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Abstract

The cross section for production of charged hadrons with high transverse momenta in scattering of
160 GeV/c muons off nucleons at low photon virtualities has been measured at the COMPASS exper-
iment at CERN. The results, which cover transverse momenta from 1.1 to 3.6 GeV/c, are compared
to a next-to-leading order perturbative Quantum Chromodynamics (NLO pQCD) calculation in order
to evaluate the applicability of pQCD to this process in the kinematic domain of the experiment. The
shape of the calculated differential cross section as a function of transverse momentum is found to
be in good agreement with the experimental data, but the normalization is underestimated by NLO
pQCD. This discrepancy may point towards the relevance of terms beyond NLO in the pQCD frame-
work. The dependence of the cross section on the pseudo-rapidity and on the charge of the hadrons
is also discussed.

(to be submitted to Phys.Rev.Lett.)



The COMPASS Collaboration

C. Adolph8, M.G. Alekseev24, V.Yu. Alexakhin7, Yu. Alexandrov15,*, G.D. Alexeev7, A. Amoroso27,
A.A. Antonov7, A. Austregesilo10,17, B. Badełek30, F. Balestra27, J. Barth4, G. Baum1, Y. Bedfer22,
J. Bernhard13, R. Bertini27, M. Bettinelli16, K. Bicker10,17, J. Bieling4, R. Birsa24, J. Bisplinghoff3,
P. Bordalo12,a, F. Bradamante25, C. Braun8, A. Bravar24, A. Bressan25, E. Burtin22, M. Chiosso27,
S.U. Chung17, A. Cicuttin26, M.L. Crespo26, S. Dalla Torre24, S. Das6, S.S. Dasgupta6, S. Dasgupta6,
O.Yu. Denisov28, L. Dhara6, S.V. Donskov21, N. Doshita32, V. Duic25, W. Dünnweber16,
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Most of the current knowledge about the structure of the nucleon has been derived from high-energy
lepton-nucleon scattering experiments [1]. The theoretical framework for the interpretation of data from
such experiments is perturbative Quantum Chromodynamics (pQCD). In the presence of a large mo-
mentum transfer in the reaction, pQCD relies on the collinear factorization of the cross section into
non-perturbative collinear parton distribution functions (PDFs), hard partonic scattering cross sections
calculable in perturbation theory, and non-perturbative collinear fragmentation functions (FFs) [2]. This
Letter discusses the measurement of the cross section for production of charged hadrons with high trans-
verse momenta pT in muon-nucleon (µ-N) scattering at low photon virtualities, µN → µ ′h±X . In the
pQCD framework, the lowest-order contributions to this reaction are (1) photon-gluon fusion (PGF), in
which a virtual photon emitted by the lepton interacts with a gluon inside the nucleon via the formation
of a quark-antiquark pair, γg→ qq, (2) QCD Compton (QCDC) scattering, in which the photon interacts
with a quark in the nucleon leading to the emission of a hard gluon, γq→ qg, and (3) numerous resolved-
photon processes, in which the photon fluctuates into a virtual vector-meson-like state before it interacts
with the nucleon.
The ability of pQCD to correctly describe high-pT hadron production can be evaluated by comparing the
calculated cross section to the experimentally measured one. This benchmark is sensitive to the accuracy,
with which the partonic cross section can be calculated in perturbation theory, as well as to the validity
of collinear factorization itself. For inclusive high-pT hadron or jet production in proton-proton (p-p)
scattering, cross sections have been measured at FNAL [3, 4, 5], CERN [6] and BNL [7, 8, 9, 10, 11, 12]
at center-of-mass system (CMS) energies √sp-p from 20 GeV to 200 GeV. The comparison of these data
to next-to-leading order (NLO) pQCD calculations [13] shows that while there is good agreement at√sp-p = 200 GeV (RHIC), the theory increasingly underestimates the cross sections with decreasing√sp-p. The disagreement reaches up to an order of magnitude at 20 GeV. These discrepancies can be
reconciled by the inclusion of all-order resummations of threshold logarithms [14], which are related to
soft gluon emissions and are usually performed up to next-to-leading logarithmic (NLL) accuracy.
The electromagnetic probe in muon-lepton scattering has the advantage over p-p scattering that the kine-
matics of the reaction is better known since the momentum and energy transfers to the nucleon can be
measured for each event by analyzing the scattered lepton. In the regime of quasi-real photoproduc-
tion, i.e. at low photon virtualities Q2, the cross section for high-pT hadron production in lepton-nucleon
scattering can be calculated in NLO pQCD via the Weizsäcker-Williams formalism [15, 16]. For dijet
production at HERA at very high photon-nucleon CMS energies 142≤WγN ≤ 293 GeV, the NLO pQCD
results agree well with the experimental data [17]. At the energy of fixed-target experiments, such a
check of the applicability of pQCD to high-pT particle production at low Q2 has not been done yet. The
cross section for high-pT hadron production in the scattering of 28 GeV/c positrons off nucleons has been
published by the HERMES Collaboration [18]. However, the measurement hardly exceeds pT values of
2 GeV/c, which sets rather low factorization and renormalization scales for pQCD calculations, and a
comparison to NLO pQCD was not attempted. In this Letter, the measurement of the cross section for
production of unidentified charged hadrons with high pT in scattering of 160 GeV/c muons off nucleons
(CMS energy √sµ-N = 17.4 GeV) at the COMPASS experiment [19] at low photon virtualities is pre-
sented. The cross section for this kinematic domain has been calculated in NLO pQCD [20].
The hadron-production cross section is measured in bins of pT and η of widths ∆pT and ∆η , respectively,
and is defined as

E
d3

σ

dp3 =
1

2π pT

Nh

∆pT ·∆η ·L · ε
, (1)

where E and p are energy and momentum of the hadron, respectively, pT = p · sinθ is the transverse
momentum of the hadron with respect to the direction of the virtual photon (θ is the angle between the
virtual photon and the hadron momenta), and η =− ln tan(θ/2) is the pseudo-rapidity of the hadron, all
measured in the laboratory system. The integrated luminosity is denoted by L, Nh is the number of ob-
served hadrons in a given bin of pT and η , and ε is the acceptance-correction factor, which is determined
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independently for both hadron charges for each bin of pT and η . This factor corrects the number of
observed hadrons for geometrical acceptance and detection efficiency of the spectrometer as well as for
kinematic smearing. The cross section is defined as a single-inclusive cross section, i.e. several high-pT

hadrons per muon-scattering event are counted for the hadron yield Nh.
The experimental data were recorded in 2004 with the COMPASS spectrometer at CERN. In the experi-
ment, a naturally-polarized 160 GeV/c µ+-beam scatters off a polarized, isoscalar target that consists of
granulated 6LiD immersed in liquid helium. The small admixtures of H, 3He, and 7Li lead to an excess
of neutrons of about 0.1%. The target is arranged in two oppositely polarized 60 cm long cells. The
unpolarized cross section is obtained by averaging over the target polarizations. Since the azimuthal
angles of the produced hadrons are integrated over, the cross section does not depend on the beam polar-
ization. The integrated luminosity is determined via the direct measurement of the rate of beam muons
crossing the target and is found to be equal to 142 pb−1± 10%(syst.) after correction for the dead time
of the data acquisition system. As an independent cross check of the luminosity, the structure function
of the nucleon F2 is determined from this data set and compared to the NMC parametrization of F2 [21]
yielding satisfactory agreement [22]. The high-pT analysis is based on events that were recorded by
the quasi-real photoproduction trigger systems [23]. These triggers are based on the coincidence be-
tween the detection of the scattered muon at low scattering angles and an energy deposit exceeding about
5 GeV in one of the two hadronic calorimeters, to suppress background from muon-electron scattering
and radiative elastic or quasi-elastic muon-scattering events. Events are accepted if the photon virtuality
Q2 < 0.1 (GeV/c)2 and if the fractional energy transferred from the incident muon to the virtual photon
is in the range 0.2 ≤ y ≤ 0.8, where the acceptance of the trigger systems is largest. These selections
result in the energy range 7.8 ≤WγN ≤ 15.5 GeV. The fraction of the virtual-photon energy transferred
to the hadron h± is constrained by 0.2 ≤ z ≤ 0.8. Moreover, hadrons are required to have momenta
p ≥ 15 GeV/c to ensure full trigger efficiency. The angle of the hadron with respect to the direction of
the virtual photon has to be in the range 10 ≤ θ ≤ 120 mrad, which corresponds to a range of muon-
nucleon CMS pseudo-rapidities 2.4≥ ηCMS ≥−0.1. In addition to these kinematic criteria, the selection
of reconstructed hadrons is subject to several geometrical cuts: the positions of the muon-scattering ver-
tices are limited to the fiducial target volume, the hadron tracks must not cross the solenoid magnet of
the polarized target, and the hadron tracks must hit one of the two hadronic calorimeters, excluding 3 cm
wide margins around the edges (for full trigger efficiency).
The acceptance correction factors of Eq. (1) are determined with a Monte-Carlo (MC) simulation of µ-N
scattering in the COMPASS experiment. Events are generated with PYTHIA6 [24], the response of the
spectrometer is simulated with a GEANT3-based program [25], and the data are reconstructed with the
same software as the experimental data [19]. The acceptance factor for the bin pT ∈ [pT,1, pT,2] is defined
as

ε =
Nrec(prec

T ∈ [pT,1, pT,2])
Ngen(pgen

T ∈ [pT,1, pT,2])
, (2)

where Nrec is the number of reconstructed hadrons in the bin of reconstructed transverse momentum
prec

T , and Ngen is the number of generated hadrons in the MC sample in the bin of generated transverse
momentum pgen

T . While both, Nrec and Ngen are subject to the above-listed kinematic selection criteria,
the geometrical cuts are only applied to Nrec so that the loss of hadrons due to these cuts is accounted for
by the acceptance correction.
Hadrons that are created at the µ-N vertex constitute the signal of the measurement and have to be sep-
arated from background hadrons, which are created in secondary interactions of other hadrons in the
target material. This separation is performed by the vertex-reconstruction algorithm, which is however
impaired by the fact that the angle between the incoming and outgoing muon tracks is very small at low
Q2. The background contamination can not be estimated directly from the MC data, because simulations
with the two hadron-shower models available in GEANT3 (GHEISHA and FLUKA) give inconsistent
results. Hence the background contribution is determined in each pT bin from the experimental data by
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fitting the shape of the distribution of position differences between two-particle vertices formed by the
incoming muon track and the outgoing muon track on the one hand, and the incoming muon track and the
outgoing hadron track on the other hand [26]. The distribution for signal hadrons, originating from the
same interaction as the outgoing muon track, has a symmetric shape, while for background hadrons there
is a characteristic asymmetric shape. The results of these fits show that the background contribution to
the experimental data is consistent with zero. However, cross checks with both MC data sets indicate that
the background contribution can be systematically underestimated by 6% using this method. In addition,
the described procedure is statistically limited for the highest pT bins because there are too few entries
in the vertex-difference distributions to exclude a non-zero background contribution with high statistical
accuracy. For the four highest pT bins, the background level pexcl at which a non-zero background contri-
bution can be excluded at 90% confidence level is greater than 6%. Therefore, the possible contribution
of residual background to the hadron yield is conservatively estimated to be 2×6% for the six lowest pT

bins and pexcl +6% for the four highest pT bins. These values are used as systematic uncertainties of the
acceptance factors.
A second contribution to the systematic uncertainties of the acceptance factors arises from the fact that
they are determined in a one-dimensional way, i.e. by integrating over all kinematic variables other than
pT . The resulting uncertainty is quantified by calculating the acceptance correction binned in two vari-
ables, i.e. pT and one of the variables Q2, y, xBj (Bjorken scaling variable), WγN , z, θ . A comparison of the
cross section calculated in two variables, summed up over the second variable, with the one-dimensional
result yields deviations below 3%. This uncertainty is added in quadrature to the uncertainties from
background contamination, resulting in the following definition of the upper (εu) and lower (εd) limits of
the systematic error band of the acceptance factors

εu = ε ·
(

1+
√

0.032 +(0.06+max(0.06, pexcl))2

)
εd = ε · (1−0.03) .

Another systematic uncertainty of the cross section is the 10% normalization uncertainty from the lumi-
nosity determination.
The cross section for production of charged high-pT hadrons in µ-N scattering at Q2 < 0.1 (GeV/c)2 and√sµ-N = 17.4 GeV, integrated over the full kinematic range, is presented in Fig. 1 and listed in Tab. 1.

The presented cross section is not corrected for QED radiative effects. The discrete pT values at which
the cross section values from the binned analysis of Eq. (1) are drawn are calculated using the method of
Lafferty & Wyatt [28] and are denoted by 〈pT 〉lw in Tab. 1. The cross section drops by about four orders
of magnitude over the measured pT range. The only apparent deviation from an exponential shape is a
slight hardening of the spectrum at about pT = 2.5 GeV/c. In Fig. 1, the data are compared to the NLO
pQCD calculation of Ref. [20], which has been updated [27] to implement the above-stated kinematic
selections and the DSS FFs [29] for unidentified charged hadrons. The three curves correspond to dif-
ferent choices of the renormalization (µr) and factorization (µ f ) scales in the pQCD calculation. The
standard choice for the scales in pQCD is µ = µr = µ f = pT and the scale uncertainty is estimated by
varying the scale in the range 2pT ≥ µ ≥ pT /2. For pT & 1.75 GeV/c, the pQCD result at the standard
scale µ = pT underestimates the experimental cross section by a factor of three to four, but follows the
shape of the differential cross section remarkably well. For pT . 1.75 GeV/c the pQCD results should
be discussed and interpreted very cautiously, because the factorization of the calculated cross section is
expected to break down when reaching small scales µ . The large scale uncertainty of the cross section
shows that contributions beyond NLO are likely to be significant in the pQCD framework. The analogy
to p-p scattering at low CMS energies suggests that all-order resummations of threshold logarithms, once
available, might reconcile the normalization discrepancy.
In Fig. 2, the pT dependence of the experimental cross section is presented in bins of ηCMS, together
with the comparison to NLO pQCD. The steeper pT slopes of the cross section at forward rapidities as
compared to central rapidity are well described by the pQCD curves, and the normalization difference
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Fig. 1: Cross section for high-pT hadron produc-
tion in µ-N scattering, integrated over the full
kinematic range (see text). The data are compared
to the NLO pQCD calculation [20, 27]. The error
bars in the upper panel are the quadratic sums of
statistical and systematic uncertainties. The mid-
dle panel shows the relative statistical and system-
atic uncertainties of the measurement. The nor-
malization uncertainty of 10% from the luminos-
ity measurement is not shown. The lower panel
shows the ratio of the measured over calculated
cross sections.
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Fig. 2: Cross section in bins of ηCMS. The data
are compared to the NLO pQCD calculation. The
error bars are the quadratic sums of statistical and
systematic uncertainties. The normalization un-
certainty of 10% from the luminosity measure-
ment is not shown.

between the theoretical calculation (µ = pT ) and the experimental values remains about the same for all
rapidities. This is a positive indication for the consistency of the pQCD results.
The charge ratio of the cross sections for the production of negatively over positively charged hadrons is
displayed in Fig. 3. No strong pT dependence is observed within the statistical accuracy of the measure-
ment. The charge ratio is sensitive to the contributions of the different partonic processes to the cross
section. The QCDC process can lead to an excess of positively charged hadrons because the electromag-
netic coupling to u quarks is four times larger than to d quarks, and u quarks are more likely to produce
positively charged mesons. The PGF process, on the other hand, is not expected to result in a charge
asymmetry, assuming independent quark fragmentation. The NLO pQCD calculation, also shown in
Fig. 3, features a charge ratio of about unity for pT = 1 GeV/c and a clear decrease with increasing pT ,
in disagreement with the data.
In summary, the single-inclusive cross section for charged-hadron production in µ-N scattering at√sµ-N =
17.4 GeV was measured for photon virtualities Q2 < 0.1 (GeV/c)2 in the ηCMS interval between -0.1 and
2.4 and for transverse hadron momenta up to 3.6GeV/c. While the shape of the measured pT -differential
cross section agrees well with NLO pQCD over the full rapidity range, the present theoretical calculation
underestimates the experimental cross section by a factor of three to four. Thus, the pQCD calculation at
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Fig. 3: Ratio of cross sections for production of h− over h+.
The data are compared to the NLO pQCD calculation. The
error bars are statistical.

NLO appears to be insufficient to fully
describe high-pT hadron production in
µ-N scattering at low Q2 in the kine-
matic domain of COMPASS. The re-
summation of threshold logarithms be-
yond NLO might help to resolve this
discrepancy. Once an agreement with
the measured cross section has been
established, the pQCD framework can
be employed to constrain the polariza-
tion of gluons in the nucleon [20], us-
ing the double-spin asymmetry of sin-
gle high-pT hadron production at low
Q2 extracted from the full COMPASS
muon-scattering data set. This ap-
proach is complementary to previous
measurements of the gluon polarization
by COMPASS using polarized high-pT

hadron-pair production [30, 31], which employ the MC generators PYTHIA and LEPTO [32], respec-
tively, to quantify the contribution of PGF to the cross section.
We thank Werner Vogelsang for many useful discussions and for providing the updated NLO pQCD
calculation. We acknowledge the support of the CERN management and staff, as well as the skills and
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Table 1: Measured cross section for high-pT hadron production in µ-N scattering at √sµ-N = 17.4 GeV.
The cross section is integrated over the full kinematic range defined in the text. The columns show:
(1) pT range of the bin; (2) pT value of data point in Fig. 1; (3) differential cross section summed over
hadron charges (please note that there is an additional 10% normalization uncertainty from luminosity);
and (4) charge ratio of the cross section.

[pT,1, pT,2] (GeV/c) 〈pT 〉lw (GeV/c) dσ

dpT
= 1

pT,2−pT,1

∫ pT,2
pT,1

dσ

dpT
dpT (pb(GeV/c)−1) dσ

dpT
(h−)/ dσ

dpT
(h+)

[1.125,1.375] 1.239 [2.810±0.006 (stat.) +0.087
−0.310 (syst.)]·104 0.874±0.004 (stat.)

[1.375,1.625] 1.489 [9.87±0.04 (stat.) +0.31
−1.09 (syst.)]·103 0.864±0.007 (stat.)

[1.625,1.875] 1.739 3603±23 (stat.) +112
−397 (syst.) 0.850±0.011 (stat.)

[1.875,2.125] 1.989 1261±14 (stat.) +40
−139 (syst.) 0.829±0.018 (stat.)

[2.125,2.375] 2.239 421±8 (stat.) +14
−47 (syst.) 0.800±0.030 (stat.)

[2.375,2.625] 2.489 148±5 (stat.) +5
−17 (syst.) 0.85±0.06 (stat.)

[2.625,2.875] 2.739 55.9±3.0 (stat.) +1.8
−7.3 (syst.) 0.83±0.09 (stat.)

[2.875,3.125] 2.989 21.7±1.9 (stat.) +0.7
−3.7 (syst.) 0.78±0.14 (stat.)

[3.125,3.375] 3.239 9.08±1.25 (stat.) +0.29
−1.90 (syst.) 0.80±0.23 (stat.)

[3.375,3.625] 3.490 3.40±0.80 (stat.) +0.11
−0.98 (syst.) 1.0±0.5 (stat.)


