Λ Polarization Measurements at COMPASS

Boris Grube on behalf of the COMPASS collaboration

Technische Universität München Physik Department E18 Garching, Germany

DIS06 XIV International Workshop on Deep Inelastic Scattering Tsukuba, 21st April 2006

Outline

- lacktriangle Longitudinal Λ and $\overline{\Lambda}$ polarization
 - Introduction
 - Extraction Method
 - Results
- $oldsymbol{2}$ Λ production from transversely polarized target
 - ullet Λ polarization and transversity
 - Extraction method
 - Results
- 3 Spontaneous transverse hyperon polarization

Ideal probe to study spin effects in high energy reactions

Self-analyzing weak decay $\Lambda o p \, \pi^-$, BR $pprox 64 \, \%$

• Parity violation: polarization P_S^A w.r.t. analyzer \vec{S} reveals itself ir angular distribution of decay daughters

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta} = \frac{N_0}{2} \left(1 + \alpha_\Lambda P_S^\Lambda \cos\theta \right)$$

with θ proton angle w.r.t. \vec{S} in Λ rest frame

- Suppression of background contaminations
- Correction of apparatus effects (acceptance)

Ideal probe to study spin effects in high energy reactions

Self-analyzing weak decay $\Lambda o p \, \pi^-$, BR $pprox 64 \, \%$

• Parity violation: polarization P_S^{Λ} w.r.t. analyzer \vec{S} reveals itself in angular distribution of decay daughters

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta} = \frac{N_0}{2} \Big(1 + \alpha_{\!\Lambda} \frac{P_{\!S}^{\!\Lambda}}{S} \cos\theta \Big)$$

with θ proton angle w.r.t. \vec{S} in Λ rest frame

$$lpha_{\Lambda} = 0.642 \pm 0.013$$
 decay assymmetry parameter

Extraction of angular distributions

Correction of apparatus effects (acceptance)

Ideal probe to study spin effects in high energy reactions

Self-analyzing weak decay $\Lambda \to p \; \pi^-$, BR $pprox 64 \; \%$

• Parity violation: polarization P_S^{Λ} w.r.t. analyzer \vec{S} reveals itself in angular distribution of decay daughters

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta} = \frac{N_0}{2} \left(1 + \alpha_{\Lambda} P_{S}^{\Lambda} \cos\theta \right)$$

with θ proton angle w.r.t. \vec{S} in Λ rest frame

$$lpha_{\Lambda} = 0.642 \pm 0.013$$
 decay assymmetry parameter

- Suppression of background contaminations
- Correction of apparatus effects (acceptance)

Ideal probe to study spin effects in high energy reactions

Self-analyzing weak decay $\Lambda \to p \; \pi^-$, BR $pprox 64 \; \%$

• Parity violation: polarization P_S^{Λ} w.r.t. analyzer \vec{S} reveals itself in angular distribution of decay daughters

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta} = \frac{N_0}{2} \left(1 + \alpha_{\Lambda} P_{S}^{\Lambda} \cos\theta \right)$$

with θ proton angle w.r.t. \vec{S} in Λ rest frame

$$lpha_{\Lambda} = 0.642 \pm 0.013$$
 decay assymmetry parameter

- Suppression of background contaminations
- Correction of apparatus effects (acceptance)

Ideal probe to study spin effects in high energy reactions

Self-analyzing weak decay $\Lambda \to p \; \pi^-$, BR $pprox 64 \; \%$

• Parity violation: polarization P_S^{Λ} w.r.t. analyzer \vec{S} reveals itself in angular distribution of decay daughters

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta} = \frac{N_0}{2} \left(1 + \alpha_{\Lambda} P_{S}^{\Lambda} \cos\theta \right)$$

with θ proton angle w.r.t. \vec{S} in Λ rest frame

$$lpha_{\Lambda} = 0.642 \pm 0.013$$
 decay assymmetry parameter

- Suppression of background contaminations
- Correction of apparatus effects (acceptance)

Fixed target experiment @ CERN SPS

- 2-stage spectrometer
- ullet longitudinally polarized 160 GeV/c μ^+ -beam
- Longitudinally/transversely polarized ⁶LiD target

Setup 2003 (topview)

Fixed target experiment @ CERN SPS

- 2-stage spectrometer
- \bullet longitudinally polarized 160 GeV/c μ^+ -beam
- Longitudinally/transversely polarized ⁶LiD target

Setup 2003 (topview)

Fixed target experiment @ CERN SPS

- 2-stage spectrometer
- ullet longitudinally polarized 160 GeV/c μ^+ -beam
- Longitudinally/transversely polarized ⁶LiD targe

Setup 2003 (topview)

Fixed target experiment @ CERN SPS

- 2-stage spectrometer
- longitudinally polarized 160 GeV/c μ^+ -beam
- Longitudinally/transversely polarized ⁶LiD target

Setup 2003 (topview)

Fixed target experiment @ CERN SPS

- 2-stage spectrometer
- longitudinally polarized 160 GeV/c μ^+ -beam
- Longitudinally/transversely polarized ⁶LiD target

Setup 2003 (topview)

Outline

- lacktriangledown Longitudinal Λ and $\overline{\Lambda}$ polarization
 - Introduction
 - Extraction Method
 - Results
- $oxed{2}$ Λ production from transversely polarized target
 - Λ polarization and transversity
 - Extraction method
 - Results
- 3 Spontaneous transverse hyperon polarization

- Study of spin transfer process $q^{\rightarrow} \rightarrow \Lambda^{\Rightarrow}$
- A spin structure
 - Test of $q\bar{q}$ symmetry of
 - s(x) vs. $\bar{s}(x)$
 - $\Delta s(x)$ vs. $\Delta \bar{s}(x)$

- Study of spin transfer process $a^{\rightarrow} \rightarrow \Lambda^{\Rightarrow}$
- Λ spin structure
- Test of $q\bar{q}$ symmetry of strange sea in nucleon:

$$s(x)$$
 vs. $\bar{s}(x)$

$$\Delta s(x)$$
 vs. $\Delta \bar{s}(x)$

- Study of spin transfer process $q^{\rightarrow} \rightarrow \Lambda^{\Rightarrow}$
- Λ spin structure
- Test of $q\bar{q}$ symmetry of strange sea in nucleon:

$$s(x)$$
 vs. $\bar{s}(x)$

$$\Delta s(x)$$
 vs. $\Delta \bar{s}(x)$

- Study of spin transfer process $q^{\rightarrow} \rightarrow \Lambda^{\Rightarrow}$
- Λ spin structure
- Test of $q\bar{q}$ symmetry of strange sea in nucleon:

$$s(x)$$
 vs. $\bar{s}(x)$

$$\Delta s(x)$$
 vs. $\Delta \bar{s}(x)$

- Study of spin transfer process $q^{\rightarrow} \rightarrow \Lambda^{\Rightarrow}$
- Λ spin structure
- Test of $q\bar{q}$ symmetry of strange sea in nucleon:

$$s(x)$$
 vs. $\bar{s}(x)$

$$\Delta s(x)$$
 vs. $\Delta \bar{s}(x)$

Assuming $x_F > 0$ and quark fragmentation

$$\begin{split} P_L^{\Lambda} &= \frac{\sum_q e_q^2 \left[P_B \cdot D_L(y) \cdot \textbf{\textit{q}}(\textbf{\textit{x}}_{Bj}) + f \cdot P_N \cdot \Delta \textbf{\textit{q}}(\textbf{\textit{x}}_{Bj}) \right] \Delta D_{\Lambda/q}(z_h)}{\sum_q e_q^2 \left[q(\textbf{\textit{x}}_{Bj}) + f \cdot P_N \cdot P_B \cdot D_L(y) \cdot \Delta \textbf{\textit{q}}(\textbf{\textit{x}}_{Bj}) \right] \hat{D}_{\Lambda/q}(z_h)} \\ & \text{with} \quad D_L(y) = \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \quad \text{longitudinal depolarization factor} \\ & P_B \quad \text{beam polarization} \approx -76 \% \\ & f \quad \text{target dilution factor} \approx 0.45 \\ & P_N \quad \text{target polarization} \approx 50 \% \end{split}$$

Measurement of polarized fragmentation function $\Delta D_{\Lambda/a}(z_h)$

averaging over target polarization $\implies P_N = 0$

Assuming $x_F > 0$ and quark fragmentation

$$\begin{split} P_L^{\Lambda} &= \frac{\sum_q e_q^2 \left[P_B \cdot D_L(y) \cdot \textbf{\textit{q}}(\textbf{\textit{x}}_{Bj}) + f \cdot P_N \cdot \Delta \textbf{\textit{q}}(\textbf{\textit{x}}_{Bj}) \right] \Delta D_{\Lambda/q}(z_h)}{\sum_q e_q^2 \left[q(\textbf{\textit{x}}_{Bj}) + f \cdot P_N \cdot P_B \cdot D_L(y) \cdot \Delta \textbf{\textit{q}}(\textbf{\textit{x}}_{Bj}) \right] \hat{D}_{\Lambda/q}(z_h)} \\ & \text{with} \quad D_L(y) = \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \quad \text{longitudinal depolarization factor} \\ & P_B \quad \text{beam polarization} \approx -76 \% \\ & f \quad \text{target dilution factor} \approx 0.45 \\ & P_N \quad \text{target polarization} \approx 50 \% \end{split}$$

Measurement of polarized fragmentation function $\Delta D_{\Lambda/q}(z_h)$

averaging over target polarization $\implies P_N = 0$

Assuming $x_F > 0$ and quark fragmentation; $P_N = 0$

$$\begin{split} P_L^{\Lambda} &= P_B \cdot D_L(y) \, \frac{\sum_q e_q^2 \, q(x_{Bj}) \, \Delta D_{\Lambda/q}(z_h)}{\sum_q e_q^2 \, q(x_{Bj}) \, \hat{D}_{\Lambda/q}(z_h)} \\ & \text{with} \quad D_L(y) = \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \quad \text{longitudinal depolarization factor} \\ & P_B \quad \text{beam polarization} \approx -76 \, \% \end{split}$$

Model calculations

• Significant contribution from diquark fragmentation for $x_F >$ J. Ellis et al., EPJ C25, 603 (2002)

• About 40 % indirect Δ s from Σ^0 , $\Sigma(1385)$, and Ξ

Assuming $x_F > 0$ and quark fragmentation; $P_N = 0$

$$\begin{split} P_L^{\Lambda} &= P_B \cdot D_L(y) \, \frac{\sum_q e_q^2 \, q(x_{Bj}) \, \Delta D_{\Lambda/q}(z_h)}{\sum_q e_q^2 \, q(x_{Bj}) \, \hat{D}_{\Lambda/q}(z_h)} \\ & \text{with} \quad D_L(y) = \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \quad \text{longitudinal depolarization factor} \\ & P_B \quad \text{beam polarization} \approx -76 \, \% \end{split}$$

Model calculations

- Significant contribution from diquark fragmentation for $x_F > 1$ J. Ellis et al., EPJ C25, 603 (2002)
- About 40 % indirect Λ s from Σ^0 , $\Sigma(1385)$, and Ξ A. Kotzinian et al., EPJ C2, 329 (1998)

Assuming $x_F > 0$ and quark fragmentation; $P_N = 0$

$$\begin{split} P_L^{\Lambda} &= P_B \cdot D_L(y) \, \frac{\sum_q e_q^2 \, q(x_{Bj}) \, \Delta D_{\Lambda/q}(z_h)}{\sum_q e_q^2 \, q(x_{Bj}) \, \hat{D}_{\Lambda/q}(z_h)} \\ & \text{with} \quad D_L(y) = \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \quad \text{longitudinal depolarization factor} \\ P_B \quad \text{beam polarization} \approx -76 \, \% \end{split}$$

Model calculations

- Significant contribution from diquark fragmentation for $x_F > 1$ J. Ellis et al., EPJ C25, 603 (2002)
- About 40 % indirect Λ s from Σ^0 , $\Sigma(1385)$, and Ξ A. Kotzinian et al., EPJ C2, 329 (1998)

Longitudinal polarization

- Analyzer along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method

- Event-by-event identification of hyperons not required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \implies number of As from fit parameters
 - \implies background corrected angular distribution

Acceptance correction

Longitudinal polarization

- Analyzer along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method

- Event-by-event identification of hyperons not required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \implies number of As from fit parameters
 - ⇒ background corrected angular distribution

Acceptance correction

Longitudinal polarization

- Analyzer along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method

- Event-by-event identification of hyperons not required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \implies number of Λ s from fit parameter
 - ⇒ background corrected angular distribution

Acceptance correction

Longitudinal polarization

- Analyzer along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method

- Event-by-event identification of hyperons not required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \implies number of Λ s from fit parameter
 - ⇒ background corrected angular distribution

Acceptance correction

Longitudinal polarization

- Analyzer along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method

- Event-by-event identification of hyperons **not** required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- ullet Fit of histogram \Longrightarrow number of Λ s from fit parameter
 - ⇒ background corrected angular distribution

Acceptance correction

Longitudinal polarization

- Analyzer along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method

- Event-by-event identification of hyperons **not** required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \implies number of Λ s from fit parameter
 - \implies background corrected angular distribution

Acceptance correction

Longitudinal polarization

- Analyzer along virtual photon direction
- Angular distribution of proton w.r.t. γ^* in Λ rest frame

Bin-by-bin Method

- Event-by-event identification of hyperons **not** required
- Subdivision of sample into bins in $\cos \theta$
- For each bin invariant mass histogram
- Fit of histogram \implies number of Λ s from fit parameter
 - ⇒ background corrected angular distribution

Acceptance correction

Background contributions

- No particle ID used in Λ selection
- kinematically indistinguishable K_S^0
- Combinatorial background
- e^+e^- pairs from γ conversion

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with Gauss(x) + aK(x) + c_0 + c_{12}

Background contributions

- No particle ID used in
 Λ selection
- kinematically indistinguishable K_s^0
- Combinatorial background
- e^+e^- pairs from γ conversion

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with
 - Gauss(x) + $aK(x) + c_0 + c_1x$

Background contributions

- No particle ID used in Λ selection
- kinematically indistinguishable K_S^0
- Combinatorial background
- e^+e^- pairs from γ conversion

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with
 - $Gauss(x) + aK(x) + c_0 + c_1x$

Background contributions

- No particle ID used in
 Λ selection
- kinematically indistinguishable K_S^0
- Combinatorial background
- e^+e^- pairs from γ conversion

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with
 - $Gauss(x) + aK(x) + c_0 + c_1x$

Background contributions

- No particle ID used in
 Λ selection
- kinematically indistinguishable K_S^0
- Combinatorial background
- e^+e^- pairs from γ conversion

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with
- Gauss(x) + $aK(x) + c_0 + c_1x$

Background contributions

- No particle ID used in Λ selection
- kinematically indistinguishable K_S^0
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with
 - Gauss(x) + $aK(x) + c_0 + c_1x$

COMPASS 2003, Preliminary Total Kaor -1.0 ≤ cos θ_x < -0.8 -0.8 ≤ cos θ_x < -0.6

Fit result Total background Kaons background

M(pπ), GeV

MC improved Background Description

Background contributions

- No particle ID used in Λ selection
- kinematically indistinguishable K_s^0
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC

- Kaon distribution $K(m_{n\pi^{-}})$

-1.0 ≤ cos θ_χ < -0.8 -0.6 ≤ cos θ_v < -0.4 -0.2 ≤ cos θ_χ < -0.0 10 0.2 ≤ cos θ_v < 0.4 0.6 ≤ cos θ_X < 0.8 10²

 $-1.0 \le \cos \theta_{\chi} < -0.8$

0.2 ≤ cos θ_v < 0.4

0.6 ≤ cos θ_x < 0.8

10²

MC improved Background Description

Background contributions

- No particle ID used in Λ selection
- kinematically indistinguishable K_S^0
- Combinatorial background
- e^+e^- pairs from γ conversion

Kaon Background from MC

- Kaon distribution $K(m_{p\pi^-})$
- Data are fitted with Gauss(x) + aK(x) + c_0 + c_1x

COMPASS 2003, Preliminary

M(pπ), GeV

Kinematics of Λ Prod. (2003, $Q^2 > 1 \,\text{GeV}^2$)

Total statistics 2003

31,000 Λ s 18,000 $\bar{\Lambda}$ s

Mean values

$$\langle x_{Bi} \rangle = 0.0283$$

$$\langle x_F \rangle = 0.23$$

$$\langle y \rangle = 0.48$$

$$\langle z \rangle = 0.29$$

$$\langle Q^2 \rangle = 3.55 \,\text{GeV}^2$$

$$\langle W \rangle = 11.7 \, \text{GeV}$$

Kinematics of Λ Prod. (2003, $Q^2 > 1 \text{ GeV}^2$)

Total statistics 2003

31,000 Λ s 18,000 $\bar{\Lambda}$ s

Mean values

$$\langle x_{Bj} \rangle = 0.0283$$

$$\langle x_F \rangle = 0.23$$

$$\langle y \rangle = 0.48$$

$$\langle z \rangle = 0.29$$

$$\langle Q^2 \rangle = 3.55 \,\text{GeV}^2$$

$$\langle W \rangle = 11.7 \,\text{GeV}$$

y- and x_{Bj} -Dependence of long. Pol., $Q^2 > 1 \text{ GeV}^2$

 $Systematic\ errors < 5\ \%$

z- and W^2 -Dependence of long. Pol., $Q^2 > 1 \text{ GeV}^2$

Systematic errors < 5 %

Outline

- \bigcirc Longitudinal Λ and $\overline{\Lambda}$ polarization
 - Introduction
 - Extraction Method
 - Results
- 2 Λ production from transversely polarized target
 - ullet Λ polarization and transversity
 - Extraction method
 - Results
- 3 Spontaneous transverse hyperon polarization

Transversely polarized target

Measured process: $\mu N^{\uparrow} \longrightarrow \mu' \Lambda^{\uparrow} X$

Underlying elementary QED process: γ^*q^{\dagger} scattering

Transversely polarized target

Measured process: $\mu N^{\uparrow} \longrightarrow \mu' \Lambda^{\uparrow} X$

Underlying elementary QED process: γ^*q^\uparrow scattering

Transversely polarized target

Measured process: $\mu N^{\uparrow} \longrightarrow \mu' \Lambda^{\uparrow} X$

Transversely polarized target

Measured process: $\mu N^{\uparrow} \longrightarrow \mu' \Lambda^{\uparrow} X$

Underlying elementary QED process: $\gamma^* q^\uparrow$ scattering

Λ polarization and Transversity

Assuming $x_F > 0$ and quark fragmentation

$$\begin{split} P_T^{\Lambda} &= f \cdot P_N \cdot D_T(y) \, \frac{\sum_q e_q^2 \, \Delta_T q(x_{Bj}) \, \Delta_T D_{\Lambda/q}(z_h)}{\sum_q e_q^2 \, q(x_{Bj}) \, \hat{D}_{\Lambda/q}(z_h)} \\ & \text{with} \quad D_T(y) = \frac{2(1-y)}{1+(1-y)^2} \quad \text{transverse depolarization factor} \\ & f \qquad \text{target dilution factor} \approx 0.45 \\ & P_N \quad \text{target polarization} \approx 50 \, \% \end{split}$$

Chiral-odd partner of $\Delta_T q(x_{Bi})$: transversity fragmentation function

$$\Delta_T D_{\Lambda/q}(z_h) \equiv D_{\Lambda^{\uparrow}/q^{\uparrow}}(z_h) - D_{\Lambda^{\Downarrow}/q^{\uparrow}}(z_h)$$

• both $\Delta_{T}g(x_{Bi})$ and $\Delta_{T}D_{A/g}(z_{B})$ unknown

Λ polarization and Transversity

Assuming $x_F > 0$ and quark fragmentation

$$\begin{split} P_T^{\Lambda} &= f \cdot P_N \cdot D_T(y) \, \frac{\sum_q e_q^2 \, \Delta_T q(x_{Bj}) \, \Delta_T D_{\Lambda/q}(z_h)}{\sum_q e_q^2 \, q(x_{Bj}) \, \hat{D}_{\Lambda/q}(z_h)} \\ & \text{with} \quad D_T(y) = \frac{2(1-y)}{1+(1-y)^2} \quad \text{transverse depolarization factor} \\ & f \quad \text{target dilution factor} \approx 0.45 \\ & P_N \quad \text{target polarization} \approx 50 \, \% \end{split}$$

Chiral-odd partner of $\Delta_T q(x_{Bi})$: transversity fragmentation function

$$\Delta_T D_{\Lambda/q}(z_h) \equiv D_{\Lambda^{\uparrow}/q^{\uparrow}}(z_h) - D_{\Lambda^{\Downarrow}/q^{\uparrow}}(z_h)$$

• both $\Delta_T q(x_{Bi})$ and $\Delta_T D_{\Lambda/q}(z_h)$ unknown

Λ polarization and Transversity

Assuming $x_F > 0$ and quark fragmentation

$$\begin{split} P_T^{\Lambda} &= f \cdot P_N \cdot D_T(y) \, \frac{\sum_q e_q^2 \, \Delta_T q(x_{Bj}) \, \Delta_T D_{\Lambda/q}(z_h)}{\sum_q e_q^2 \, q(x_{Bj}) \, \hat{D}_{\Lambda/q}(z_h)} \\ & \text{with} \quad D_T(y) = \frac{2(1-y)}{1+(1-y)^2} \quad \text{transverse depolarization factor} \\ & f \quad \text{target dilution factor} \approx 0.45 \\ & P_N \quad \text{target polarization} \approx 50 \, \% \end{split}$$

Chiral-odd partner of $\Delta_T q(x_{Bi})$: transversity fragmentation function

$$\Delta_T D_{\Lambda/q}(z_h) \equiv D_{\Lambda^{\uparrow}/q^{\uparrow}}(z_h) - D_{\Lambda^{\Downarrow}/q^{\uparrow}}(z_h)$$

• both $\Delta_T q(x_{Bj})$ and $\Delta_T D_{\Lambda/q}(z_h)$ unknown

COMPASS Polarized Target

- 2 target cells, each 60 cm long
- 0.5 T magnetic dipole field sustains transverse polarization

COMPASS Polarized Target

- 2 target cells, each 60 cm long
- 0.5 T magnetic dipole field sustains transverse polarization

A polarization and transversi Extraction method Results

Acceptance Correction – Bias Canceling

• Background subtraction using bin-by-bin method

Assumptions

• Constant target polarization: $P_N^{(G)} = P_N^{(G)}$

• Background subtraction using bin-by-bin method

Exploit symmetry

Extract correction function from data
 Recombination of data samples from two target cells and two polarization configurations
 Acceptance corrected angular distribution ε_T(θ) = α_ΛP_T^Λ cos θ

Assumptions

• Constant acceptance: $A_1^+(\theta) = A_2^-(\theta)$ and $A_1^-(\theta) = A_2^+(\theta)$

• Background subtraction using bin-by-bin method

Exploit symmetry

- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta$

- Constant target polarization: $P_N^{(1)} = P_N^{(2)}$
- Constant acceptance: $A_1^+(\theta) = A_2^-(\theta)$ and $A_1^-(\theta) = A_2^+(\theta)$

• Background subtraction using bin-by-bin method

Exploit symmetry

- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_{\Lambda} P_T^{\Lambda} \cos \theta$

Assumptions

• Constant target polarization: $F_N = F_N$ • Constant acceptance: $A_+^+(\theta) = A_-^-(\theta)$ and $A_-^-(\theta) = A_+^+(\theta)$

• Background subtraction using bin-by-bin method

Exploit symmetry

- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta$

Assumptions

• Constant acceptance: $A_1^+(\theta) = A_2^-(\theta)$ and $A_1^-(\theta) = A_2^+(\theta)$

• Background subtraction using bin-by-bin method

Exploit symmetry

- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_\Lambda P_T^\Lambda \cos \theta$

- Constant target polarization: $P_N^{(1)} = P_N^{(2)}$
- Constant acceptance: $A_1^+(\theta) = A_2^-(\theta)$ and $A_1^-(\theta) = A_2^+(\theta)$

• Background subtraction using bin-by-bin method

Exploit symmetry

- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_{\Lambda} P_T^{\Lambda} \cos \theta$

- Constant target polarization: $P_N^{(1)} = P_N^{(2)}$
- Constant acceptance: $A_1^+(\theta) = A_2^-(\theta)$ and $A_1^-(\theta) = A_2^+(\theta)$

• Background subtraction using bin-by-bin method

Exploit symmetry

- Extract correction function from data
- Recombination of data samples from two target cells and two polarization configurations
- Acceptance corrected angular distribution $\epsilon_T(\theta) = \alpha_{\Lambda} P_T^{\Lambda} \cos \theta$

- Constant target polarization: $P_N^{(1)} = P_N^{(2)}$
- Constant acceptance: $A_1^+(\theta) = A_2^-(\theta)$ and $A_1^-(\theta) = A_2^+(\theta)$

Overall available Statistics (2002-03, $Q^2 > 1 \text{ GeV}^2$)

x_{Bj} -Dependence of Transv. Λ Polarization, $Q^2 > 1 \, \text{GeV}^2$

Outline

- lacktriangle Longitudinal Λ and $\overline{\Lambda}$ polarization
 - Introduction
 - Extraction Method
 - Results
- $oxed{2}$ Λ production from transversely polarized target
 - Λ polarization and transversity
 - Extraction method
 - Results
- Spontaneous transverse hyperon polarization

Production of polarized hyperons in unpolarized inclusive reactions

Parity conservation

Polarization transverse to production plane

Naïve expectation

High energy
 ⇒ large number of production channels:
 comparable magnitudes + various relative phases
 Random interference
 ⇒ small polarization

- This is a second of the position of the second of the se

Big surprise 1976 at Fermilab

• Discovery of sizeable transverse polarization $P_T^A = -28 \pm 8$ % in $n \text{ Re} \longrightarrow A^{\dagger} X @ n_0 = -300 \text{ GeV/c}$

ary be will in a page of the p

No model is able to explains all experimental data

Only few data from photo-production

Production of polarized hyperons in unpolarized inclusive reactions

Parity conservation

Polarization transverse to production plane

Naïve expectation

- ◆ High energy ⇒ large number of production channels: comparable magnitudes + various relative phases
- Random interference \implies small polarization

Big surprise 1976 at Fermilah

- Discovery of sizeable transverse polarization $P_T^A = -28 \pm 8$ %
- In p be $\rightarrow 21^{\circ} \text{A} \otimes p$ Beam $= 500^{\circ} \text{GeV/t}$
- No model is able to explains all experimental data
- Only few data from photo-production

Production of polarized hyperons in unpolarized inclusive reactions

Parity conservation

Polarization transverse to production plane

Naïve expectation

- ◆ High energy ⇒ large number of production channels: comparable magnitudes + various relative phases
- Random interference \implies small polarization

Big surprise 1976 at Fermilah

in $p \text{ Be} \longrightarrow \Lambda^{\uparrow} X @ p_{\text{Beam}} = 300 \text{ GeV/}c$ • No model is able to explains all experimental data

Production of polarized hyperons in unpolarized inclusive reactions

Parity conservation

Polarization transverse to production plane

Naïve expectation

- ◆ High energy ⇒ large number of production channels: comparable magnitudes + various relative phases
- Random interference \implies small polarization

Big surprise 1976 at Fermilab

- Discovery of sizeable transverse polarization $P_T^{\Lambda} = -28 \pm 8 \%$ in $p \text{ Be} \longrightarrow \Lambda^{\uparrow} X @ p_{\text{Beam}} = 300 \text{ GeV/}c$
- No model is able to explains all experimental data
- Only few data from photo-production

Production of polarized hyperons in unpolarized inclusive reactions

Parity conservation

Polarization transverse to production plane

Naïve expectation

- ◆ High energy ⇒ large number of production channels: comparable magnitudes + various relative phases
- Random interference \implies small polarization

Big surprise 1976 at Fermilab

- Discovery of sizeable transverse polarization $P_T^{\Lambda} = -28 \pm 8 \%$ in $p \text{ Be} \longrightarrow \Lambda^{\uparrow} X @ p_{\text{Beam}} = 300 \text{ GeV/}c$
- No model is able to explains all experimental data
- Only few data from photo-production

Production of polarized hyperons in unpolarized inclusive reactions

Parity conservation

Polarization transverse to production plane

Naïve expectation

- ◆ High energy ⇒ large number of production channels: comparable magnitudes + various relative phases
- Random interference \implies small polarization

Big surprise 1976 at Fermilab

- Discovery of sizeable transverse polarization $P_T^{\Lambda} = -28 \pm 8 \%$ in $p \text{ Be} \longrightarrow \Lambda^{\uparrow} X @ p_{\text{Beam}} = 300 \text{ GeV/}c$
- No model is able to explains all experimental data
- Only few data from photo-production

Hyperon Production in unpolarized Reaction

- Inclusive hyperon production in reaction $\mu N \longrightarrow \mu' \Lambda^{\uparrow} X$
- Quasi-real virtual photon γ^* with $\langle Q^2 \rangle \approx 0.36 \, \text{GeV}^2$
- Analyzer along production plane normal

Hyperon Production in unpolarized Reaction

- Inclusive hyperon production in reaction $\mu N \longrightarrow \mu' \Lambda^{\uparrow} X$
- Quasi-real virtual photon γ^* with $\langle Q^2 \rangle \approx 0.36 \, \text{GeV}^2$
- Analyzer along production plane normal

Hyperon Production in unpolarized Reaction

- Inclusive hyperon production in reaction $\mu N \longrightarrow \mu' \Lambda^{\uparrow} X$
- Quasi-real virtual photon γ^* with $\langle Q^2 \rangle \approx 0.36 \, \text{GeV}^2$
- Analyzer along production plane normal

Acceptance Correction - Bias cancelling

Exploits mid-plane symmetry of apparatus Cancels left-right asymmetry

Acceptance Correction – Bias cancelling

Exploits mid-plane symmetry of apparatus Cancels left-right asymmetry

Bin-by-bin method – separation of K^0 background

• Expansion of Λ invariant mass histogram with K^0 mass

- Full two-dimensional fit in $(m_{p\pi^-}, m_{\pi^+\pi^-})$ plane
- Extraction of false K^0 background polarization in same kinematical region as Λ

Acceptance Correction – Bias cancelling

Exploits mid-plane symmetry of apparatus
 Cancels left-right asymmetry

Bin-by-bin method – separation of K^0 background

• Expansion of Λ invariant mass histogram with K^0 mass

- Full two-dimensional fit in $(m_{p\pi^-}, m_{\pi^+\pi^-})$ plane
- Extraction of false K^0 background polarization in same kinematical region as Λ

Acceptance Correction - Bias cancelling

- Exploits mid-plane symmetry of apparatus
- Cancels left-right asymmetry

Bin-by-bin method – separation of K^0 background

• Expansion of Λ invariant mass histogram with K^0 mass

- Full two-dimensional fit in $(m_{p\pi^-}, m_{\pi^+\pi^-})$ plane
- Extraction of false K^0 background polarization in same kinematical region as Λ

Acceptance Correction - Bias cancelling

- Exploits mid-plane symmetry of apparatus
- Cancels left-right asymmetry

First analysis on 2002 data, all Q^2

- 160,000 Λ s and 85,000 $\overline{\Lambda}$ s
- Small positive Λ polarization:

$$P_T^{\Lambda} = +2.7 \pm 0.9 \text{(stat.)} \pm 1.1 \text{(sys.)} \%$$

- Sign opposite to Λ polarization in p and π^- beams
- Same sign as in K^- beam
- Much lower absolute value
- $\bar{\Lambda}$ unpolarized: $P_T^{\bar{\Lambda}} = -0.3 \pm 1.4 ({\rm stat.}) \pm 1.8 ({\rm sys.}) \%$

- 2002 sample only 10 % of available statistics
- 2002-04, all Q^2 : 1.6 · 10⁶ As and 0.9 · 10⁶ \overline{A} s
- Analysis nearly finalized

First analysis on 2002 data, all Q^2

- 160,000 Λ s and 85,000 $\overline{\Lambda}$ s
- Small positive Λ polarization:

$$P_T^{\Lambda} = +2.7 \pm 0.9 \text{(stat.)} \pm 1.1 \text{(sys.)} \%$$

- Sign opposite to Λ polarization in p and π^- beams
- Same sign as in K^- beam
- Much lower absolute value
- $\overline{\Lambda}$ unpolarized: $P_T^{\overline{\Lambda}} = -0.3 \pm 1.4 ({\rm stat.}) \pm 1.8 ({\rm sys.}) \%$

- 2002 sample only 10 % of available statistics
- 2002-04, all Q^2 : 1.6 · 10⁶ As and 0.9 · 10⁶ \overline{A} s
- Analysis nearly finalized

First analysis on 2002 data, all Q^2

- 160,000 Λ s and 85,000 $\overline{\Lambda}$ s
- Small positive Λ polarization:

$$P_T^{\Lambda} = +2.7 \pm 0.9 \text{(stat.)} \pm 1.1 \text{(sys.)} \%$$

- Sign opposite to Λ polarization in p and π^- beams
- Same sign as in K^- beam
- Much lower absolute value
- $\bar{\Lambda}$ unpolarized: $P_T^{\bar{\Lambda}} = -0.3 \pm 1.4 ({\rm stat.}) \pm 1.8 ({\rm sys.}) \%$

- 2002 sample only 10 % of available statistics
- 2002-04, all Q^2 : 1.6 · 10 As and 0.9 · 10 As
- Analysis nearly finalized

First analysis on 2002 data, all Q^2

- 160,000 Λ s and 85,000 $\overline{\Lambda}$ s
- Small positive Λ polarization:

$$P_T^{\Lambda} = +2.7 \pm 0.9 \text{(stat.)} \pm 1.1 \text{(sys.)} \%$$

- Sign opposite to Λ polarization in p and π^- beams
- Same sign as in K^- beam
- Much lower absolute value
- $\bar{\Lambda}$ unpolarized: $P_T^{\bar{\Lambda}} = -0.3 \pm 1.4 ({\rm stat.}) \pm 1.8 ({\rm sys.}) \%$

- 2002 sample only 10 % of available statistics
- 2002-04, all Q^2 : $1.6 \cdot 10^6$ As and $0.9 \cdot 10^6$ As
- Analysis nearly finalized

First analysis on 2002 data, all Q^2

- 160,000 Λ s and 85,000 $\overline{\Lambda}$ s
- Small positive Λ polarization:

$$P_T^{\Lambda} = +2.7 \pm 0.9 \text{(stat.)} \pm 1.1 \text{(sys.)} \%$$

- Sign opposite to Λ polarization in p and π^- beams
- Same sign as in K^- beam
- Much lower absolute value
- $\overline{\Lambda}$ unpolarized: $P_T^{\Lambda} = -0.3 \pm 1.4 \text{(stat.)} \pm 1.8 \text{(sys.)} \%$

- 2002 sample only 10 % of available statistics
- 2002-04, all Q^2 : 1.6 · 10⁶ As and 0.9 · 10⁶ $\overline{\Lambda}$ s
- Analysis nearly finalized

First analysis on 2002 data, all Q^2

- 160,000 Λ s and 85,000 $\overline{\Lambda}$ s
- Small positive Λ polarization:

$$P_T^{\Lambda} = +2.7 \pm 0.9 \text{(stat.)} \pm 1.1 \text{(sys.)} \%$$

- Sign opposite to Λ polarization in p and π^- beams
- Same sign as in K^- beam
- Much lower absolute value
- $\bar{\Lambda}$ unpolarized: $P_T^{\bar{\Lambda}} = -0.3 \pm 1.4 ({\rm stat.}) \pm 1.8 ({\rm sys.}) \%$

Work in progress

• 2002 sample only 10 % of available statistics

Analysis noarly finalized

First analysis on 2002 data, all Q^2

- 160,000 Λ s and 85,000 $\overline{\Lambda}$ s
- Small positive Λ polarization:

$$P_T^{\Lambda} = +2.7 \pm 0.9 \text{(stat.)} \pm 1.1 \text{(sys.)} \%$$

- Sign opposite to Λ polarization in p and π^- beams
- Same sign as in K^- beam
- Much lower absolute value
- $\bar{\Lambda}$ unpolarized: $P_T^{\bar{\Lambda}} = -0.3 \pm 1.4 ({\rm stat.}) \pm 1.8 ({\rm sys.}) \%$

- 2002 sample only 10 % of available statistics
- 2002-04, all Q^2 : 1.6 · 10⁶ Λ s and 0.9 · 10⁶ $\bar{\Lambda}$ s
- Analysis nearly finalized

First analysis on 2002 data, all Q^2

- 160,000 Λ s and 85,000 $\overline{\Lambda}$ s
- Small positive Λ polarization:

$$P_T^{\Lambda} = +2.7 \pm 0.9 \text{(stat.)} \pm 1.1 \text{(sys.)} \%$$

- Sign opposite to Λ polarization in p and π^- beams
- Same sign as in K^- beam
- Much lower absolute value
- $\bar{\Lambda}$ unpolarized: $P_T^{\bar{\Lambda}} = -0.3 \pm 1.4 ({\rm stat.}) \pm 1.8 ({\rm sys.}) \%$

- 2002 sample only 10 % of available statistics
- 2002-04, all Q^2 : 1.6 · 10⁶ As and 0.9 · 10⁶ $\overline{\Lambda}$ s
- Analysis nearly finalized

First analysis on 2002 data, all Q^2

- 160,000 Λ s and 85,000 $\overline{\Lambda}$ s
- Small positive Λ polarization:

$$P_T^{\Lambda} = +2.7 \pm 0.9 \text{(stat.)} \pm 1.1 \text{(sys.)} \%$$

- Sign opposite to Λ polarization in p and π^- beams
- Same sign as in K^- beam
- Much lower absolute value
- $\bar{\Lambda}$ unpolarized: $P_T^{\bar{\Lambda}} = -0.3 \pm 1.4 ({\rm stat.}) \pm 1.8 ({\rm sys.}) \%$

- 2002 sample only 10 % of available statistics
- 2002-04, all O^2 : 1.6 · 10⁶ As and 0.9 · 10⁶ $\overline{\Lambda}$ s
- Analysis nearly finalized

Longitudinal polarization transfer

- 2003 data sample
- Similar longitudinal polarization of Λ and $\overline{\Lambda}$
- Different production mechanism for Λ and $\overline{\Lambda}$

Transverse polarization transfer

- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Longitudinal polarization transfer

- 2003 data sample
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\overline{\Lambda}$

Transverse polarization transfer

- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Longitudinal polarization transfer

- 2003 data sample
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Longitudinal polarization transfer

- 2003 data sample
- Similar longitudinal polarization of Λ and $\overline{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Longitudinal polarization transfer

- 2003 data sample
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Longitudinal polarization transfer

- 2003 data sample
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Longitudinal polarization transfer

- 2003 data sample
- Similar longitudinal polarization of Λ and $\overline{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Longitudinal polarization transfer

- 2003 data sample
- Similar longitudinal polarization of Λ and $\bar{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Longitudinal polarization transfer

- 2003 data sample
- Similar longitudinal polarization of Λ and $\overline{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Longitudinal polarization transfer

- 2003 data sample
- Similar longitudinal polarization of Λ and $\overline{\Lambda}$
- Different production mechanism for Λ and $\bar{\Lambda}$

Transverse polarization transfer

- 2002 + 2003 transversity data sample
- Slight tendency to negative polarizations
- Small statistics
- Systematic effects are smaller than statistical errors

Both analyses

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\overline{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- ullet First measurement of Ξ polarization in photo-production

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\overline{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- ullet First measurement of Ξ polarization in photo-production

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\overline{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- ullet First measurement of Ξ polarization in photo-production

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\overline{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- ullet First measurement of Ξ polarization in photo-production

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\overline{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- ullet First measurement of $oldsymbol{arXi}$ polarization in photo-production

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\overline{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- ullet First measurement of Ξ polarization in photo-production

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\overline{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- ullet First measurement of Ξ polarization in photo-production

Thank you!

Spontaneous transverse polarization

- 2002 data sample
- Small positive Λ polarization, $\overline{\Lambda}$ unpolarized
- Analysis of 2002-04 data nearly finalized
- Detailed kinematical analysis (x_F, p_T, Q^2, y) possible
- First measurement of Ξ polarization in photo-production

Thank you!

Kinematics of $\overline{\Lambda}$ Prod. (2003, $Q^2 > 1 \,\text{GeV}^2$)

Mean values

$$\langle x_{Bj} \rangle = 0.0258$$

$$\langle x_F \rangle = 0.21$$

$$\langle y \rangle = 0.51$$

$$\langle z \rangle = 0.27$$

$$\langle Q^2 \rangle = 3.50 \,\text{GeV}^2$$

$$\langle W \rangle = 12.1 \,\text{GeV}$$

Angular Distributions (2002, $Q^2 > 1 \,\text{GeV}^2$)

Spin Transfer to Λ and $\overline{\Lambda}$ (2002, $Q^2 > 1 \, \text{GeV}^2$)

Selection cuts

- Primary vertex in target
- Secondary V⁰ vertex outside of target
- Collinearity angle $\theta_{\rm col} < 10 \, {\rm mrad}$
- V^0 decay daughters: p > 1 GeV/c and $p_T > 23$ MeV/c
- V^0 momentum $p_{V^0} > 10 \text{ GeV/}c$
- DIS cut: $Q^2 > 1 \text{ GeV}^2$ and 0.2 < y < 0.9

Kinematics of Λ Production

- Mean virtual photon transverse depolarization factor $\langle D_T(y) \rangle \approx 0.8$
- Majority of Λ s produced in current fragmentation region $x_F > 0$
- Accessible x_{Bj} ranges
 - All Q^2 : $10^{-5} < x_{Bi} < 1$
 - $Q^2 > 1 \text{ GeV}^2$: $3 \cdot 10^{-3} < x_{Bj} < 1$

x_{Bj} -Dependence of Transv. Λ Polarization, All Q^2

Study of systematic Effects

- False K^0 polarization
- Subdivision of target cells into two halves
- Artificial change of orientation of target polarization: horizontal, random orientation

Systematic effects are smaller than statistical errors

Selection cuts

- Primary vertex in target
- Secondary V^0 vertex outside of target
- Collinearity angle $\theta_{\rm col} < 10 \, \rm mrad$
- V^0 decay daughters: p > 1 GeV/c and $p_T > 23$ MeV/c
- 0.1 < y < 0.9

Dependence of Λ Pol. on x_F and p_T (2002 Data, all Q^2)

Dependence of $\overline{\Lambda}$ Pol. on x_F and p_T (2002 Data, all Q^2)

Overall available Statistics (2002-04, all Q^2)

