Prospects for measurements of Generalized Parton Distributions at COMPASS

D. Neyret

on behalf of the COMPASS collaboration

CEA-Saclay DSM/DAPNIA/SPhN

- Concept of GPDs
- DVCS measurement at Compass
- Detectors upgrades
- Results we can expect

1

Parton transverse positions given by Fourier transform of $t_{\perp}=(p'-p)_{\perp}^{2}$ \rightarrow « 3D like » view of the nucleon

4 Generalized parton distribution: $H, E, \widetilde{H}, \widetilde{E}(x, \xi, t)$

GPDs linked to usual parton densities, form factors, and also q angular momentum:

$$\begin{array}{l} H(x,0,0) = q(x) \\ \widetilde{H}(x,0,0) = \Delta q(x) \end{array} \qquad \sum_{q} e_{q} \int_{-1}^{1} dx \, H^{q}(x,\xi,t) = F_{1}(t) \qquad \frac{1}{2} \sum_{q} e_{q} \int_{-1}^{1} dx \, x \left(H^{q}(x,\xi,0) + E^{q}(x,\xi,0) \right) = J^{quarks} \\ \text{Ji's sum rule} \end{array}$$

SPIN 2006 1-7/10/2006

D. Neyret Prospects for measurements of Generalized Parton Distributions at COMPASS

"3D" nucleon description

Chiral dynamics (Strikman et al.)

Nucleon includes pion cloud at large transverse position \rightarrow nucleon transverse size increases at low $x_{B_i} (< m_{\pi}/m_p)$ This can be tested within Compass kinematic domain

Lattice computations (Negele et al., Göckeler et al.) nucleon = small valence quarks core (fast partons close to the center) + large quark/gluon sea (slower partons in whole nucleon)

Deeply Virtual Compton Scattering:

de Physique Nucl

Direct and clean processes

Hard exclusive meson production:

Access to GPD with vector and pseudoscalar mesons More complex Factorizable if γ^* longitudinal

SPIN 2006 1-7/10/2006

GPD measurements with DVCS

Relative amplitude depends of 1/y $1/y=2 mp_p E_{beam} x_B/Q^2$

DVCS dominant at high $E_{beam} = 190 \text{ GeV}$ \rightarrow access to DVCS cross section

DVCS-BH interference at low $E_{beam} = 100 \text{ GeV}$ \rightarrow access to DVCS amplitude

neg) measurements of Generalized Parton Distributions at COMPASS

DVCS amplitude extraction

$$\frac{d\sigma(\mu p \to \mu p \gamma)}{d\phi} = A_{interf}(\cos n\phi) \Big[\frac{e_{\mu} (c_1 \cos \phi \Re e A^{DVCS}(\gamma^*_T) + ...) + \frac{e_{\mu} P_{\mu} (s_1 \sin \phi \Im m A^{DVCS}(\gamma^*_T) + ...)}{d\phi} \Big] + \frac{d\sigma_{DVCS}(\cos n\phi, P_{\mu} \sin \phi)}{d\phi} + \frac{d\sigma_{BH}(\cos n\phi)}{d\phi}$$

 $A^{DVCS}(\gamma_{T}^{*})$ DVCS amplitude ϕ angle between leptonic and hadronic planes e_{μ}, P_{μ} beam charge and polarization $d\sigma_{BH}, A_{interf}, c_{i}, s_{i}$ are known

Г

de Physiaue Nucle

Using
$$\mu^{+\rightarrow}$$
 and $\mu^{-\leftarrow}$
beam and ϕ
dependence we can
disentangle real and
imaginary parts of
 $A(\gamma^*_{\rm T})$
 $E_{\mu}=190 \text{GeV}: \qquad [A_{\xi\sim x_{B}/2}^{PVCS}(\mu p \rightarrow \mu p \gamma)]^2 \sim \left[P \int_{-1}^{1} dx \frac{H(x,\xi,t)}{x-\xi} -i\pi H(x=\xi,\xi,t)\right]$
 $E_{\mu}=100 \text{GeV}: \qquad \sigma(\mu^{+\rightarrow}) - \sigma(\mu^{-\leftarrow}) \sim \Re e A(\gamma^*_{T}) \sim P \int_{-1}^{1} dx \frac{H(x,\xi,t)}{x-\xi}$
 $\sigma(\mu^{+\rightarrow}) + \sigma(\mu^{-\leftarrow}) \sim \Im m A(\gamma^*_{T}) \sim -i\pi H(x=\xi,\xi,t)$

SPIN 2006 1-7/10/2006

72

CERN M2 muon beam:

tunable beam energy (100 - 190 GeV ok) μ^+ and μ^- beam with same current and opposite polarization ($|P_{\mu}| = 80\%$) highest available intensity 2.10⁸ μ /spill

Proton target:

liquid hydrogen target, 2.5 m long, 3 cm diameter: to be built luminosity $L=1.3 \ 10^{32} \text{ cm}^{-2}\text{s}^{-1}$

Luminosity determination:

needed for cross section measurement already done by NMC collab. at 1% accuracy, using random beam sampling and hodoscopes techniques

Requirements on detection

Proton detection on 250-750 MeV

TOF measurement on 2 barrels of 24 scintillators read at both sides time resolution needed 200 ps with analog ring sampler or multi-sample ADC veto scintillators on not covered angular regions for hermeticity

Prototype actually under test (financed by European FP6)

SPIN 2006 1-7/10/2006

D. Neyret Prospects for measurements of Generalized Parton Distributions at COMPASS

2 existing calorimeter ECAL1 and ECAL2

cover θ from 0.4° to 12° (ECAL2 0.4-2°, ECAL1 2-12°) lead glass blocks, 90% signal in 50 ns good energy resolution $\sigma E/E = 0.055/\sqrt{E} + 0.015$ with ~20MeV threshold good position resolution $\sigma_x = 6/\sqrt{E} + 0.5$ mm

New calorimeter ECAL0 foreseen for large angle particles (up to 24°) increase angular coverage $\pi^0 \rightarrow 2\gamma$ background rejection crowded environment, magnetic fringe field

New ECAL0 calorimeter under study

SPIN 2006 1-7/10/2006

SPIN 2006 1-7/10/2006

11

DVCS beam charge $(\mu^+-\mu^-)$ asymmetry measurements

Projected results with 150 days of data taking at E_{μ} =100 GeV with 25% efficiency 3 bins in x, 6 bins in Q²

Model 1: simple model using form factor H(x, ξ , t) ~ q(x) F(t)

Model 2: more realistic model, with fast partons in small valence core

 $H(x, 0, t) \sim q(x) e^{t < b \perp^{2>}}$ where $< b_{\perp}^{2>} = \alpha \ln 1/x$

Models from Vanderhaeghen, Guichon, Guidal, with inputs from Goeke, Polyakov, Vanderhaeghen

Comparisons with more sophisticated models are under study

SPIN 2006 1-7/10/2006

Project roadmap

2005	expression of interest SPSC-EOI-005
2006	test of a prototype of the recoil detector
2007	proposal submitted
2007-9	construction of recoil detector, ECAL0, liquid H ₂ target
2010	first DVCS data taking (also used for HEMP)

ongoing: analysis of ρ^0 production, Φ ,...