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Requirements for a fast RICH

General motivations:

® Hadron PID is essential for present
and future HEP experiments

® good hadron PID performances are
needed at:
& high luminosities, i.e.
high beam intensities

high trigger rates
— deadtime-less readout is crucial

& highly crowded environments

The expected future conditions in
COMPASS suggest the need
of a FAST RICH:

P beam intensities ~100 MHz
(presently 40 MHz)
P trigger rates above 100 kHz

(presently ~20 kHz)

® highly crowded environments:

» large near and far u beam halo
(rate ~1/2 of the beam rate)

B expected interaction rate of
h beam >10° Hz (target + detectors)
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Requirements for a fast RICH

General motivations:

® Hadron PID is essential for present
and future HEP experiments

® good hadron PID performances are
needed at:
& high luminosities, i.e.
high beam intensities

high trigger rates
— deadtime-less readout is crucial

& highly crowded environments

COMPASS IS AN IDEAL TEST BENCH
FOR A FAST RICH

The development of a FAST RICH
is also financially supported by EU

(I3HP, JRA9)

Andrea Ferrero, University of Turin

The expected future conditions in
COMPASS suggest the need
of a FAST RICH:

®» beam intensities ~100 MHz
(presently 40 MHz)
P trigger rates above 100 kHz

(presently ~20 kHz)

® highly crowded environments:
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MAPMT type and assembly

resistive divider
® very robust and reliable (from a\ Al support |8

literature and experience)
VM insulator

P efficient single-photon detection
and effective cross-talk
reduction with the appropriate
frontend electronics
(see testbeam results later)

B light-tight envelope and MAPMT ( )
resistive divider '

® naked PM — optimize
dimensions and price




MAPMT type and assembly

resistive divider
® very robust and reliable (from Al support

literature and experience)
VN insulator S
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P efficient single-photon detection
and effective cross-talk
reduction with the appropriate
frontend electronics
(see testbeam results later)

® light-tight envelope and
resistive divider

® naked PM — optimize
dimensions and price

In COMPASS (see Damien’s talk) the max. SM1 fringe field in the MAPMT
region is ~ 200 gauss along the PM axis — shielding of phototubes is
needed! (see later)
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Optics and Cherenkov light collection

P the design ratio of the
photon  collection/photon
sensitive surfaces is > 6:

» multi-lens optics with as-
pherical surfaces to reduce
distorsion/aberration

B optimization criteria:

L

»
»

limited image distorsion —
ring resolution

angular acceptance

mechanical constraints
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Optics and Cherenkov light collection
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The choosen optical design provides an angular acceptance of +9.5° and
good distorsion/spot size with one single aspherical surface
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Readout electronics

to the DAQ

n n ~~.___TDC board

o roof (DAC) board

h.,i #>=___MAD4 bard

resistive dividers

MAPMTs

P readout based on the MAD4 discrimina-
tor chip and the F1 TDC chip

P key features:

L
»

discriminator boards directly connected to
photomultiplier HV basis (no cables)

PM signals are recorded with a time
resolution of ~130 ps

trigger rates up to 100 kHz thanks to the
pipelined, deadtime-less readout architec-
ture

data trasmission through 40 Mb/s optical
links
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P key features:

W discriminator boards directly connected to
n n ~___TDC board photomultiplier HV basis (no cables)
roof (DAC) board & PM signals are recorded with a time
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resolution of ~130 ps
JIH I MAD4 bard

B trigger rates up to 100 kHz thanks to the
resistive dividers pipelined, deadtime-less readout architec-
ture

* data trasmission through 40 Mb/s optical
links
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MAD4 boards - prototipes Roof (DAC) board - prototipe
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Readout electronics

to the DAQ ® readout based on the MAD4 discrimina-
tor chip and the F1 TDC chip

® key features:

& discriminator boards directly connected to

n n ~~__TDC board photomultiplier HV basis (no cables)

roof (DAC) board & PM signals are recorded with a time reso-
lution of ~130 ps

B trigger rates up to 100 kHz thanks to the
resistive dividers pipelined, deadtime-less readout architec-
ture

/_.a_'"...a-'_

JH I MAD4 bard

& data trasmission through 40 Mb/s optical
links

® A modified version of the MAD4 chip
(C-MAD) is under develoment:

& 8 inputs with larger dynamic range
» independent threshold for each channel
® input rates up to 6 MHz

MAD4 boards

Andrea Ferrero, University of Turin 6




2004 Testbeam: setup (I)

=1

20
I18
14
12

—80

60
40
20

" beam: T, P @ 3 GeV | Cumulative Hit Map |
® radiator: quartz cone with adjustable screen g
P parabolic UV mirror to deflect the emitted I
photons ~ 1 to the PM surface
® radiator/mirror relative position adjustable to
simulate different ring radii
11
P 1.
:_ MAPMT
— Hamamatsu
— R7600-M16-03
B UV extended
E L l
500 600
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2004 Testbeam: setup (II)

Electronics & MAPMT fixation

Schematical drawing

radiator &
parabolic mirror

Trigger

R scintillators
) s,

PMT panel
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2004 Testbeam: results (I)

Hit probability vs. pixel & threshold (hit required on pixel #6)
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| 2004 Testbeam: results (II)

Plots: hit multiplicity / event vs threshold setting, arbitrary units
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a completely flat region (no photon loss), good for safe threshold setting,
is clearly identified between the cross-talk
the region where there are detection losses (visible in the third plot)
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MAPMT characterization in magnetic field

| RICH-1: B <2006

" MAPMT

* 1 Hamamatsu
R7600-M16-03
" Light source
= Blue LED
" Duration: ~30 ns

Last Digital Oscilloscope

Dynode
"  Lab. Helmholtz moghet
" Up to ~400 Gauss at 10 A Anode #10
" Bore: 24 cm{, 26 cm long ' Nano-ammeter

Andrea Ferrero, University of Turin
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MAPMT tests with magnetic field

Quasi-single photon source used for the tests: expected hit multiplicity for the
whole MAPMT is ~1

Field direction LONGITUDINAL to the MAPMT axis

Hit multiplicity measured at nominal HV and relatively high discriminator
thresholds to avoid noise/crosstalk effects

Hit multiplicity at 0 gauss: 1.02
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MAPMT tests with magnetic field

P Quasi-single photon source used for the tests: expected hit multiplicity for the
whole MAPMT is ~1

® Field direction LONGITUDINAL to the MAPMT axis

B Hit multiplicity measured at nominal HV and relatively high discriminator
thresholds to avoid noise/crosstalk effects

Hit multiplicity at 0 gauss: 1.02 Hit multiplicity at 180 gauss: 0.42
[ TEreret e P | 5 Lt st e e e ircucl
g | pa 1.025 + 0.003363 g 3 | pa 0.418 + 0.002527
1Y
Threshold scan : Threshold scan
1> 1>
P Detail: plateau @ 1.02 L Detail: plateau @ 0.42
= g — )
1>% N~ 2. “E N
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® Fitted plateau multiplicity measured as a function of B

Hit multiplicities vs. field

® Only the overall multiplicity for vertical groups of 4 pixels

and for the whole MAPMT is plotted

P Stronger dependence shown by the leftmost and rightmost pixel columns

i Plateau fit with a constant |
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® For |B| < 15 gauss the overall MAPMT multiplicity is constant and ~1 —

no efficiency losses, only “redistribution” of hits

Andrea Ferrero, University of Turin
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‘ Conclusions

® A FAST RICH design matching the future COMPASS needs is under study

®» UV extended MAPMTs and the proposed readout have been sucessfully
used in a test beam:

B single photoelectron efficiency and timing resolution are very good

B the front-end electronics, based on the MAD4 discriminator and F1 TDC chips,
works fine

& noise and cross-talk efects are under control with our read-out architecture

® Our measurements show no efficiency losses for |B| < 15 gauss

& GOOD PERSPECTIVES FOR FUTURE IMPLEMENTATION IN COMPASS

Andrea Ferrero, University of Turin 14
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Test procedure of the optical system

. Hartmann method

Features
* Low Cost
* Easy to Use
* Real-Time Measurement and Display
* Intuitive Displays
« Inspect Optical Components Conveniently
Flexible Display Options
* Broad Wavelength Capability
* Model Options in Zemax for UV, VIS Primary Wavelength

" A simple version of this method
is not time consuming

"=  DEVICE CONSTRUCTION STARTED
(~ 2 months)

Andrea Ferrero, University of Turin
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1.5¢ +%%&

1 t o ++
. .++
0.5/ og .?

0 ! I I
10 15 20 25

30

1.5[ %$%&

0.5} $

30

17




2004 Testbeam: results (III)

Scan of radiator/mirror relative position: MonteCarlo vs. measured points
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