MEASUREMENT OF TRANSVERSITY AT COMPASS

Anna Martin

University of Trieste and INFN Trieste

on behalf of the COMPASS Collaboration

• The COMPASS spectrometer
• Transversity at COMPASS
• The 2002 data
• First results
• The future

Paris, March 1, 2004
The Spectrometer

- Polarized Target
- SPS 160 GeV μ beam
- Scifi, Silicon
- E/HCAL1
- SM1
- RICH1
- SM2
- E/HCAL2
- Hodoscopes
- Muon Wall 1
- Muon Wall 2, MWPC
- MWPC, Gems, Scifi, W45 (not shown)
- Straws, Gems
- Micromegas, SDC, Scifi

Designed to cover a forward acceptance up to 200 mrad

Paris, March 1, 2004
The Target System in 2002 and 2003

SMC PT magnet

- Two 60 cm long target cells with opposite polarisation
- Superconducting solenoid (2.5 T)
- 3He – 4He dilution refrigerator (T~50mK)
- 6LiD: P_T ~ 50% f ~ 50%
- (NH$_3$, P_T ~90%, f ~17%)

+ Dipole magnet (0.5T)

Reduced acceptance for x_{Bj} > 0.1

Paris, March 1, 2004
Operation of the polarized target

Operation in longitudinal mode

- Polarization reversal with respect to m.f. (24h needed, once every ~2 weeks)
- Data taking
- Field rotation (20’ every ~8 hours)
- Data taking

Operation in transverse mode

- In principle, transverse polarization data can be taken at each field rotation → change of sign every 8 hours
- In practice, some beam magnets and beam detectors have to be displaced (dipole field)
- Data taken in blocks of ~1 week, with polarization reversal in between

Paris, March 1, 2004
Collected statistics

2002 run
- 1 period ~ 12 days ~ 1.1×10^9 events

 (July 31- Aug. 6; Aug. 8- Aug. 12)
- 1 period ~ 7 days ~ 0.7×10^9 events

 (Sept. 11- Sept. 13; Sept. 15- Sept. 18)

50 TB of raw data

2003 run
- 1 period ~ 14 days ~ 1.4×10^9 events

 (Aug. 20 - Aug. 26; Aug. 28 - Sept. 3/9)

44 TB of raw data

~ as in 2002 but with a more efficient high Q^2 trigger

2004 run
- We expect to collect ~ the same statistics of 2002+2003

Paris, March 1, 2004
Transversity signals in COMPASS

Several channels have been proposed for looking at transversity signals

stronger effects expected with a transversely polarised target:

- Collins effect for leading pions
- Collins effect for all current fragmentation mesons
- Relative Collins effect between leading and subleading mesons
- Λ polarimetry
- ...

with longitudinally polarized target

- single spin asymmetries
Transversity at CERN

HELP CERN/LEPC 93 -14 LEPC/ P7 September 29, 1993, a proposal for an internal jet-target experiment at LEP
L. Dick, A. Penzo, B. Vauridel, ….

the case for transversity
X. Artru, J. Collins, A. Kotzinian, …
Workshop in Geneva organised by R. Hess (March ’93)

taken up in 1994 by HMC
LoI CERN/SPSLC 95 -27 SPSC/I204 March 28, 1995

and then by COMPASS

presently being investigated by HERMES

an important part of the RHIC programme

Paris, March 1, 2004
Collins effect for leading pions

spelled out in our Proposal

the fragmentation function of a quark of flavor a in an hadron h can be written as

$$D_a^h(z, \vec{p}_T^h) = D_a^h(z, p_T^h) + \Delta D_a^h(z, p_T^h) \cdot \sin \Phi_c$$

where

- \vec{p}_T^h is the final leading hadron* transverse momentum with respect to the quark direction (the virtual photon direction)
- $z = E_h/(E_\mu - E_{\mu'})$
- $\Phi_c = \Phi_h - \Phi_{s'}$ is the “Collins angle”

for sub-leading particle opposite sign

* experimentally, the leading hadron is the most energetic hadron produced in the event

Paris, March 1, 2004
Collins angle \(\Phi_C = \Phi_h - \Phi_s' \)

Breit frame:
ref. system with z axis defined by \(\gamma \) direction and x-z plane defined by the scattering plane

- \(\Phi_h \): final leading hadron azimuthal angle around the final quark direction
- \(\Phi_s' \): azimuthal angle of the final quark transverse spin around the quark direction
- \(\Phi_s' = \pi - \Phi_s \)

Paris, March 1, 2004
Collins effect for leading pions (cont.)

$\Delta_T q_a(x) = q_a^{uu}(x) - q_a^{dd}(x)$ \quad $q_a(x) = q_a^{uu}(x) + q_a^{dd}(x)$

+ and – indicate target polarization direction in the lab system “up” and “down”

calculating Φ_C as if the target polarization “up”

$$N_{h,a}^\pm \propto q_a^{uu} (D_a^h \pm \Delta D_a^h \cdot \sin \Phi_C) + q_a^{dd} (D_a^h \mp \Delta D_a^h \cdot \sin \Phi_C)$$

$$\propto q_a \cdot D_a^h \pm \Delta_T q_a \cdot \Delta D_a^h \cdot \sin \Phi_C$$

Summing on quark flavors and introducing
\begin{align*}
 f & = \text{polarized target dilution factor}, \\
 P_T & = \text{target nucleon polarization}, \\
 D & = (1-y)/(1-y-y^2/2)
\end{align*}

we measure

$$N_{h}^\pm (\Phi_C) = N_{h}^0 \cdot [1 \pm A_1 \cdot \sin \Phi_C]$$

and thus

$$A_1 = f \cdot P_T \cdot D \cdot A_{Coll} = f \cdot P_T \cdot D \cdot \frac{\sum_a e_a^2 \cdot \Delta_T q_a \cdot \Delta D_a^h}{\sum_a e_a^2 \cdot q_a \cdot D_a^h}$$
Collins effect for leading pions (cont.)

For π^\pm, assuming $D_1 = D_{u}^{\pi^+} = D_{d}^{\pi^-} = D_{u}^{\pi^-} = D_{d}^{\pi^+}$ and $D_2 = D_{u}^{\pi^-} = D_{d}^{\pi^+} = D_{u}^{\pi^+} = D_{d}^{\pi^-}$,

1. With a proton polarized target, combining π^+ and π^- we can measure

$$A_{i}^{p1} = f_{p} \cdot P_{T}^{p} \cdot D \cdot \frac{4\Delta_{T}u + \Delta_{T}d}{4u + d + 4\bar{u} + d} \cdot \frac{4\Delta_{T}\bar{u} + \Delta_{T}d}{4\bar{u} + d + 4u + d} \cdot \frac{\Delta D_{1} + \Delta D_{2}}{D_{1} + D_{2}}$$

2. With a deuteron target

$$A_{i}^{d1} = f_{d} \cdot P_{T}^{d} \cdot D \cdot \frac{\Delta_{T}u + \Delta_{T}d + \Delta_{T}\bar{u} + \Delta_{T}d}{u + d + \bar{u} + d} \cdot \frac{\Delta D_{1} + \Delta D_{2}}{D_{1} + D_{2}}$$

$$A_{i}^{d2} = f_{d} \cdot P_{T}^{d} \cdot D \cdot \frac{3(\Delta_{T}u + \Delta_{T}d)}{5(u + d + \bar{u} + d)} \cdot \frac{\Delta D_{1} - \Delta D_{2}}{D_{1} + D_{2}}$$

a smaller signal is expected

Paris, March 1, 2004
Analysis of 2002 data

• Data selection

• Event selection

• Preliminary results

• Monte Carlo studies

• Systematics
Data selection

Many tests to check the stability of the apparatus during data taking:

after a first filtering of the data on logbook basis,

- profiles on the tracker planes
- track reconstruction and vertex reconstruction
- angular distributions and kinematical variable distributions
dividing the data taking periods in blocks of ~ 10 h

13 runs / 470 runs rejected (~3% of the events)

separate analysis for the 2 periods of data taking
Event selection

Requirements:
- primary vertex with identified μ, μ'
- $Q^2 > 1 \text{(GeV/c)}^2$
- $0.1 < y < 0.9$
- $W > 5 \text{ GeV/c}^2$
- incident muon inside the two target cells and primary vertex inside the target cells
Event selection

Requirements (cont.):

- **Leading hadron (l.h.):**
 - at least 1 charged hadron from primary vertex with less than 10 radiation lengths
 - energy deposit in HCALs > 5 or 8 GeV (if signal)
 - $p_T > 0.1$ GeV/c
 - if $z < 1 - z_{\text{tot}}$, no cluster in HCALs corresponding to particles with no associated track and energy larger than the candidate leading hadron
 - $z > 0.25$
 - to eliminate events with real leading hadron not detected: neutral leading hadron, leading hadron not in acceptance, …
Final sample

Some distributions
Final sample

final statistics:

<table>
<thead>
<tr>
<th></th>
<th>1st period</th>
<th>2nd period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st orientation</td>
<td>2nd orientation</td>
</tr>
<tr>
<td>Cell 1</td>
<td>187k</td>
<td>203 k</td>
</tr>
<tr>
<td>Cell 2</td>
<td>257 k</td>
<td>278 k</td>
</tr>
</tbody>
</table>

Paris, March 1, 2004
Asymmetry calculation

The asymmetry has been calculated separately for the events with positive and negative charge leading hadrons.

The data have been divided in 5 x_{Bj} bins.

For each data taking period and each cell, the distributions

\[\frac{N^+(\Phi_c) - R \cdot N^-(\Phi_c)}{N^+(\Phi_c) + R \cdot N^-(\Phi_c)} \] \quad (R = \frac{N^{+}_{tot}}{N^{-}_{tot}})

have been fitted with the function

\[c \cdot (1 + A_1 \cdot \sin \Phi_c) \]

all the 4 values the A_1 are in good agreement.

Finally, the "Collins" asymmetries

\[A_{Coll} = \frac{1}{f \cdot D \cdot P_T} \cdot A_1 \]

have been evaluated and their values have been averaged.

Paris, March 1, 2004
Results from 2002 data

positive leading hadrons

negative leading hadrons

preliminary
MonteCarlo studies

- to estimate the resolution in measured quantities
- to estimate the "contamination" of non leading hadrons in the final sample of reconstructed leading hadrons

MC events

- generated with Lepto 6.5.1 and the last version of COMGeant (trigger geometry and mean efficiency of trackers included)
- reconstructed using the same CORAL version used for DST production
- standard analysis but:
 - μ' selection: only μ' in SAS
 - leading hadron selection:
 - no z_{tot} cut
 - HCALs not used

comparison with a small sample of real data

Paris, March 1, 2004
Comparison MC - data

Paris, March 1, 2004
Paris, March 1, 2004

MC studies: resolution in measured quantities

- resolution in the different quantities as requested from the measurements
- no signal dilution due to the resolution in the Collins angle and in \(z_{vtx} \)
MC studies:
"contamination" of non leading hadrons

non leading hadrons in the final sample (wrongly reconstructed l.h.)
due to acceptance, neutral leading hadrons
[Collins effect for subleading hadrons]

--- all rec. l.h.
--- correctly rec. l.h.
--- correctly rec. l.h., but l.h. not a π

$z > 0.25$
still events with wrongly rec. l.h. at $z<0.45$

Paris, March 1, 2004
MC studies:
"contamination" of non leading hadrons

wrongly reconstructed l.h.: ~ 20% of the final sample
SMALLER IN THE DATA: z_{tot} and HCAL cuts not applied to Monte Carlo events

correctly rec. l.h., but l.h. not a π: ~ 20% of the final sample
mainly K (and p): RICH1 not yet used in the analysis

Paris, March 1, 2004
Systematics

Several test have been performed to check the consistency of the result:

- it is free from acceptance effects only if the ratio of the acceptances and efficiencies in Φ_C for the two cells does not change from one orientation to the other

In particular

- Combining differently the cells
- Splitting of the cells in two parts
- Splitting the data in high and low hadron momenta
- Changing the Φ_C binning
- Use of a different estimator for A_1
- Check of possible variations of acceptance and efficiency
-
Variations of efficiency and acceptance

expected distributions in Φ_C for each x_{Bj} bin

$$N_{1B}(\Phi_C) = c_{1B} \cdot a_{1B}(\Phi_C) \cdot [1 - A_1 \cdot \sin \Phi_C]$$
$$N_{2B}(\Phi_C) = c_{2B} \cdot a_{2B}(\Phi_C) \cdot [1 + A_1 \cdot \sin \Phi_C]$$
$$N_{1C}(\Phi_C) = c_{1C} \cdot a_{1C}(\Phi_C) \cdot [1 + A_1 \cdot \sin \Phi_C]$$
$$N_{2C}(\Phi_C) = c_{2C} \cdot a_{2C}(\Phi_C) \cdot [1 - A_1 \cdot \sin \Phi_C]$$

acceptance, efficiency

assuming

$$\frac{a_{2B}(\Phi_C)}{a_{1B}(\Phi_C)} = \frac{a_{2C}(\Phi_C)}{a_{1C}(\Phi_C)} = \alpha(\Phi_C)$$

it is

$$R(\Phi_C) = \frac{N_{1C}(\Phi_C) \cdot N_{2C}(\Phi_C)}{N_{1B}(\Phi_C) \cdot N_{2B}(\Phi_C)} = \frac{c_{1C} \cdot c_{2C}}{c_{1B} \cdot c_{2B}} \cdot \left[\frac{a_{1C}(\Phi_C)}{a_{1B}(\Phi_C)} \right]^2$$

if R does not depend on Φ_C, the hypothesis done in the standard analysis is correct

Paris, March 1, 2004
Variations of efficiency and acceptance (cont.)

Test on the dependence of R on Φ_C:

done for l.h.$^+$ and l.h.$^-$, for the two data taking periods

R does not depend on Φ_C inside statistical errors

Paris, March 1, 2004
Systematics: conclusion

All the tests we made are consistent with the fact that, systematic effects, if present, are smaller than statistical errors.
Conclusions and outlook

• COMPASS is in business !!!

• Within the statistics of the 2002 run, the measured Collins asymmetries for the leading hadron are compatible with zero.

• Combining the data of 2002, 2003, and 2004, the sensitivity should improve by at least a factor of 2.

• Systematic investigations of Collins (and Sivers) asymmetries for subleading hadrons still to be done.

 many results from deuteron target in the next future!

• Measurements with the polarized proton target from 2006.

Paris, March 1, 2004