Λ Polarization Measurements at COMPASS

Boris Grube
on behalf of the COMPASS collaboration

Technische Universität München
Physik Department E18
Garching, Germany

DIS06
XIV International Workshop on Deep Inelastic Scattering
Tsukuba, 21st April 2006
Outline

1. Longitudinal Λ and $\bar{\Lambda}$ polarization
 - Introduction
 - Extraction Method
 - Results

2. Λ production from transversely polarized target
 - Λ polarization and transversity
 - Extraction method
 - Results

3. Spontaneous transverse hyperon polarization
Why Λ polarization?

Ideal probe to study spin effects in high energy reactions

<table>
<thead>
<tr>
<th>Self-analyzing weak decay $\Lambda \rightarrow p \pi^-$, BR $\approx 64%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Parity violation: polarization P_S^Λ w.r.t. analyzer \vec{S} reveals itself in angular distribution of decay daughters</td>
</tr>
<tr>
<td>$\frac{dN}{d\cos \theta} = \frac{N_0}{2} \left(1 + \alpha_\Lambda P_S^\Lambda \cos \theta \right)$</td>
</tr>
<tr>
<td>with θ proton angle w.r.t. \vec{S} in Λ rest frame</td>
</tr>
<tr>
<td>$\alpha_\Lambda = 0.642 \pm 0.013$ decay asymmetry parameter</td>
</tr>
</tbody>
</table>

Extraction of angular distributions

- Suppression of background contaminations
- Correction of apparatus effects (acceptance)
Why Λ polarization?

Ideal probe to study spin effects in high energy reactions

Self-analyzing weak decay $\Lambda \rightarrow p\pi^-$, BR $\approx 64\%$

- Parity violation: polarization P^Λ_S w.r.t. analyzer \vec{S} reveals itself in angular distribution of decay daughters

$$\frac{dN}{d\cos \theta} = \frac{N_0}{2} \left(1 + \alpha_\Lambda P^\Lambda_S \cos \theta \right)$$

with θ proton angle w.r.t. \vec{S} in Λ rest frame

$\alpha_\Lambda = 0.642 \pm 0.013$ decay asymmetry parameter

Extraction of angular distributions

- Suppression of background contaminations
- Correction of apparatus effects (acceptance)
Why Λ polarization?

Ideal probe to study spin effects in high energy reactions

Self-analyzing weak decay $\Lambda \rightarrow p\pi^-$, BR $\approx 64\%$

- Parity violation: polarization P^Λ_S w.r.t. analyzer \vec{S} reveals itself in angular distribution of decay daughters

$$\frac{dN}{d\cos \theta} = \frac{N_0}{2} \left(1 + \alpha_\Lambda P^\Lambda_S \cos \theta \right)$$

with θ proton angle w.r.t. \vec{S} in Λ rest frame

$\alpha_\Lambda = 0.642 \pm 0.013$ decay asymmetry parameter

Extraction of angular distributions

- Suppression of background contaminations
- Correction of apparatus effects (acceptance)
Why Λ polarization?

Ideal probe to study spin effects in high energy reactions

Self-analyzing weak decay $\Lambda \rightarrow p\pi^-$, BR $\approx 64\%$

- Parity violation: polarization P_Σ^Λ w.r.t. analyzer \vec{S} reveals itself in angular distribution of decay daughters

$$\frac{dN}{d\cos\theta} = \frac{N_0}{2} \left(1 + \alpha_\Lambda P_\Sigma^\Lambda \cos\theta \right)$$

with θ proton angle w.r.t. \vec{S} in Λ rest frame

$\alpha_\Lambda = 0.642 \pm 0.013$ decay asymmetry parameter

Extraction of angular distributions

- Suppression of background contaminations
- Correction of apparatus effects (acceptance)
Why Λ polarization?

Ideal probe to study spin effects in high energy reactions

Self-analyzing weak decay $\Lambda \rightarrow p \pi^-$, BR $\approx 64\%$

- Parity violation: polarization P^Λ_S w.r.t. analyzer \vec{S} reveals itself in angular distribution of decay daughters

$$\frac{dN}{d\cos \theta} = \frac{N_0}{2} \left(1 + \alpha_\Lambda P^\Lambda_S \cos \theta \right)$$

with θ proton angle w.r.t. \vec{S} in Λ rest frame

$\alpha_\Lambda = 0.642 \pm 0.013$ decay asymmetry parameter

Extraction of angular distributions

- Suppression of background contaminations
- Correction of apparatus effects (acceptance)
The Experimental Setup

Fixed target experiment @ CERN SPS

- 2-stage spectrometer
- longitudinally polarized $160\ \text{GeV/c} \ \mu^+$-beam
- Longitudinally/transversely polarized ^6LiD target

Setup 2003 (topview)

COMPASS is able to study all aspects of Λ polarization.
The Experimental Setup

Fixed target experiment @ CERN SPS

- **2-stage** spectrometer
- Longitudinally polarized 160 GeV/c μ^+-beam
- Longitudinally/transversely polarized 6LiD target

Setup 2003 (topview)

COMPASS is able to study all aspects of Λ polarization.

Boris Grube, TU München
Λ Polarization Measurements at COMPASS
The Experimental Setup

Fixed target experiment @ CERN SPS

- **2-stage spectrometer**
- **longitudinally polarized 160 GeV/c \(\mu^+ \)-beam**
- **Longitudinally/transversely polarized \(^6\)LiD target**

Setup 2003 (topview)

COMPASS is able to study all aspects of \(\Lambda \) polarization.

Boris Grube, TU München

\(\Lambda \) Polarization Measurements at COMPASS
The Experimental Setup

Fixed target experiment @ CERN SPS

- **2-stage** spectrometer
- Longitudinally polarized **160 GeV/c** \(\mu^+\)-beam
- Longitudinally/ transversely polarized \(^6\text{LiD}\) target

Setup 2003 (topview)

COMPASS is able to study all aspects of \(\Lambda\) polarization.

Boris Grube, TU München

\(\Lambda\) Polarization Measurements at COMPASS
The Experimental Setup

Fixed target experiment @ CERN SPS

- 2-stage spectrometer
- longitudinally polarized 160 GeV/c μ^+-beam
- Longitudinally/transversely polarized 6LiD target

Setup 2003 (topview)

COMPASS Layout 2003 (Topview)

- Target
- SM1
- SM2
- HCAL1
- HCAL2
- ECAL2
- RICH
- μF1
- μF2
- μF3

COMPASS is able to study all aspects of Λ polarization.
Outline

1. **Longitudinal Λ and $\bar{\Lambda}$ polarization**
 - Introduction
 - Extraction Method
 - Results

2. **Λ production from transversely polarized target**
 - Λ polarization and transversity
 - Extraction method
 - Results

3. **Spontaneous transverse hyperon polarization**
Longitudinal Λ and $\bar{\Lambda}$ polarization

Λ production from transversely polarized target

Spontaneous transverse hyperon polarization

Introduction

Extraction Method

Results

Long. Λ Polarization in Current Fragmentation Region

Accessible physics

- Study of spin transfer process $q \rightarrow \Lambda$
- Λ spin structure
- Test of $q\bar{q}$ symmetry of strange sea in nucleon:
 - $s(x)$ vs. $\bar{s}(x)$
 - $\Delta s(x)$ vs. $\Delta \bar{s}(x)$
Long. Λ Polarization in Current Fragmentation Region

Accessible physics:
- Study of spin transfer process $q \rightarrow \Lambda$.
- Λ spin structure.
- Test of $q\bar{q}$ symmetry of strange sea in nucleon:
 - $s(x) \text{ vs. } \bar{s}(x)$
 - $\Delta s(x) \text{ vs. } \Delta \bar{s}(x)$
Long. Λ Polarization in Current Fragmentation Region

Accessible physics
- Study of spin transfer process $q \rightarrow \Lambda \Rightarrow$
- Λ spin structure
- Test of $q\bar{q}$ symmetry of strange sea in nucleon:
 $s(x)$ vs. $\tilde{s}(x)$
 $\Delta s(x)$ vs. $\Delta \tilde{s}(x)$

Boris Grube, TU München
Λ Polarization Measurements at COMPASS
Long. Λ Polarization in Current Fragmentation Region

Accessible physics
- Study of spin transfer process $q \rightarrow \Lambda$
- Λ spin structure
- Test of $q\bar{q}$ symmetry of strange sea in nucleon:
 - $s(x)$ vs. $\bar{s}(x)$
 - $\Delta s(x)$ vs. $\Delta\bar{s}(x)$
Long. Λ Polarization in Current Fragmentation Region

Accessible physics

- Study of spin transfer process $q \rightarrow \Lambda \Rightarrow$
- Λ spin structure
- Test of $q\bar{q}$ symmetry of strange sea in nucleon:
 - $s(x)$ vs. $\bar{s}(x)$
 - $\Delta s(x)$ vs. $\Delta \bar{s}(x)$
Longitudinal Λ Polarization – Parton Model

Assuming $x_F > 0$ and quark fragmentation

\[
P_L^\Lambda = \frac{\sum_q e_q^2 \left[P_B \cdot D_L(y) \cdot q(x_{Bj}) + f \cdot P_N \cdot \Delta q(x_{Bj}) \right]}{\sum_q e_q^2 \left[q(x_{Bj}) + f \cdot P_N \cdot P_B \cdot D_L(y) \cdot \Delta q(x_{Bj}) \right]} \frac{\Delta D_{\Lambda/q}(z_h)}{\hat{D}_{\Lambda/q}(z_h)}
\]

with \(D_L(y) = \frac{1-(1-y)^2}{1+(1-y)^2} \) longitudinal depolarization factor

- \(P_B \) beam polarization $\approx -76\%$
- \(f \) target dilution factor ≈ 0.45
- \(P_N \) target polarization $\approx 50\%$

Measurement of polarized fragmentation function $\Delta D_{\Lambda/q}(z_h)$

averaging over target polarization $\implies P_N = 0$
Longitudinal Λ Polarization – Parton Model

Assuming $x_F > 0$ and quark fragmentation

\[
P_L^\Lambda = \frac{\sum_q e_q^2 \left[P_B \cdot D_L(y) \cdot q(x_{Bj}) + f \cdot P_N \cdot \Delta q(x_{Bj}) \right] \Delta D_{\Lambda/q}(z_h)}{\sum_q e_q^2 \left[q(x_{Bj}) + f \cdot P_N \cdot P_B \cdot D_L(y) \cdot \Delta q(x_{Bj}) \right] \hat{D}_{\Lambda/q}(z_h)}
\]

with \[D_L(y) = \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \] longitudinal depolarization factor

- P_B beam polarization $\approx -76\%$
- f target dilution factor ≈ 0.45
- P_N target polarization $\approx 50\%$

Measurement of polarized fragmentation function $\Delta D_{\Lambda/q}(z_h)$

averaging over target polarization $\Rightarrow P_N = 0$
Longitudinal Λ Polarization – Parton Model

Assuming $x_F > 0$ and quark fragmentation; $P_N = 0$

\[
P_{\Lambda}^L = P_B \cdot D_L(y) \frac{\sum_q e_q^2 q(x_{Bj}) \Delta D_{\Lambda/q}(z_h)}{\sum_q e_q^2 q(x_{Bj}) \hat{D}_{\Lambda/q}(z_h)}
\]

with \[D_L(y) = \frac{1-(1-y)^2}{1+(1-y)^2}\] longitudinal depolarization factor

\[
P_B \quad \text{beam polarization} \approx -76 \%
\]

Model calculations

- Significant contribution from diquark fragmentation for $x_F > 1$
 J. Ellis et al., EPJ C25, 603 (2002)

- About 40\% indirect Λs from Σ^0, $\Sigma(1385)$, and Ξ
Longitudinal Λ Polarization – Parton Model

Assuming $x_F > 0$ and quark fragmentation; $P_N = 0$

\[
P_L = P_B \cdot D_L(y) \frac{\sum q e^2 q(x_{Bj}) \Delta D_{\Lambda/q}(z_h)}{\sum q e^2 q(x_{Bj}) \hat{D}_{\Lambda/q}(z_h)}
\]

with \[D_L(y) = \frac{1-(1-y)^2}{1+(1-y)^2}\]

longitudinal depolarization factor

P_B beam polarization $\approx -76\%$

Model calculations

- Significant contribution from diquark fragmentation for $x_F > 1$
 J. Ellis et al., EPJ C25, 603 (2002)

- About 40% indirect Λs from Σ^0, $\Sigma(1385)$, and Ξ
Longitudinal Λ Polarization – Parton Model

Assuming $x_F > 0$ and quark fragmentation; $P_N = 0$

\[
P^\Lambda_L = P_B \cdot D_L(y) \frac{\sum_q e_q^2 q(x_{Bj}) \Delta D_{\Lambda/q}(z_h)}{\sum_q e_q^2 q(x_{Bj}) \hat{D}_{\Lambda/q}(z_h)}
\]

with \[D_L(y) = \frac{1-(1-y)^2}{1+(1-y)^2} \] longitudinal depolarization factor

\[P_B \quad \text{beam polarization} \approx -76\% \]

Model calculations

- Significant contribution from diquark fragmentation for $x_F > 1$
 J. Ellis et al., EPJ C25, 603 (2002)

- About 40\% indirect Λs from Σ^0, $\Sigma(1385)$, and Ξ
Extraction Method for Angular Distributions

Longitudinal polarization
- **Analyzer** along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method
- Event-by-event identification of hyperons not required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \Rightarrow number of Λs from fit parameter
 \Rightarrow background corrected angular distribution

Acceptance correction
from MC simulations (LEPTO) of unpolarized $\Lambda(\bar{\Lambda})$ decays
Extraction Method for Angular Distributions

Longitudinal polarization

- **Analyzer** along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method

- Event-by-event identification of hyperons not required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \Rightarrow number of Λs from fit parameter
 \Rightarrow background corrected angular distribution

Acceptance correction

from MC simulations (LEPTO) of unpolarized $\Lambda(\bar{\Lambda})$ decays
Extraction Method for Angular Distributions

Longitudinal polarization
- **Analyzer** along virtual photon direction
- Angular distribution of proton \(\text{w.r.t.} \, \gamma^* \) in \(\Lambda \) rest frame

Bin-by-bin Method
- Event-by-event identification of hyperons **not** required
- Subdivision of sample into bins in \(\cos \theta \)
- For each bin invariant mass histogram
- Fit of histogram \(\Rightarrow \) number of \(\Lambda \)s from fit parameter
 \(\Rightarrow \) background corrected angular distribution

Acceptance correction
from MC simulations (LEPTO) of unpolarized \(\Lambda(\bar{\Lambda}) \) decays
Extraction Method for Angular Distributions

Longitudinal polarization
- **Analyzer** along virtual photon direction
- Angular distribution of proton \(w.r.t. \gamma^* \) in \(\Lambda \) rest frame

Bin-by-bin Method
- Event-by-event identification of hyperons **not** required
- Subdivision of sample into **bins in \(\cos \theta \)**
 - For each bin invariant mass histogram
 - Fit of histogram \(\Rightarrow \) number of \(\Lambda \)s from fit parameter
 \(\Rightarrow \) background corrected angular distribution

Acceptance correction
from MC simulations (LEPTO) of unpolarized \(\Lambda(\bar{\Lambda}) \) decays
Extraction Method for Angular Distributions

Longitudinal polarization
- **Analyzer** along virtual photon direction
- Angular distribution of proton **w.r.t.** γ^* in Λ rest frame

Bin-by-bin Method
- Event-by-event identification of hyperons **not** required
- Subdivision of sample into **bins in cos θ**
- For each bin **invariant mass histogram**
 - Fit of histogram \implies number of Λs from fit parameter
 \implies background corrected angular distribution

Acceptance correction
from **MC simulations** (LEPTO) of unpolarized $\Lambda(\bar{\Lambda})$ decays
Extraction Method for Angular Distributions

Longitudinal polarization
- **Analyzer** along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method
- Event-by-event identification of hyperons not required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \Rightarrow number of Λs from fit parameter
 \Rightarrow background corrected angular distribution

Acceptance correction
- from MC simulations (LEPTO) of unpolarized $\Lambda(\bar{\Lambda})$ decays
Extraction Method for Angular Distributions

Longitudinal polarization
- **Analyzer** along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method
- Event-by-event identification of hyperons **not** required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \implies number of Λs from fit parameter
 \implies background corrected angular distribution

Acceptance correction
- from MC simulations (LEPTO) of unpolarized $\Lambda(\bar{\Lambda})$ decays
MC improved Background Description

Background contributions

- No particle ID used in Λ selection
- Kinematically indistinguishable K_s^0
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with $\text{Gauss}(x) + aK(x) + c_0 + c_1x$
MC improved Background Description

Background contributions

- No particle ID used in Λ selection
- Kinematically indistinguishable K_s^0
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with $Gauss(x) + aK(x) + c_0 + c_1x$
MC improved Background Description

Background contributions
- No particle ID used in Λ selection
- Kinematically indistinguishable K_s^0
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC
- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with $Gauss(x) + aK(x) + c_0 + c_1x$
MC improved Background Description

Background contributions
- No particle ID used in Λ selection
- kinematically indistinguishable K_S^0
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC
- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with
 \[\text{Gauss}(x) + aK(x) + c_0 + c_1x \]
MC improved Background Description

Background contributions

- No particle ID used in Λ selection
- Kinematically indistinguishable K_s^0
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with $\text{Gauss}(x) + aK(x) + c_0 + c_1x$
Longitudinal Λ and $\bar{\Lambda}$ polarization
Λ production from transversely polarized target
Spontaneous transverse hyperon polarization

Introduction
Extraction Method
Results

MC improved Background Description

Background contributions
- No particle ID used in Λ selection
- Kinematically indistinguishable K_S^0
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC
- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with $\text{Gauss}(x) + aK(x) + c_0 + c_1x$

COMPASS 2003, Preliminary

Fit result
Total background
Kaons background

Boris Grube, TU München

Λ Polarization Measurements at COMPASS
MC improved Background Description

Background contributions
- No particle ID used in Λ selection
- Kinematically indistinguishable K^0_S
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC
- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with $\text{Gauss}(x) + aK(x) + c_0 + c_1x$
MC improved Background Description

Background contributions

- No particle ID used in \(\Lambda \) selection
- Kinematically indistinguishable \(K_S^0 \)
- Combinatorial background
- \(e^+e^- \) pairs from \(\gamma \) conversion

Kaon Background from MC

- Kaon distribution \(K(m_{p\pi^-}) \)
- Data are fitted with \(\text{Gauss}(x) + aK(x) + c_0 + c_1x \)
Kinematics of Λ Prod. (2003, $Q^2 > 1$ GeV2)

Total statistics 2003

- 31,000 Λs
- 18,000 $\bar{\Lambda}$s

Mean values

- $\langle x_{Bj} \rangle = 0.0283$
- $\langle x_F \rangle = 0.23$
- $\langle y \rangle = 0.48$
- $\langle z \rangle = 0.29$
- $\langle Q^2 \rangle = 3.55$ GeV2
- $\langle W \rangle = 11.7$ GeV
Kinematics of Λ Prod. (2003, $Q^2 > 1$ GeV2)

Total statistics 2003
31,000 Λs
18,000 $\bar{\Lambda}$s

Mean values

$\langle x_{Bj} \rangle = 0.0283$
$\langle x_F \rangle = 0.23$
$\langle y \rangle = 0.48$
$\langle z \rangle = 0.29$

$\langle Q^2 \rangle = 3.55$ GeV2
$\langle W \rangle = 11.7$ GeV
Longitudinal Λ and $\bar{\Lambda}$ polarization
Λ production from transversely polarized target
Spontaneous transverse hyperon polarization

y- and x_{Bj}-Dependence of long. Pol., $Q^2 > 1 \text{ GeV}^2$

Systematic errors $< 5\%$
Longitudinal Λ and $\bar{\Lambda}$ polarization
Λ production from transversely polarized target
Spontaneous transverse hyperon polarization

z- and W^2-Dependence of long. Pol., $Q^2 > 1$ GeV2

Systematic errors < 5 %
Outline

1. Longitudinal Λ and $\bar{\Lambda}$ polarization
 - Introduction
 - Extraction Method
 - Results

2. Λ production from transversely polarized target
 - Λ polarization and transversity
 - Extraction method
 - Results

3. Spontaneous transverse hyperon polarization
Transversely polarized target

Measured process: \(\mu N^\uparrow \rightarrow \mu' \Lambda^\uparrow X \)

Underlying elementary QED process: \(\gamma^* q^\uparrow \) scattering

Transverse \(\Lambda \) polarization gives information about initial transverse quark polarization \(\Delta_T q(x_{ Bj}) \) in nucleon.
Λ production from transversely polarized target

Transversely polarized target

Measured process: $\mu N^{\uparrow} \rightarrow \mu' \Lambda^{\uparrow} X$

Underlying elementary QED process: $\gamma^* q^{\uparrow}$ scattering

Transverse Λ polarization gives information about initial transverse quark polarization $\Delta_T q(x_{ Bj})$ in nucleon
Longitudinal \(\Lambda \) and \(\bar{\Lambda} \) polarization

\(\Lambda \) production from transversely polarized target

Transversely polarized target

Measured process: \(\mu N^{\uparrow} \longrightarrow \mu' \Lambda^{\uparrow} X \)

Underlying elementary QED process: \(\gamma^* q^{\uparrow} \) scattering

Transverse \(\Lambda \) polarization gives information about initial transverse quark polarization \(\Delta Tq(x_{Bj}) \) in nucleon

Extraction method

Results

COMPASS
Longitudinal Λ and $\bar{\Lambda}$ polarization

Λ production from transversely polarized target

Spontaneous transverse hyperon polarization

Λ polarization and transversity

Extraction method

Results

Λ production from transversely polarized target

Transversely polarized target

Measured process: $\mu \ N^\uparrow \rightarrow \mu' \ \Lambda^\uparrow \ X$

Underlying elementary QED process: $\gamma^* q^\uparrow$ scattering

Transverse Λ polarization gives information about initial transverse quark polarization $\Delta Tq(x_Bj)$ in nucleon

Boris Grube, TU München

Λ Polarization Measurements at COMPASS
Assuming $x_F > 0$ and quark fragmentation

\[
P_T^\Lambda = f \cdot P_N \cdot D_T(y) \frac{\sum_q e_q^2 \Delta_T q(x_{Bj}) \Delta_T D_{\Lambda/q}(z_h)}{\sum_q e_q^2 q(x_{Bj}) \hat{D}_{\Lambda/q}(z_h)}
\]

with \(D_T(y) = \frac{2(1-y)}{1+(1-y)^2} \) transverse depolarization factor

\(f \) target dilution factor \(\approx 0.45 \)

\(P_N \) target polarization \(\approx 50 \% \)

Chiral-odd partner of $\Delta_T q(x_{Bj})$: transversity fragmentation function

\[
\Delta_T D_{\Lambda/q}(z_h) \equiv D_{\Lambda/\uparrow \, q}(z_h) - D_{\Lambda/\downarrow \, q}(z_h)
\]

- both $\Delta_T q(x_{Bj})$ and $\Delta_T D_{\Lambda/q}(z_h)$ unknown
Λ polarization and Transversity

Assuming $x_F > 0$ and quark fragmentation

$$P_T^\Lambda = f \cdot P_N \cdot D_T(y) \frac{\sum q e_q^2 \Delta Tq(x_{Bj}) \Delta_T D_{\Lambda/q}(z_h)}{\sum q e_q^2 q(x_{Bj}) \hat{D}_{\Lambda/q}(z_h)}$$

with $D_T(y) = \frac{2(1-y)}{1+(1-y)^2}$ transverse depolarization factor

f target dilution factor ≈ 0.45

P_N target polarization $\approx 50\%$

Chiral-odd partner of $\Delta_T q(x_{Bj})$: transversity fragmentation function

$$\Delta_T D_{\Lambda/q}(z_h) \equiv D_{\Lambda/\uparrow/q}(z_h) - D_{\Lambda/\downarrow/q}(z_h)$$

- both $\Delta_T q(x_{Bj})$ and $\Delta_T D_{\Lambda/q}(z_h)$ unknown
Assumption: $x_F > 0$ and quark fragmentation

\[
P_T^\Lambda = f \cdot P_N \cdot D_T(y) \cdot \frac{\sum q e_q^2 \Delta_T q(x_{Bj}) \Delta_T D_{\Lambda/q}(z_h)}{\sum q e_q^2 q(x_{Bj}) \hat{D}_{\Lambda/q}(z_h)}
\]

with
\[
D_T(y) = \frac{2(1-y)}{1+(1-y)^2}
\]
transverse depolarization factor

- f target dilution factor ≈ 0.45
- P_N target polarization $\approx 50\%$

Chiral-odd partner of $\Delta_T q(x_{Bj})$: transversity fragmentation function

\[
\Delta_T D_{\Lambda/q}(z_h) \equiv D_{\Lambda/\uparrow q}(z_h) - D_{\Lambda/\downarrow q}(z_h)
\]

- both $\Delta_T q(x_{Bj})$ and $\Delta_T D_{\Lambda/q}(z_h)$ unknown
COMPASS Polarized Target

- **3He-Precooler**
- **Superconducting solenoid (2.5 T)**
- **Dilution refrigerator (T ~ 50 mK)**
- **6LiD target cells**
- **COMPASS Acceptance (180 mrad)**
- **SMC Acceptance (70 mrad)**

- **2 target cells**, each 60 cm long
- **0.5 T magnetic dipole field sustains transverse polarization**

Boris Grube, TU München

Λ Polarization Measurements at COMPASS
COMPASS Polarized Target

- 2 target cells, each 60 cm long
- 0.5 T magnetic dipole field sustains transverse polarization

Longitudinal Λ and $\bar{\Lambda}$ polarization
Λ production from transversely polarized target
Spontaneous transverse hyperon polarization

Λ polarization and transversity
Extraction method
Results

Λ Polarization Measurements at COMPASS

Boris Grube, TU München
Acceptance Correction – Bias Canceling

- Background subtraction using **bin-by-bin method**

Assumptions

- Constant target polarization: $P_N^{(1)} = P_N^{(2)}$
- Constant acceptance: $A_1^+(\theta) = A_2^- (\theta)$ and $A_1^- (\theta) = A_2^+ (\theta)$
Acceptance Correction – Bias Canceling

- Background subtraction using **bin-by-bin method**

Exploit symmetry
- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $e_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta$

Assumptions
- Constant target polarization: $P_N^{(1)} = P_N^{(2)}$
- Constant acceptance: $A_1^+(\theta) = A_2^-(\theta)$ and $A_1^- (\theta) = A_2^+(\theta)$
Acceptance Correction – Bias Canceling

- Background subtraction using **bin-by-bin method**

Exploit symmetry

- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta$

Assumptions

- Constant target polarization: $P_N^{(1)} = P_N^{(2)}$
- Constant acceptance: $A_1^+(\theta) = A_2^- (\theta)$ and $A_1^- (\theta) = A_2^+ (\theta)$
Acceptance Correction – Bias Canceling

- Background subtraction using bin-by-bin method

Exploit symmetry
- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta$

Assumptions
- Constant target polarization: $P_N^{(1)} = P_N^{(2)}$
- Constant acceptance: $A^+_1(\theta) = A^-_2(\theta)$ and $A^-_1(\theta) = A^+_2(\theta)$
Acceptance Correction – Bias Canceling

- Background subtraction using **bin-by-bin method**

Upstream cell

<table>
<thead>
<tr>
<th>Config 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
</tr>
</tbody>
</table>

Downstream cell

<table>
<thead>
<tr>
<th>Config 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>−</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Config 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>−</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
</tr>
</tbody>
</table>

- **Exploit symmetry**
 - Extract correction function from data
 - Recombination of data samples from **two target cells** and **two polarization configurations**
 - **Acceptance corrected** angular distribution \(\epsilon_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta \)

- **Assumptions**
 - Constant target polarization: \(P_N^{(1)} = P_N^{(2)} \)
 - Constant acceptance: \(A_{1+}^1(\theta) = A_{2-}^2(\theta) \) and \(A_{1-}^1(\theta) = A_{2+}^2(\theta) \)
Acceptance Correction – Bias Canceling

- Background subtraction using bin-by-bin method

Exploit symmetry
- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta$

Assumptions
- Constant target polarization: $P_N^{(1)} = P_N^{(2)}$
- Constant acceptance: $A_1^+(\theta) = A_2^-(\theta)$ and $A_1^-\theta) = A_2^+(\theta)$
Acceptance Correction – Bias Canceling

- Background subtraction using bin-by-bin method

Exploit symmetry
- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_{\Lambda} P_T^\Lambda \cos \theta$

Assumptions
- Constant target polarization: $P^{(1)}_N = P^{(2)}_N$
- Constant acceptance: $A^+_1(\theta) = A^-_2(\theta)$ and $A^-_1(\theta) = A^+_2(\theta)$
Acceptance Correction – Bias Canceling

- Background subtraction using bin-by-bin method

Exploit symmetry
- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta$

Assumptions
- Constant target polarization: $P_N^{(1)} = P_N^{(2)}$
- Constant acceptance: $A_1^+(\theta) = A_2^- (\theta)$ and $A_1^- (\theta) = A_2^+ (\theta)$
Overall available Statistics (2002-03, $Q^2 > 1$ GeV2)

All 2002+2003 transversity data

Number of Λ: ~20000

$Q^2 > 1$ (GeV/c)2

$0.1 < y < 0.9$

$M_{p\pi^-} - M_\Lambda$ [GeV/c2]

Preliminary
x_{Bj}-Dependence of Transv. Λ Polarization, $Q^2 > 1 \text{ GeV}^2$

All 2002+2003 transversity data

$Q^2 > 1 \text{ (GeV/c)}^2$

$0.1 < y < 0.9$

Preliminary
Outline

1. Longitudinal Λ and $\bar{\Lambda}$ polarization
 - Introduction
 - Extraction Method
 - Results

2. Λ production from transversely polarized target
 - Λ polarization and transversity
 - Extraction method
 - Results

3. Spontaneous transverse hyperon polarization
Spontaneous Transverse Hyperon Polarization

Production of polarized hyperons in **unpolarized** inclusive reactions

- **Parity conservation**
- **Polarization** transverse to production plane

Naïve expectation

- High energy \implies large number of production channels: comparable magnitudes + various relative phases
- Random interference \implies small polarization

Big surprise 1976 at Fermilab

- Discovery of sizeable transverse polarization $P_T^Λ = -28 \pm 8 \%$
 - in p Be $\rightarrow Λ↑X @ p_{Beam} = 300$ GeV/c
- No model is able to explains all experimental data
- Only few data from photo-production

COMPASS

Boris Grube, TU München
Longitudinal Λ and $\bar{\Lambda}$ polarization
Λ production from transversely polarized target
Spontaneous transverse hyperon polarization

Spontaneous Transverse Hyperon Polarization

Production of polarized hyperons in **unpolarized** inclusive reactions

- Parity conservation
- Polarization **transverse to production plane**

Naïve expectation

- **High energy** \implies large number of production channels: comparable magnitudes + various relative phases
- Random interference \implies small polarization

Big surprise 1976 at Fermilab

- Discovery of sizeable transverse polarization $P_T^{\Lambda} = -28 \pm 8 \%$
 in p Be $\rightarrow \Lambda^{\uparrow} X @ p_{\text{Beam}} = 300$ GeV/c
- No model is able to explains all experimental data
- Only few data from photo-production

Boris Grube, TU München
Λ Polarization Measurements at COMPASS
Spontaneous Transverse Hyperon Polarization

Production of polarized hyperons in **unpolarized** inclusive reactions

Parity conservation

Polarization **transverse to production plane**

Naïve expectation

- **High energy** \Rightarrow large number of production channels: comparable magnitudes + various relative phases
- **Random interference** \Rightarrow **small polarization**

Big surprise 1976 at Fermilab

- Discovery of sizeable transverse polarization $P_T^\Lambda = -28 \pm 8 \%$
 in $p\text{Be} \rightarrow \Lambda \uparrow X @ p_{\text{Beam}} = 300 \text{ GeV/c}$
- No model is able to explains all experimental data
- Only few data from photo-production
Spontaneous Transverse Hyperon Polarization

Production of polarized hyperons in **unpolarized** inclusive reactions

- **Parity conservation**
 - Polarization transverse to production plane

Naïve expectation

- High energy \implies large number of production channels: comparable magnitudes + various relative phases
- Random interference \implies small polarization

Big surprise 1976 at Fermilab

- Discovery of **sizeable transverse polarization** $P_T^\Lambda = -28 \pm 8\%$
 - in p Be $\rightarrow \Lambda^\uparrow X \ @ \ p_{\text{Beam}} = 300 \text{ GeV}/c$
- No model is able to explain all experimental data
- Only few data from photo-production
Spontaneous Transverse Hyperon Polarization

Production of polarized hyperons in *unpolarized* inclusive reactions

Parity conservation
Polarization *transverse to production plane*

Naïve expectation

- **High energy** \implies large number of production channels:
 comparable magnitudes + various relative phases
- **Random interference** \implies *small polarization*

Big surprise 1976 at Fermilab

- Discovery of sizeable *transverse polarization* $P_T^\Lambda = -28 \pm 8 \%$
 in $p\text{Be} \rightarrow \Lambda^\uparrow X @ p_{\text{Beam}} = 300 \text{ GeV/c}$
- **No model** is able to explains all experimental data
- Only few data from photo-production
Spontaneous Transverse Hyperon Polarization

Production of polarized hyperons in **unpolarized** inclusive reactions

- **Parity conservation**
 - Polarization **transverse to production plane**

Naïve expectation

- **High energy** \Rightarrow large number of production channels: comparable magnitudes + various relative phases
- **Random interference** \Rightarrow small polarization

Big surprise 1976 at Fermilab

- Discovery of **sizeable transverse polarization** $P_T^\Lambda = -28 \pm 8\%$
 - in $p\text{Be} \rightarrow \Lambda^+X @ p_{\text{Beam}} = 300\text{ GeV/c}$
- **No model** is able to explain all experimental data
- Only few data from photo-production
Hyperon Production in unpolarized Reaction

- **Inclusive hyperon production** in reaction $\mu N \rightarrow \mu' \Lambda^\uparrow X$
- **Quasi-real** virtual photon γ^* with $\langle Q^2 \rangle \approx 0.36 \text{ GeV}^2$
- Analyzer along production plane normal

![Diagram showing scattering and decay planes with various particles and momenta](image)
Hyperon Production in unpolarized Reaction

- **Inclusive hyperon production** in reaction $\mu N \rightarrow \mu' \Lambda^\uparrow X$
- **Quasi-real** virtual photon γ^* with $\langle Q^2 \rangle \approx 0.36 \text{ GeV}^2$
- Analyzer along production plane normal
Hyperon Production in unpolarized Reaction

- Inclusive hyperon production in reaction $\mu N \rightarrow \mu' \Lambda \uparrow X$
- Quasi-real virtual photon γ^* with $\langle Q^2 \rangle \approx 0.36 \text{GeV}^2$
- Analyzer along production plane normal

Scattering Plane
Production Plane
Decay Plane

Boris Grube, TU München
\Lambda Polarization Measurements at COMPASS
Background Subtraction and Acceptance Correction

Bin-by-bin method – separation of K^0 background

- Expansion of Λ invariant mass histogram with K^0 mass
- Full two-dimensional fit in $(m_{p\pi^-}, m_{\pi^+\pi^-})$ plane
- Extraction of false K^0 background polarization in same kinematical region as Λ

Acceptance Correction – Bias cancelling

- Exploits mid-plane symmetry of apparatus
- Cancels left-right asymmetry
Background Subtraction and Acceptance Correction

Bin-by-bin method – separation of K^0 background

- **Expansion** of Λ invariant mass histogram **with** K^0 mass

![Graph showing invariant mass distribution](image)

- **Full two-dimensional fit** in $(m_{p\pi^-}, m_{\pi^+\pi^-})$ plane

- **Extraction of false K^0 background polarization in same kinematical region as Λ**

Acceptance Correction – Bias cancelling

- Exploits mid-plane symmetry of apparatus
- Cancels left-right asymmetry
Background Subtraction and Acceptance Correction

Bin-by-bin method – separation of K^0 background

- **Expansion** of Λ invariant mass histogram with K^0 mass
- Full two-dimensional fit in $(m_{p\pi^-}, m_{\pi^+\pi^-})$ plane
- Extraction of **false** K^0 background polarization in same kinematical region as Λ

Acceptance Correction – Bias cancelling

- Exploits mid-plane symmetry of apparatus
- Cancels left-right asymmetry
Background Subtraction and Acceptance Correction

Bin-by-bin method – separation of K^0 background

- **Expansion** of Λ invariant mass histogram with K^0 mass

- **Full two-dimensional fit in** $(m_{p\pi^-}, m_{\pi^+\pi^-})$ plane

- Extraction of **false K^0 background polarization** in same kinematical region as Λ

Acceptance Correction – Bias cancelling

- **Exploits mid-plane symmetry** of apparatus

- **Cancels left-right asymmetry**
Background Subtraction and Acceptance Correction

Bin-by-bin method – separation of K^0 background

- Expansion of Λ invariant mass histogram with K^0 mass
- Full two-dimensional fit in $(m_{p\pi^-}, m_{\pi^+\pi^-})$ plane
- Extraction of false K^0 background polarization in same kinematical region as Λ

Acceptance Correction – Bias cancelling

- Exploits mid-plane symmetry of apparatus
- Cancels left-right asymmetry
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- **Small positive Λ polarization:**
 \[P_T^\Lambda = +2.7 \pm 0.9\text{(stat.)} \pm 1.1\text{(sys.)} \% \]
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized:
 \[P_T^{\bar{\Lambda}} = -0.3 \pm 1.4\text{(stat.)} \pm 1.8\text{(sys.)} \% \]

Work in progress

- 2002 sample only 10% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- **Small positive Λ polarization:**

 \[P_T^\Lambda = +2.7 \pm 0.9\text{(stat.)} \pm 1.1\text{(sys.)} \% \]

 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value

- $\bar{\Lambda}$ unpolarized:

 \[P_T^{\bar{\Lambda}} = -0.3 \pm 1.4\text{(stat.)} \pm 1.8\text{(sys.)} \% \]

Work in progress

- 2002 sample only 10% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- Small positive Λ polarization:
 $$P_T^\Lambda = +2.7 \pm 0.9\text{(stat.)} \pm 1.1\text{(sys.)}\ %$$
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized:
 $$P_T^{\bar{\Lambda}} = -0.3 \pm 1.4\text{(stat.)} \pm 1.8\text{(sys.)}\ %$$

Work in progress

- 2002 sample only 10% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- **Small positive Λ polarization:**
 \[P^\Lambda_T = +2.7 \pm 0.9\,(\text{stat.}) \pm 1.1\,(\text{sys.}) \% \]
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized: \[P^{\bar{\Lambda}}_T = -0.3 \pm 1.4\,(\text{stat.}) \pm 1.8\,(\text{sys.}) \% \]

Work in progress

- 2002 sample only 10% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- Small positive Λ polarization:
 \[P_T^\Lambda = +2.7 \pm 0.9(\text{stat.}) \pm 1.1(\text{sys.}) \% \]
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized: $P_T^{\bar{\Lambda}} = -0.3 \pm 1.4(\text{stat.}) \pm 1.8(\text{sys.}) \%$

Work in progress

- 2002 sample only 10% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- **Small positive Λ polarization:**
 \[
 P_T^\Lambda = +2.7 \pm 0.9\text{(stat.)} \pm 1.1\text{(sys.)} \%
 \]
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized:
 \[
 P_T^{\bar{\Lambda}} = -0.3 \pm 1.4\text{(stat.)} \pm 1.8\text{(sys.)} \%
 \]

Work in progress

- 2002 sample only 10% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6 \Lambda$s and $0.9 \cdot 10^6 \bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- **Small positive** Λ polarization:
 $$P_T^\Lambda = +2.7 \pm 0.9\text{(stat.)} \pm 1.1\text{(sys.)} \, \%$$
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized: $P_T^{\bar{\Lambda}} = -0.3 \pm 1.4\text{(stat.)} \pm 1.8\text{(sys.)} \, \%$

Work in progress

- 2002 sample only **10 % of available statistics**
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s
- **Small positive Λ polarization:**
 \[P^\Lambda_T = +2.7 \pm 0.9\text{(stat.)} \pm 1.1\text{(sys.)}\% \]
 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value
- $\bar{\Lambda}$ unpolarized: \[P^{\bar{\Lambda}}_T = -0.3 \pm 1.4\text{(stat.)} \pm 1.8\text{(sys.)}\% \]

Work in progress

- 2002 sample only 10\% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6$ Λs and $0.9 \cdot 10^6$ $\bar{\Lambda}$s
- Analysis nearly finalized
Results

First analysis on 2002 data, all Q^2

- 160,000 Λs and 85,000 $\bar{\Lambda}$s

- Small positive Λ polarization:

 $$P^\Lambda_T = +2.7 \pm 0.9\text{(stat.)} \pm 1.1\text{(sys.)} \%$$

 - Sign opposite to Λ polarization in p and π^- beams
 - Same sign as in K^- beam
 - Much lower absolute value

- $\bar{\Lambda}$ unpolarized:

 $$P^{\bar{\Lambda}}_T = -0.3 \pm 1.4\text{(stat.)} \pm 1.8\text{(sys.)} \%$$

Work in progress

- 2002 sample only 10% of available statistics
- 2002-04, all Q^2: $1.6 \cdot 10^6 \Lambda$s and $0.9 \cdot 10^6 \bar{\Lambda}$s
- Analysis nearly finalized
Conclusions and Outlook

Longitudinal polarization transfer
- **2003 data sample**
- **Similar longitudinal polarization** of Λ and $\bar{\Lambda}$
- **Different production mechanism** for Λ and $\bar{\Lambda}$

Transverse polarization transfer
- **2002 + 2003 transversity data sample**
- **Slight tendency to negative polarizations**
- **Small statistics**
- **Systematic effects are smaller than statistical errors**

Both analyses
- **Significant increase of statistics** with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer

- **2003 data sample**
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer

- **2003 data sample**
- **Similar longitudinal polarization** of Λ and $\bar{\Lambda}$
- **Different production mechanism** for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- **2002 + 2003 transversity data sample**
- **Slight tendency** to negative polarizations
- **Small statistics**
- **Systematic effects** are smaller than statistical errors

Both analyses

Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer

- **2003 data sample**
- **Similar longitudinal polarization** of Λ and $\bar{\Lambda}$
- **Different production mechanism** for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- **2002 + 2003 transversity data sample**
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer
- **2003** data sample
- **Similar longitudinal polarization** of Λ and $\bar{\Lambda}$
- **Different production mechanism** for Λ and $\bar{\Lambda}$

Transverse polarization transfer
- **2002 + 2003** transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer

- **2003** data sample
- **Similar longitudinal polarization** of Λ and $\bar{\Lambda}$
- **Different production mechanism** for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- **2002 + 2003** transversity data sample
 - Slight tendency to negative polarizations
 - Small statistics
 - Systematic effects are smaller than statistical errors

Both analyses

Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer
- **2003** data sample
- **Similar longitudinal polarization** of Λ and $\bar{\Lambda}$
- **Different production mechanism** for Λ and $\bar{\Lambda}$

Transverse polarization transfer
- **2002 + 2003** transversity data sample
- **Slight tendency to negative polarizations**
 - Small statistics
 - Systematic effects are smaller than statistical errors

Both analyses
- Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer
- 2003 data sample
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer
- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses
- Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer

- **2003** data sample
- **Similar longitudinal polarization** of Λ and $\bar{\Lambda}$
- **Different production mechanism** for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- **2002 + 2003** transversity data sample
- Slight tendency to negative polarizations
- **Small statistics**
- **Systematic effects** are smaller than statistical errors

Both analyses

Significant increase of statistics with 2004 data
Conclusions and Outlook

Longitudinal polarization transfer
- 2003 data sample
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer
- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Significant increase of statistics with 2004 data
Conclusions and Outlook

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\bar{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- First measurement of Ξ polarization in photo-production

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching
Conclusions and Outlook

Spontaneous transverse polarization

- **2002 data sample**
- Small positive Λ polarization, $\bar{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- First measurement of Ξ polarization in photo-production

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching
Conclusions and Outlook

Spontaneous transverse polarization

- **2002** data sample
- **Small positive** Λ **polarization, $\bar{\Lambda}$ unpolarized**
 - Analysis of 2002-04 data nearly finalized
 - Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
 - First measurement of Ξ polarization in photo-production

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching
Conclusions and Outlook

Spontaneous transverse polarization

- **2002 data sample**
- **Small positive \(\Lambda \) polarization, \(\bar{\Lambda} \) unpolarized**
- **Analysis of 2002-04 data nearly finalized**
 - Detailed kinematical analysis \((x_F, p_T, Q^2, y) \) possible
 - First measurement of \(\Xi \) polarization in photo-production

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching
Conclusions and Outlook

Spontaneous transverse polarization

- **2002** data sample
- Small positive Λ polarization, $\bar{\Lambda}$ unpolarized
- Analysis of **2002-04** data nearly finalized
- Detailed *kinematical analysis* (x_F, p_T, Q^2, y) possible
- First measurement of Ξ polarization in photo-production

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching
Conclusions and Outlook

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\bar{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- First measurement of Ξ polarization in photo-production

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching
Conclusions and Outlook

Spontaneous transverse polarization

- **2002 data sample**
- Small positive Λ polarization, $\bar{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed *kinematical analysis* (x_F, p_T, Q^2, y) possible
- First measurement of Ξ polarization in photo-production

Thank you!

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching
Conclusions and Outlook

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\bar{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- First measurement of Ξ polarization in photo-production

Thank you!

This work is supported by the BMBF and the Maier-Leibnitz-Labor, Garching
Mean values

\[\langle x_{Bj} \rangle = 0.0258 \]
\[\langle x_F \rangle = 0.21 \]
\[\langle y \rangle = 0.51 \]
\[\langle z \rangle = 0.27 \]
\[\langle Q^2 \rangle = 3.50 \text{ GeV}^2 \]
\[\langle W \rangle = 12.1 \text{ GeV} \]
Angular Distributions (2002, $Q^2 > 1 \text{ GeV}^2$)

![Graphs showing angular distributions for K^0, Λ, and $\bar{\Lambda}$](image)

Preliminary

Boris Grube, TU München

Λ Polarization Measurements at COMPASS
Spin Transfer to Λ and $\bar{\Lambda}$ (2002, $Q^2 > 1$ GeV2)

```
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
$X_F$ & 0 & 0.2 & 0.4 & 0.6 & 0.8 \\
\hline
Spin transfer & \star $\Lambda$, COMPASS & \triangle $\Lambda$, HERMES & \circ $\Lambda$, NOMAD & \square $\Lambda$, E665 & \star $\bar{\Lambda}$, COMPASS & \circ $\bar{\Lambda}$, NOMAD & \square $\bar{\Lambda}$, E665 \\
\hline
\end{tabular}
\end{center}
```
Selection cuts

- Primary vertex in target
- Secondary V^0 vertex outside of target
- Collinearity angle
 $\theta_{\text{col}} < 10$ mrad
- V^0 decay daughters:
 $p > 1$ GeV/c and
 $p_T > 23$ MeV/c
- V^0 momentum
 $p_{V^0} > 10$ GeV/c
- DIS cut: $Q^2 > 1$ GeV2 and
 $0.2 < y < 0.9$
Kinematics of Λ Production

- Mean virtual photon transverse depolarization factor
 $\langle D_T(y) \rangle \approx 0.8$
- Majority of Λs produced in current fragmentation region $x_F > 0$
- Accessible x_{Bj} ranges
 - All Q^2: $10^{-5} < x_{Bj} < 1$
 - $Q^2 > 1$ GeV2: $3 \cdot 10^{-3} < x_{Bj} < 1$
x_{Bj}-Dependence of Transv. Λ Polarization, All Q^2

All 2002+2003 transversity data

All Q^2

$0.1 < y < 0.9$

Preliminary
Study of systematic Effects

- False K^0 polarization
- Subdivision of target cells into two halves
- Artificial change of orientation of target polarization: horizontal, random orientation

Systematic effects are smaller than statistical errors
Selection cuts

- Primary vertex in target
- Secondary V^0 vertex outside of target
- Collinearity angle $\theta_{\text{col}} < 10$ mrad
- V^0 decay daughters:
 - $p > 1$ GeV$/c$ and $p_T > 23$ MeV$/c$
 - $0.1 < y < 0.9$
Dependence of Λ Pol. on x_F and p_T (2002 Data, all Q^2)

Boris Grube, TU München

Λ Polarization Measurements at COMPASS
Dependence of $\bar{\Lambda}$ Pol. on x_F and p_T (2002 Data, all Q^2)

Boris Grube, TU München

Λ Polarization Measurements at COMPASS
Overall available Statistics (2002-04, all Q^2)

1.6 \cdot 10^6 \Lambda s

0.9 \cdot 10^6 \bar{\Lambda}s

COMPASS 2002-04, all Q^2

preliminary

PDG