Design and Status of COMPASS FAST-RICH Andrea Ferrero - (aferrero@to.infn.it) Beaune June 20-25, 2005 #### **Contents:** - Motivations - The COMPASS Fast RICH project - Testbeam results - MAPMT response in magnetic field - Conclusions ### Requirements for a fast RICH #### General motivations: - Hadron PID is essential for present and future HEP experiments - good hadron PID performances are needed at: - high luminosities, i.e. high beam intensities high trigger rates → deadtime-less readout is crucial - highly crowded environments The expected future conditions in COMPASS suggest the need of a FAST RICH: - ullet beam intensities $\sim \! 100$ MHz (presently 40 MHz) - trigger rates above 100 kHz (presently \sim 20 kHz) - highly crowded environments: - $m{\wp}$ large near and far μ beam halo (rate $\sim\!1/2$ of the beam rate) - expected interaction rate of h beam $>10^6$ Hz (target + detectors) ### Requirements for a fast RICH #### General motivations: - Hadron PID is essential for present and future HEP experiments - good hadron PID performances are needed at: - high luminosities, i.e. high beam intensities high trigger rates - → deadtime-less readout is crucial - highly crowded environments The expected future conditions in COMPASS suggest the need of a FAST RICH: - **beam** intensities \sim 100 MHz (presently 40 MHz) - $m{ ilde{D}}$ trigger rates above 100 kHz (presently \sim 20 kHz) - highly crowded environments: ### Requirements for a fast RICH #### General motivations: - Hadron PID is essential for present and future HEP experiments - good hadron PID performances are needed at: - high luminosities, i.e. high beam intensities high trigger rates - → deadtime-less readout is crucial - highly crowded environments #### COMPASS IS AN IDEAL TEST BENCH FOR A FAST RICH The development of a FAST RICH is also financially supported by EU (I3HP, JRA9) The expected future conditions in COMPASS suggest the need of a FAST RICH: - **beam** intensities \sim 100 MHz (presently 40 MHz) - $m{ ilde{D}}$ trigger rates above 100 kHz (presently \sim 20 kHz) - highly crowded environments: # **MAPMT** type and assembly - very robust and reliable (from literature and experience) - efficient single-photon detection and effective cross-talk reduction with the appropriate frontend electronics (see testbeam results later) - light-tight envelope and resistive divider - naked PM → optimize dimensions and price ## **MAPMT** type and assembly - very robust and reliable (from literature and experience) - efficient single-photon detection and effective cross-talk reduction with the appropriate frontend electronics (see testbeam results later) - light-tight envelope and resistive divider - naked PM → optimize dimensions and price In COMPASS (see Damien's talk) the max. SM1 fringe field in the MAPMT region is \sim 200 gauss along the PM axis \rightarrow shielding of phototubes is needed! (see later) # Optics and Cherenkov light collection - the design ratio of the photon collection/photon sensitive surfaces is > 6: - multi-lens optics with aspherical surfaces to reduce distorsion/aberration - optimization criteria: - limited image distorsion → ring resolution - angular acceptance - mechanical constraints # Optics and Cherenkov light collection - the design ratio of the photon collection/photon sensitive surfaces is > 6: - multi-lens optics with aspherical surfaces to reduce distorsion/aberration - optimization criteria: - $m{\wp}$ limited image distorsion ightarrow ring resolution - angular acceptance - mechanical constraints The choosen optical design provides an angular acceptance of $\pm 9.5^{\circ}$ and good distorsion/spot size with one single aspherical surface ### **Readout electronics** - readout based on the MAD4 discriminator chip and the F1 TDC chip - key features: - discriminator boards directly connected to photomultiplier HV basis (no cables) - $lap{PM}$ PM signals are recorded with a time resolution of \sim 130 ps - trigger rates up to 100 kHz thanks to the pipelined, deadtime-less readout architecture - data trasmission through 40 Mb/s optical links #### **Readout electronics** MAD4 boards - prototipes - readout based on the MAD4 discriminator chip and the F1 TDC chip - key features: - discriminator boards directly connected to photomultiplier HV basis (no cables) - $lap{PM signals are recorded with a time} \ resolution of <math>\sim$ 130 ps - trigger rates up to 100 kHz thanks to the pipelined, deadtime-less readout architecture - data trasmission through 40 Mb/s optical links Roof (DAC) board - prototipe #### **Readout electronics** MAD4 boards - readout based on the MAD4 discriminator chip and the F1 TDC chip - key features: - discriminator boards directly connected to photomultiplier HV basis (no cables) - $lap{PM}$ signals are recorded with a time resolution of $\sim\!130$ ps - trigger rates up to 100 kHz thanks to the pipelined, deadtime-less readout architecture - data trasmission through 40 Mb/s optical links - A modified version of the MAD4 chip (C-MAD) is under develoment: - 8 inputs with larger dynamic range - independent threshold for each channel - input rates up to 6 MHz ### 2004 Testbeam: setup (I) Cumulative Hit Map - **b**eam: π, p @ 3 GeV - radiator: quartz cone with adjustable screen - lacksquare parabolic UV mirror to deflect the emitted photons $\sim \bot$ to the PM surface - radiator/mirror relative position adjustable to simulate different ring radii 18 16 14 12 10 # 2004 Testbeam: setup (II) ### Schematical drawing #### Electronics & MAPMT fixation ## 2004 Testbeam: results (I) Hit probability vs. pixel & threshold (hit required on pixel #6) ### 2004 Testbeam: results (II) #### Plots: hit multiplicity / event vs threshold setting, arbitrary units a completely flat region (no photon loss), good for safe threshold setting, is clearly identified between the cross-talk region (low thr. setting) and the region where there are detection losses (visible in the third plot) ## MAPMT characterization in magnetic field ## MAPMT tests with magnetic field - $oldsymbol{ol}oldsymbol{ol{ol}}}}}}}}}}}}}}}}}}}}}}}}}$ - Field direction LONGITUDINAL to the MAPMT axis - Hit multiplicity measured at nominal HV and relatively high discriminator thresholds to avoid noise/crosstalk effects ## MAPMT tests with magnetic field - Quasi-single photon source used for the tests: expected hit multiplicity for the whole MAPMT is ~ 1 - Field direction LONGITUDINAL to the MAPMT axis - Mit multiplicity measured at nominal HV and relatively high discriminator thresholds to avoid noise/crosstalk effects ## Hit multiplicities vs. field - Fitted plateau multiplicity measured as a function of B - Only the overall multiplicity for vertical groups of 4 pixels and for the whole MAPMT is plotted - Stronger dependence shown by the leftmost and rightmost pixel columns $m{D}$ For $m{|B|}$ < 15 gauss the overall MAPMT multiplicity is constant and \sim 1 \rightarrow no efficiency losses, only "redistribution" of hits A FAST RICH design matching the future COMPASS needs is under study - A FAST RICH design matching the future COMPASS needs is under study - UV extended MAPMTs and the proposed readout have been sucessfully used in a test beam: - A FAST RICH design matching the future COMPASS needs is under study - UV extended MAPMTs and the proposed readout have been sucessfully used in a test beam: - single photoelectron efficiency and timing resolution are very good - A FAST RICH design matching the future COMPASS needs is under study - UV extended MAPMTs and the proposed readout have been sucessfully used in a test beam: - single photoelectron efficiency and timing resolution are very good - the front-end electronics, based on the MAD4 discriminator and F1 TDC chips, works fine - A FAST RICH design matching the future COMPASS needs is under study - UV extended MAPMTs and the proposed readout have been sucessfully used in a test beam: - single photoelectron efficiency and timing resolution are very good - the front-end electronics, based on the MAD4 discriminator and F1 TDC chips, works fine - noise and cross-talk efects are under control with our read-out architecture - A FAST RICH design matching the future COMPASS needs is under study - UV extended MAPMTs and the proposed readout have been sucessfully used in a test beam: - single photoelectron efficiency and timing resolution are very good - the front-end electronics, based on the MAD4 discriminator and F1 TDC chips, works fine - noise and cross-talk efects are under control with our read-out architecture - lacktriangle Our measurements show no efficiency losses for |lacktriangle - A FAST RICH design matching the future COMPASS needs is under study - UV extended MAPMTs and the proposed readout have been sucessfully used in a test beam: - single photoelectron efficiency and timing resolution are very good - the front-end electronics, based on the MAD4 discriminator and F1 TDC chips, works fine - noise and cross-talk efects are under control with our read-out architecture - lacktriangle Our measurements show no efficiency losses for $|lackbreak{B}| < 15$ gauss - GOOD PERSPECTIVES FOR FUTURE IMPLEMENTATION IN COMPASS # Backup Slides # Test procedure of the optical system Hartmann method #### **Features** - · Low Cost - · Easy to Use - · Real-Time Measurement and Display - Intuitive Displays - Inspect Optical Components Conveniently Flexible Display Options - · Broad Wavelength Capability - · Model Options in Zemax for UV, VIS Primary Wavelength - A simple version of this method is not time consuming - DEVICE CONSTRUCTION STARTED (~ 2 months) ## 2004 Testbeam: results (III) Scan of radiator/mirror relative position: MonteCarlo vs. measured points ## 2004 Testbeam: results (III) Scan of radiator/mirror relative position: MonteCarlo vs. measured points