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Requirements for a fast RICH

General motivations:

Hadron PID is essential for present
and future HEP experiments

good hadron PID performances are
needed at:

high luminosities, i.e.
high beam intensities
high trigger rates
→ deadtime-less readout is crucial

highly crowded environments

The expected future conditions in
COMPASS suggest the need
of a FAST RICH:

beam intensities ∼100 MHz
(presently 40 MHz)

trigger rates above 100 kHz
(presently ∼20 kHz)

highly crowded environments:

large near and far µ beam halo
(rate ∼1/2 of the beam rate)

expected interaction rate of
h beam >106 Hz (target + detectors)
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trigger rates above 100 kHz
(presently ∼20 kHz)

highly crowded environments:

large near and far µ beam halo
(rate ∼1/2 of the beam rate)

expected interaction rate of
h beam >106 Hz (target + detectors)COMPASS IS AN IDEAL TEST BENCH

FOR A FAST RICH

The development of a FAST RICH

is also financially supported by EU

(I3HP, JRA9)
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MAPMT type and assembly

very robust and reliable (from
literature and experience)

efficient single-photon detection
and effective cross-talk
reduction with the appropriate
frontend electronics
(see testbeam results later)

light-tight envelope and
resistive divider

naked PM → optimize
dimensions and price

insulator

resistive divider
Al support

MAPMT (HAMAMATSU R7600−M16−03)
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In COMPASS (see Damien's talk) the max. SM1 fringe field in the MAPMT
region is ∼ 200 gauss along the PM axis → shielding of phototubes is
needed! (see later)
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Optics and Cherenkov light collection

the design ratio of the
photon collection/photon
sensitive surfaces is > 6:

multi-lens optics with as-
pherical surfaces to reduce
distorsion/aberration

optimization criteria:

limited image distorsion →
ring resolution

angular acceptance

mechanical constraints
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The choosen optical design provides an angular acceptance of ±9.5◦ and
good distorsion/spot size with one single aspherical surface

Andrea Ferrero, University of Turin 4



Readout electronics

TDC board

roof (DAC) board

MAD4 bard

resistive dividers

MAPMTs

to the DAQ readout based on the MAD4 discrimina-
tor chip and the F1 TDC chip

key features:

discriminator boards directly connected to
photomultiplier HV basis (no cables)

PM signals are recorded with a time
resolution of ∼130 ps
trigger rates up to 100 kHz thanks to the
pipelined, deadtime-less readout architec-
ture

data trasmission through 40 Mb/s optical
links
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Readout electronics

TDC board

roof (DAC) board

MAD4 bard

resistive dividers

MAPMTs

to the DAQ readout based on the MAD4 discrimina-
tor chip and the F1 TDC chip

key features:

discriminator boards directly connected to
photomultiplier HV basis (no cables)

PM signals are recorded with a time reso-
lution of ∼130 ps
trigger rates up to 100 kHz thanks to the
pipelined, deadtime-less readout architec-
ture

data trasmission through 40 Mb/s optical
links

MAD4 boards

A modified version of the MAD4 chip
(C-MAD) is under develoment:

8 inputs with larger dynamic range

independent threshold for each channel

input rates up to 6 MHz
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2004 Testbeam: setup (I)

beam: π, p @ 3 GeV

radiator: quartz cone with adjustable screen

parabolic UV mirror to deflect the emitted
photons ∼ ⊥ to the PM surface

radiator/mirror relative position adjustable to
simulate different ring radii
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2004 Testbeam: setup (II)

Schematical drawing

radiator &
parabolic mirror

PMT panel

Trigger
scintillators

Electronics & MAPMT fixation

MAD4 boards MAPMTs
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2004 Testbeam: results (I)

Hit probability vs. pixel & threshold (hit required on pixel #6)

Selected
pixel

Noise,
PM off

Preliminary

Pixel positions:
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2004 Testbeam: results (II)
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MAPMT characterization in magnetic field

R7600−M16−03

Blue LED
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MAPMT tests with magnetic field

Quasi-single photon source used for the tests: expected hit multiplicity for the
whole MAPMT is ∼1

Field direction LONGITUDINAL to the MAPMT axis

Hit multiplicity measured at nominal HV and relatively high discriminator
thresholds to avoid noise/crosstalk effects

Hit multiplicity at 0 gauss: 1.02

1

1

Threshold scan

Preliminary

Detail: plateau @ 1.02
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Hit multiplicities vs. field

Fitted plateau multiplicity measured as a function of B

Only the overall multiplicity for vertical groups of 4 pixels
and for the whole MAPMT is plotted

Stronger dependence shown by the leftmost and rightmost pixel columns
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For |B| < 15 gauss the overall MAPMT multiplicity is constant and ∼1 →
no efficiency losses, only ``redistribution'' of hits
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A FAST RICH design matching the future COMPASS needs is under study
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Conclusions

A FAST RICH design matching the future COMPASS needs is under study

UV extended MAPMTs and the proposed readout have been sucessfully

used in a test beam:

single photoelectron efficiency and timing resolution are very good

the front-end electronics, based on the MAD4 discriminator and F1 TDC chips,
works fine

noise and cross-talk efects are under control with our read-out architecture

Our measurements show no efficiency losses for |B| < 15 gauss

GOOD PERSPECTIVES FOR FUTURE IMPLEMENTATION IN COMPASS
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Backup Slides
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Test procedure of the optical system
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2004 Testbeam: results (III)

Scan of radiator/mirror relative position: MonteCarlo vs. measured points
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2004 Testbeam: results (III)

Scan of radiator/mirror relative position: MonteCarlo vs. measured points
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