The COMPASS Experiment - Status and Results -

> Horst Fischer Universität Freiburg

on behalf of the COMPASS Collaboration

> COMPASS Experiment Data Analysis First Results

COMPASS - History

COMPASS: <u>THE</u> new fixed target facility at CERN!

- 1996 COMPASS proposal
- 1997 conditional approval
- 1998 MoU
- 1999 2001 construction
 & installation
- 2001 technical run
- 2002, 2003, 2004 data taking
- in long range planning @CERN at least until 2010

The COMPASS Collaboration (230 Physicists from 12 Countries)

Contribute to the understanding of the non-perturbative physics of the nucleon

nucleon spin structure

- Gluon Polarization $\triangle G/G$
- transverse spin structure
 function h₁(x)
- Flavor dependent polarized quark helicity densities $\Delta q(x)$
- spin dependent fragmentation functions ΔD_q^{Λ}
- Diffractive VM-Production

nucleon spectroscopy

- Primakoff-Reactions
 - polarizability of π and K
- glueballs and hybrids
- charmed mesons and baryons
 - semi-leptonic decays
 - double-charmed baryons

Why (Spin)-Structure?

The COMPASS Experiment

The COMPASS Experiment

Many new technologies for tracking and PID

Readout electronics

trackers

<u>Ring Imaging CHerenkov Counter (RICH)</u> 3 m 6 m Single event vessel 13 mirror bhoton wall S letectors 3 si MWPC radiator: C4F10 detection of : • 🖬1.2 mrad **YUY photons** 5.3 m² MWPCs **G**O.4 mrad (165-200 nm) photons/ring *n~14* **16 Csl Photocathodes** \square/K sep. 3+ up to 84,000 analog readout channels

Hadron Identification

By RICH

...and hadron calorimeters

Excellent for non-perturbative & perturbative physics \Rightarrow small x_{Bj} \Rightarrow very small $Q^2 \rightarrow Q^2 > 100$ (GeV/c)²

Double Spin Asymmetry

 $A_{1} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \approx \frac{\sum_{i} e_{i}^{2} \left(q_{i}^{+} - q_{i}^{-}\right)}{\sum_{i} e_{i}^{2} \left(q_{i}^{+} + q_{i}^{-}\right)}$

 $g_1(x) = \frac{1}{2} \sum_i e_i^2 \left(q_i^+ - q_i^- \right)$ $F_1(x) = \frac{1}{2} \sum_i e_i^2 \left(q_i^+ + q_i^- \right)$

 $A_1(x) \approx \frac{g_1(x)}{F_1(x)}$

Flavor Decomposition

$\Delta \Sigma = \Delta u + \Delta \overline{u} + \Delta d + \Delta \overline{d} + \Delta s + \Delta \overline{s}$

Measurement of Gluon Polarization

Open charm reconstruction

J/w Production

2002: mostly "elastic" background

2003: dedicated trigger (2*yield) - study diffractive and elastic processes

Diffractive Vector-Mesons

- → : polar angle of □+ in VM rest frame
- $\Rightarrow \square \land \square = angle between VM decay plane and scattering plane and scatte$
- \rightarrow integrate W(cos $\square \boxdot \land \boxdot \lor)$ and study one dimensional pro

Angular distributions

measurement of \heartsuit and \clubsuit

Physics objectives

- Target Fragmentation region $(x_F < 0)$:
 - negative longitudinal polarization of Spredicted Ellis, Kharzeev, Kotzinian Z. Physik C69 (1996) 467
 - may test polarized strangeness content of nucleon
 - BUT: acceptance poor for COMPASS
- Current fragmentation region (x_F > 0):
 Study of spin transfer from photon to baryon
 measure & Spin structure
 NQM: Qu[®] I Qd[®] I Co
 Burkhardt, Jaffe PRL 70 (1993) 2537 :
 Qu[®] I Qd[®] I Co
- States an information coming from flavor SU(3) octet axial charges from hyperon decays)

Transverse Spin Physics

3 structure functions are necessary to describe the spin structure of the nucleon at LO:

h₁(x) decouples from leading twist DIS because helicity of quark must flip

No mixture with Gluon

Transverse Spin Physics

3 possible quark polarimeters suggested:
Measure transverse polarization of ⊗
Azimuthal dependence of the plain containing leading & next to leading hadrons
Azimuthal distribution of leading □

