

Longitudinal polarisation of Λ and $\bar{\Lambda}$ hyperons in deep-inelastic scattering at COMPASS.

On behalf of the COMPASS Collaboration

V. Alexakhin JINR, Dubna

Physics motivations

- Target fragmentation region (TFR) $x_F < 0$
 - Ellis, Kharzeev, Kotzinian (Z.Physik C69 (1996) 467) predict negative longitudinal polarisation of Λ hyperons (within polarised nucleon intrinsic strangeness model)

Ellis, Kotzinian, Naumov (Eur.Phys.J., C25 (2002) 603)

The predictions of polarised nucleon intrinsic strangeness model for the polarization of Λ hyperons produced in ν_{μ} charged-current DIS interactions off nuclei. The points with error bars are from NOMAD experiment.

- Current fragmentation region (CFR) $x_F > 0$
 - Study of the quark to baryon spin transfer processes $q \to \Lambda$
 - Λ spin structure $\mathrm{NQM}:\Delta u^{\Lambda}=\Delta d^{\Lambda}=0, \Delta s^{\Lambda}=1$ Burkardt and Jaffe: $g_1^{\Lambda}\Rightarrow\Delta u^{\Lambda}=\Delta d^{\Lambda}=-0.23,$ $\Delta s^{\Lambda}=0.58$
 - Test of the strange quark-antiquark symmetry of the nucleon sea

$$s(x) \neq \bar{s}(x)$$
 ?
 $\Delta s(x) \neq \Delta \bar{s}(x)$?

Quark-Antiquark Asymmetry of the Nucleon Sea

B.Q.Ma et al., Phys.Lett. B488 (2000) 254

- The z-dependence of the Λ and $\bar{\Lambda}$ spin transfer in polarised charged lepton DIS on the nucleon.
- The solid and dashed curves correspond to the calculated results of Λ and $\bar{\Lambda}$ spin transfers with different parametrisations of quark distributions.
- Possibility of quarkantiquark asymmetries either in the quark to Λ fragmentation functions and/or in the quark and antiquark distributions of the target proton.

Difficulties in interpretation of experimental results due to:

- large contribution from the diquark fragmentation (J. Ellis et al. Eur. Phys. J C25 (2002) 603)

 Rank counters R_{qq} and R_q corresond to particle rank from the diquark and quark ends of the string.
- significant fraction of Λ hyperons produced via decays of heavier strange particles

COMPASS experimental setup 2002

Polarised target

- Solenoidal field 2.5T
- 2×60 cm long cells
- 6LiD material
- $P_T \approx 50\%$
- f = 0.5
- In this analysis data are averaged on target polarisation

Selection cuts

- Decay vertex (V^0) must be outside of the target.
- The angle between vector of V^0 momentum and vector between primary and V^0 vertices should be $\theta_{col} < 0.01 \text{ rad.}$
- $p_t > 23 \text{ MeV/c}$.
- $Q^2 > 1 (GeV/c)^2$, 0.2 < y < 0.8

Kinematical characteristics

Kinematical characteristics

Experiments on Λ and Λ production in DIS

	$\mathrm{N}(\Lambda)$	$\mathrm{N}(ar{\Lambda})$
E665	750	650
NOMAD	8087	649
HERMES,	10586	1687
1996-2000		
COMPASS,	7919	5062
2002		

Angular distributions

- $\Lambda(\bar{\Lambda})$ hyperon polarisation is measured via angular asymmetry of decay protons in $\Lambda \to p\pi^- \ (\bar{\Lambda} \to \bar{p}\pi^+)$ decays.
- Determine X- axis along the direction of the virtual photon in the V^0 rest frame.
- The angular distribution in the $\Lambda(\bar{\Lambda})$ rest frame is

$$\frac{dN}{d\cos\theta_X} = \frac{N_{tot}}{2}(1 + \alpha P\cos\theta_X) \tag{1}$$

where N_{tot} is the total number of events, $\alpha = 0.642 \pm 0.013$ is Λ decay parameter, P is the projection of the polarisation vector at the corresponding axis, θ_X is the angle between the direction of the positive decay particle (proton for Λ , pion - for $\bar{\Lambda}$).

- Background subtraction using bin-by-bin fit of the invariant mass distributions of $(p\pi^-)$ in $\cos\theta$ bins.
- The acceptance correction $A(\cos \theta)$ was determined using unpolarised Monte Carlo simulation.

Corrected angular distributions

$$P_{K_s^0} = 0.007 \pm 0.017$$

$$P_{\Lambda} = 0.03 \pm 0.04 \pm 0.04$$

$$P_{\bar{\Lambda}} = -0.11 \pm 0.06 \pm 0.05$$

Spin transfer to Λ

$$S = \frac{P_{\Lambda}}{P_B D}$$

Spin transfer to $\bar{\Lambda}$

Conclusion

- 2002 data statistics is about 8000 Λ and 5000 $\bar{\Lambda}$ with background subtraction and with cuts on $Q^2 > 1$ $(GeV/c)^2$, 0.2 < y < 0.8.
- 2002 data show good potential of COMPASS for Λ and $\bar{\Lambda}$ hyperons polarisation measurement.
- Data samples collected in 2003 and 2004 will significantly increase the statistics.