 \pm 0.06$

Leader, Sidorov, Stamenov, Eur. Phys. J. C23(2002)479

Static Quark Model:

$$\Delta \Sigma = 1$$

The Nucleon Spin Puzzle

Static Quark Model:

$$\Delta \Sigma = 1$$

Weak Baryon decays:

$$\Delta\Sigma = 0.58 \pm 0.03$$

(Assumption
$$\Delta s = 0$$
)

Static Quark Model:

$$\Delta \Sigma = 1$$

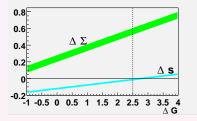
Weak Baryon decays:

$$\Delta\Sigma = 0.58 \pm 0.03$$

(Assumption $\Delta s = 0$)

$$\Delta\Sigma = 0.25 \pm 0.06$$

$$\Delta s = -0.11 \pm 0.02$$


The Nucleon Spin Puzzle

But NLO¹ QCD ² corrections make interpretation of $\Delta\Sigma$ difficult:

$$\Delta\Sigma \to \Delta\Sigma - \frac{3\alpha_s}{2\pi}\Delta G$$
,

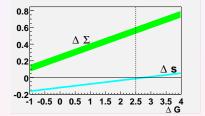
$$\Delta s \rightarrow \Delta s - \frac{\alpha_s}{2\pi} \Delta G$$

$$\Delta G = G^{\uparrow} - \widehat{G}^{\downarrow}$$
, polarized gluon distribution

¹next-to-leading order

²Quantum Chromo Dynamics

The Nucleon Spin Puzzle

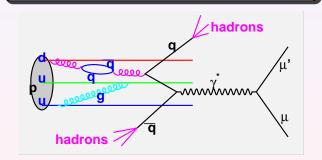

But NLO¹ QCD ² corrections make interpretation of $\Delta\Sigma$ difficult:

The Spin Structure of the Nucleon

00000000000000

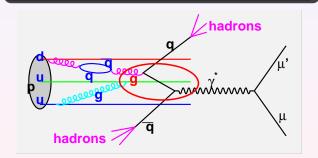
$$\Delta\Sigma \to \Delta\Sigma - \frac{3\alpha_s}{2\pi}\Delta G$$
,
 $\Delta s \to \Delta s - \frac{\alpha_s}{2\pi}\Delta G$
 $\Delta G = G^{\uparrow} - G^{\downarrow}$, polarized s

$$\Delta G = G^{\uparrow} - \widehat{G}^{\downarrow}$$
, polarized gluon distribution


For
$$\Delta G \approx 2.5 \rightarrow$$
,
 $\Delta \Sigma \approx 0.6$ and $\Delta s \approx 0$
 \rightarrow Measure ΔG !!!

¹next-to-leading order

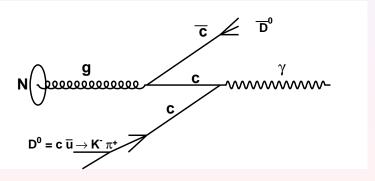
²Quantum Chromo Dynamics


How to measure $\triangle G$?

Use hadronic final state in DIS to tag gluon! $\vec{\mu} + \vec{N} \rightarrow \mu' + \text{hadrons} + X$

Use hadronic final state in DIS to tag gluon!

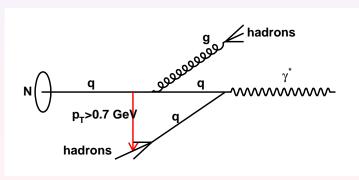
$$\vec{\mu} + \vec{N} \rightarrow \mu' + \text{hadrons} + X$$


How to tag sub-process

$$\gamma^* \mathbf{g} \to q \bar{q}$$
 ?


How to tag $\gamma^* \mathbf{g} \to q \bar{q}$?

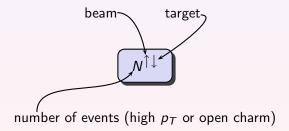
	advantage	disadvantage
open charm	clean tag	low statistics
high <i>p_T</i>		
hadron	higher statistics	background processes



How to tag $\gamma^* \mathbf{g} \to q \bar{q}$?

	advantage	disadvantage
open charm	clean tag	low statistics
high p _T		
hadron	higher statistics	background processes

	advantage	disadvantage
open charm	clean tag	low statistics
high <i>p_T</i>		
hadron	higher statistics	background processes



Compton process one of background processes

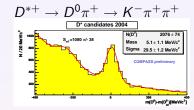
- To tag gluon look at
 - charmed hadrons
 - hadrons with large transverse momentum

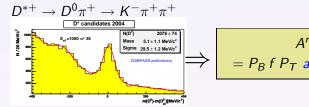
- To tag gluon look at
 - charmed hadrons
 - hadrons with large transverse momentum
- To learn something about spin measure double spin asymmetries

$$A^{raw} = \frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} \propto \frac{\Delta G}{G}$$

high $p_T \leftrightarrow \text{open charm}$

$$A^{raw} = \frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} = P_B P_T f a_{LL} \frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{bgd}} \frac{\Delta G}{G} + A^{bgd}$$

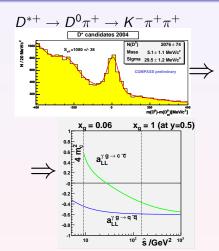

	high p_T pairs	open-charm	
P_B	beam polarization $pprox -0.8$		
P_T	target polarization $pprox 0.5$		
f	dilution factor $pprox$ 0.4 for 6 LiD target		
a _{LL}	asymmetry of partonic process $ec{\gamma} + ec{g} ightarrow q + ar{q}$		
	pprox -0.4	-0.5 to 0.5	
$\frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{hgd}}$	fraction of photon-gluon fusion process		
r Gr · bgg	0.3	$0.5(D^*) \ 0.1 \ (D^0)$	
source of background	Compton, resolved photon,	combinatorial background	
determination of bgd	LEPTO/PYTHIA MC	from D^* (D^0) mass spectrum	
A^{bgd}	background asymmetry $pprox 0$		


The COMPASS Experiment

Results

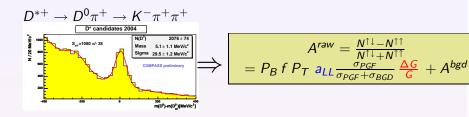
Results

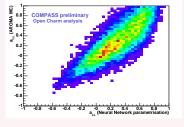
•0000

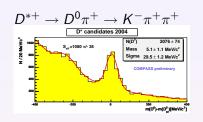


$$A^{raw} = \frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}}$$

$$= P_B f P_T \underset{a_{LL}}{a_{LL}} \frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{BGD}} \frac{\Delta G}{G} + A^{bgd}$$

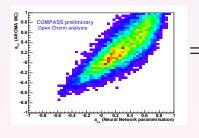

Results

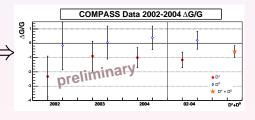

•0000

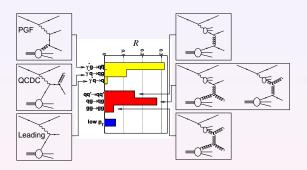


$$A^{raw} = \frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}}$$

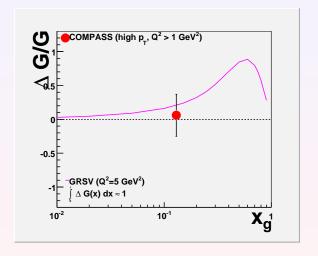
$$= P_B f P_T \underset{\sigma_{PGF}}{a_{LL}} \frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{BGD}} \frac{\Delta G}{G} + A^{bgd}$$

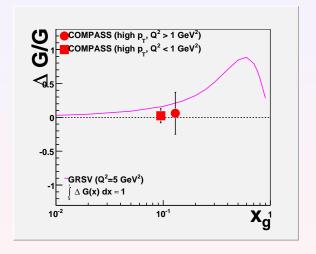


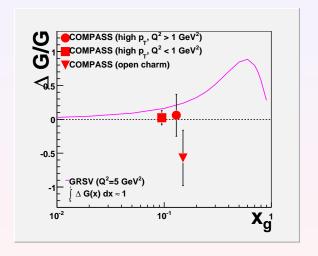


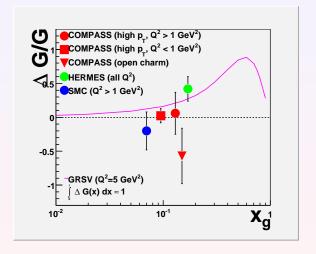

$$\frac{\Delta G}{G} = \frac{1}{P_B f P_T} \frac{\sum w^{\uparrow\downarrow} - w^{\uparrow\uparrow}}{\sum w^{\uparrow\downarrow}^2 - w^{\uparrow\uparrow}^2}$$

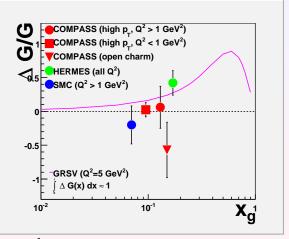
$$w = a_{LL} \frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{BGD}}$$


$\Delta G/G$ from high p_T Hadrons


- Tune kinematic cuts to enhance $\gamma g \rightarrow q \bar{q}$
- use generator to determine contributions from background processes (PYTHIA for $Q^2 < 1$ GeV², LEPTO for $Q^2 > 1$ GeV²)

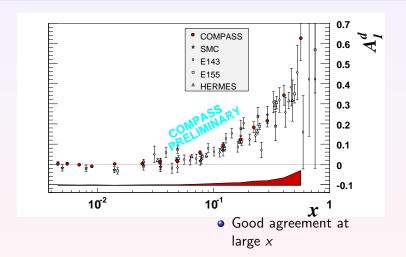

00000


00000

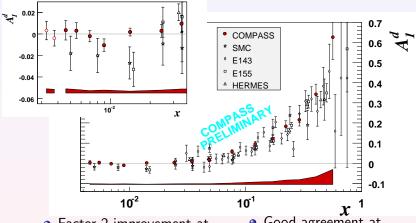


00000

00000



- Values of $\int_0^1 \Delta G(x) dx > 2$ are disfavored
- $\Delta G(x_g \approx 0.1)$ is small



Inclusive asymmetry $A_1^d \propto \Delta q$

Inclusive asymmetry $A_1^d \propto \Delta_{\bf q}$

 Factor 2 improvement at low x.

Good agreement at large x

Inclusive asymmetry $A_1^d \propto \Delta q$

NLO QCD analysis with new COMPASS data on A_1^d yields:

$$\Delta\Sigma$$
 = 0.30 \pm 0.01(stat) \pm 0.02(evol) for whole data set error \approx factor 2 larger without COMPASS data

QCD analysis allows also to determine $\frac{\Delta G}{G}$: Fit to world data gives two solutions with similar χ^2 : $\int_0^1 \Delta G(x) \, dx \approx \pm 0.25 \pm 0.1$ The COMPASS Experiment

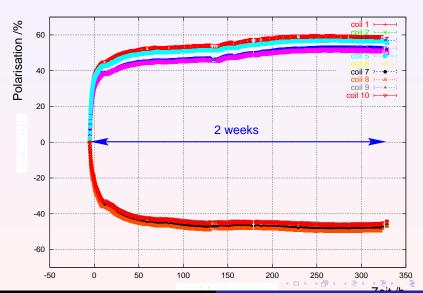
Results

Summary & Outlook

- COMPASS produced first results on $\frac{\Delta G}{G}$ from 2002 2004 data
- Several channels are followed to extract $\frac{\Delta G}{G}$
 - hadrons with large p_T,
 - open charm
- $\Delta G(x \approx 0.1)$ small
- large values of $\Delta G = \int_0^1 \Delta G(x) dx$ disfavored
- 2005: spectrometer upgrade (Target, RICH)
- 2006: resume data taking with muon beam (deuteron for longitudinal, proton target for transverse running)
- 2007 hadron beam

The COMPASS Experiment

Spare


Polarized Target

For 2006 new target magnet

	SMC	COMPASS
diameter/cm	26	60
acceptance/mrad		
(from upstream end)	± 70	$\pm~180$
acc. for	73 %	100 %
$D^0 o K^-+\pi^+$		
(160 GeV beam)		

COMPASS Solenoid 180 mrad SMC Solenoid 70 mrad

Polarization Build-up

Transversity distributions

$$q(x), f = u, d, s, \bar{u}, \bar{d}, \bar{s}, G(x)$$

$$\Delta q(x), \Delta G(x)$$
 (helicity)

$\Delta_T q(x)$ (transversity)

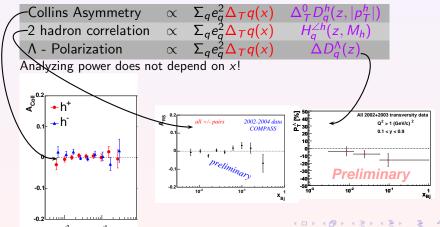
- $\Delta_T q(x)$ as important as $\Delta q(x)$, less well known, because more difficult to access.
- $\Delta_T q(x)$ accessible in single spin asymmetries on a transversely polarized target

Asymmetries $\propto \sum_{q} e_q^2 \Delta_T q(x) \times$ analyzing power

Results Transversity

 Analyzing power is different for different processes and sometimes even not very well known → important to try different methods.

Results Transversity

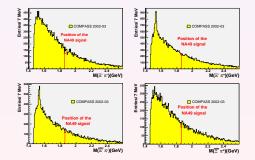

 Analyzing power is different for different processes and sometimes even not very well known → important to try different methods.

```
Collins Asymmetry \propto \Sigma_q e_q^2 \Delta_T q(x) \Delta_T^0 D_q^h(z,|p_T^h|)
2 hadron correlation \propto \Sigma_q e_q^2 \Delta_T q(x) H_q^{\angle h}(z,M_h)
\Lambda - Polarization \propto \Sigma_q e_q^2 \Delta_T q(x) \Delta D_q^{\Lambda}(z)
Analyzing power does not depend on x!
```

40.40.45.45. 5 .000

Results Transversity

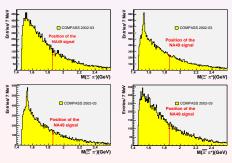
 Analyzing power is different for different processes and sometimes even not very well known → important to try different methods.


Results Transversity

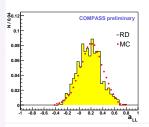
- No sign of transversity observed
- either $\Delta_T q(x)$ or $\Delta_T^0 D_q^h$, $H_q^{\angle h}$ small
- cancellation between $\Delta_T u(x)$ and $\Delta_T d(x)$?
 - \hookrightarrow data on proton target needed

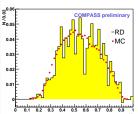
Spectroscopy

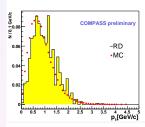
Search for pentaquark candidate $\Phi(1860)$ (was Ξ^{--}) in $\mu + N \rightarrow \Xi^{--} + X$

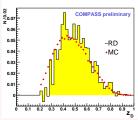

$$\begin{array}{c} \mu + {\it N} \rightarrow \Xi^{--} + {\it X} \\ \Xi^{--} \rightarrow \Xi^{-}\pi^{-} \\ \Xi^{-} \rightarrow {\it \Lambda}\pi^{-} \\ {\it \Lambda} \rightarrow {\it p}\pi^{-} \end{array}$$

Spectroscopy


• Assuming the same $\equiv (1869)^{--}/\equiv (1320)^{-}$ as NA49 COMPASS should have observed ≈ 400 $\equiv (1869)^{--}$

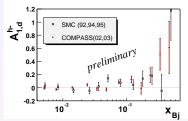

Negative signal (< 80 at 99% CL)




Open charm: Kinematic Distributions

Comparison data vs. MC





Semiinclusive Asymmetries

Results