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Abstract

We study the spin-exotic JPC = 1−+ amplitude in single-diffractive dissociation of 190 GeV/c
pions into π−π−π+ using a hydrogen target and confirm the π1(1600) → ρ(770)π ampli-
tude, which interferes with a nonresonant 1−+ amplitude. We demonstrate that conflicting
conclusions from previous studies on these amplitudes can be attributed to different anal-
ysis models and different treatment of the dependence of the amplitudes on the squared
four-momentum transfer and we thus reconcile their experimental findings. We study the
nonresonant contributions to the π−π−π+ final state using pseudo-data generated on the
basis of a Deck model. Subjecting pseudo-data and real data to the same partial-wave
analysis, we find good agreement concerning the spectral shape and its dependence on the
squared four-momentum transfer for the JPC = 1−+ amplitude and also for amplitudes
with other JPC quantum numbers. We investigate for the first time the amplitude of the
π−π+ subsystem with JPC = 1−− in the 3π amplitude with JPC = 1−+ employing the novel
freed-isobar analysis scheme. We reveal this π−π+ amplitude to be dominated by the ρ(770)
for both the π1(1600) and the nonresonant contribution. We determine the ρ(770) resonance
parameters within the three-pion final state. These findings largely confirm the underlying
assumptions for the isobar model used in all previous partial-wave analyses addressing the
JPC = 1−+ amplitude.
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I Introduction

The presently known meson spectrum is to a large extent attributed to quark-antiquark (qq ′)
states. These states, i.e., the ground states and their excitations, are described by the constituent-
quark model and are classified using SU(3)flavor×SU(2)spin symmetry. However, QCD in principle
allows for a richer spectrum of excitations including multi-quark configurations as well as gluonic
excitations, called “exotic” mesons hereafter. Such states are expected to be different from qq ′

states in terms of either their quantum numbers and/or their couplings to initial or final states,
thus leaving their own fingerprints. In case of quantum numbers allowed for constituent-quark
model states, they may, however, mix in configuration space.

Many model calculations for light-quark states comprising u, d or s quarks exist, predicting
a variety of features (see e.g., Refs. [1–5]), but no clear signatures exist. More recently, first
calculations of the excitation spectrum of light mesons have been performed by the authors of
Refs. [6–9] using lattice QCD. They find exotic states with large contributions from excited
gluonic field configurations, i.e., hybrid mesons, the lightest of which having so-called spin-exotic
quantum numbers JPC = 1−+ that are forbidden for qq states.[a] However, the predictive
power of these calculations is currently limited by the fact that all states are considered to be
quasi-stable. Recently, the authors of Ref. [10] have performed the first lattice QCD calculation
of the hadronic decays of the lightest 1−+ resonance. This calculation was performed using up,
down, and strange-quark masses that approximately match the physical strange-quark mass. At
this SU(3)flavor symmetric point, which corresponds to a pion mass of about 700 MeV/c2, the
scattering amplitudes of eight meson-meson systems were studied in a coupled-channel approach.
Extrapolating the extracted resonance pole and its couplings to the physical light-quark masses
suggests a broad π1 resonance that decays predominantly into b1(1235)π and that has much
smaller partial widths into f1(1285)π, ρ(770)π, η′π, and ηπ. The present state-of-the-art method
to calculate multi-body decays and scattering processes on the lattice requires using large pion
masses to limit the analysis to coupled two-body channels only (see e.g., Ref. [11] and references
therein). However, the extension of these calculations to three-body final states is under active
development (see e.g., Ref. [12]).

The field of exotic hadrons has changed dramatically with the observations of the X, Y , Z states
involving heavy quarks. In particular, the observation of charged quarkonium-like states, Z±c [13,
14] and Z±b [15], has been considered as clear evidence for the existence of exotic hadrons. They are
characterized by an exotic combination of presumed flavor content and isospin quantum numbers.
In addition, the Pc states are considered as the first observation of pentaquark states [16, 17].
The nature and internal structure of these states are discussed widely in the literature (see
e.g. Refs. [18, 19]).

In the sector of light-quark mesons, several candidates for non-qq ′ states with conventional qq ′

quantum numbers are discussed in the literature, e.g., f0(1500), π(1300), π(1800), a1(1420), and
f1(1420), although none of them was conclusively identified as such. While production and
decay patterns constitute a mandatory but often strongly model-dependent signature, spin-exotic
JPC quantum numbers are generally considered the cleanest path to prove the existence of
meson-like objects beyond qq ′. Three such states with JPC = 1−+, the π1(1400), π1(1600),
and the π1(2015), have been discussed frequently as first evidence for exotic mesons and their
observation was reported by various experiments [20]. Their masses agree qualitatively with lattice
QCD calculations [9]. However, the existence of these states is disputed and the experimental
situation requires clarification and further studies. The π1(1400) has been observed by several
experiments [21–26] in the ηπ final state produced in π− diffraction at beam momenta ranging

[a]Here, J is the spin, P the parity, and C the charge conjugation quantum number of the state.
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from 6.3 to 100 GeV/c. It has also been observed in the ηπ final state produced in pp and pn
annihilations studied by the Crystal Barrel experiment [27–29] and in the ρ(770)π channel by the
Obelix experiment [30]. The π1(2015) has so far been observed only by the BNL E852 experiment
in the f1(1285)π [31] and b1(1235)π [32] decay modes.

A Status of the π1(1600)

The π1(1600) is the most extensively studied spin-exotic meson. Indications were found in
η′π [33–36], in f1(1285)π [31,35,37], and in b1(1235)π [32,33,35,37,38]. Recently, the COMPASS
collaboration has published further studies on the η′π and ηπ final states in diffractive production
relevant to the search for π1(1600). A reanalysis of these data that are discussed in Ref. [39]
revealed a clear resonance pole in the spin-exotic wave [40]. This analysis could even reconcile
the observations of the two spin-exotic states π1(1400) and π1(1600) to be the result of only a
single pole with parameters that are consistent with the π1(1600).

In this paper, we focus on the π−π−π+ final state including the ρ(770)π intermediate state. An
observation of the decay π1(1600)→ ρ(770)π was first reported by BNL E852 [41,42] followed
by VES [37]. Later, the COMPASS experiment confirmed some of the previous findings [43]. For
a review, we refer to Ref. [44]. All above experiments studied diffractive pion dissociation, but at
different beam energies, different target materials, and in various ranges of the four-momentum
transfer squared. Previous investigations of the 3π final state yielded contradicting conclusions
on what concerns the proof of existence of the π1(1600) or the determination of its properties.
While BNL E852 [41,42] and COMPASS have stressed the observation of the π1(1600), VES [37]
and an analysis of BNL data by Dzierba et al. [45] have been inconclusive on its existence or
even refuted it.

Recently, COMPASS published an extensive study of isovector mesons using a large data set
for the π−π−π+ final state [46]. In this analysis, we observed a strong modulation of the shape
of the intensity distribution of the spin-exotic ρ(770)π P -wave carrying JPC = 1−+ with the
squared four-momentum t′ transferred from the beam to the target particle [see Figs. 1(a)
and 1(b) and definition in Eq. (2)]. This modulation is described by the resonance model as a
t′-dependent interference between a π1(1600) resonance (blue curves) and a nonresonant wave
component (green curves). The nonresonant component was found to dominate at low t′ whereas
the π1(1600) signal emerged at high t′. The resonance characteristics of the π1(1600) signal
was clearly demonstrated through its phase variation with respect to 13 other waves. As an
example, we show in Fig. 1(c) the phase motion with respect to the ρ(770)π S-wave carrying
JPC = 1++. In addition, the dashed red curves in Fig. 1 show the result of a fit, where the
π1(1600) resonance was omitted from the fit model. Although at low t′, where the nonresonant
component is dominant, this model is in fair agreement with data, it fails to describe the data at
high t′. This demonstrates that a π1(1600) resonance is needed to describe the COMPASS data.

The discrepancy of results and interpretations on the π1(1600) signal from the analyses discussed
above requires detailed studies as the origin could be either inconsistent data sets or analysis
artifacts. This paper aims at understanding three different aspects of the spin-exotic ρ(770)π
P -wave carrying JPC = 1−+ based on the large COMPASS data sample: (i) Can the different
and partially inconsistent observations from previous analyses be reconciled through studies of
the model dependence of the analyses? (ii) Are structures observed in this wave an artifact of the
partial-wave analysis model? Since the resonant nature of the π1(1600) has been already studied
extensively in Ref. [46], we will not readdress the determination the π1(1600) resonance parameters
here. (iii) Can we model nonresonant production through the so-called Deck effect [48]?

This paper is organized as follows: After a short description of the COMPASS experiment in
Sec. II, we will briefly review the analysis of our data in Sec. III. Sections IV to VI each will
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FIG. 1: Excerpt from the results of a previous study of resonance production in π− p →
π−π−π+ p at 190 GeV/c pion-beam momentum by the COMPASS collaboration [46,47]. The
partial-wave intensities of the spin-exotic ρ(770)π P -wave carrying JPC = 1−+ are shown in
panels (a) and (b) for the lowest and highest t′ bins, respectively, covered by the experiment.
Panel (c) shows the phase relative to the ρ(770)π S-wave carrying JPC = 1++. The red solid
curve represents the full resonance model (see Tab. II in Ref. [46]), which is the coherent sum
of wave components that are represented by the other solid curves: π1(1600) resonance (blue
curves) and nonresonant component (green curves). The extrapolation of the model and the
wave components beyond the fit range are shown in lighter colors. The narrow enhancement
at 1.1 GeV/c2 in (a) is likely an artifact induced by imperfections in the analysis method (see
Sec. IV A). The dashed red curves represent a fit, where the π1(1600) resonance was omitted
from the fit model. This curve hence corresponds to a nonresonant ρ(770)π P -wave.

address one of the three questions that we posed above. In Sec. IV, we will reconcile our analyses
and previous ones performed by the BNL E852 [41,42,45] and VES [37] experiments and trace
the discrepancies to the different analysis schemes used. Next, in Sec. V we will extract the
amplitude of the π−π+ subsystem present in the JPC = 1−+ wave using the new scheme of
freed-isobar analysis [49] proving the decay of π1(1600) → ρ(770)π. Finally, we compare in
Sec. VI the observed intensity distributions (diagonal elements of the spin-density matrix) of
selected partial waves to model calculations on nonresonant 3π production. Each of the three
sections will provide evidence that further confirms the π1(1600) resonance and its decay into
ρ(770)π. Since the three result sections are linked only weakly, we will summarize and conclude
them individually and refrain from an additional summary and conclusion at the end of the
paper.

II Analyzed data sample

The present study is based on a data set of 46× 106 exclusive events of diffractively produced
mesons decaying into three charged pions. The data were obtained by the COMPASS experiment
and were already presented in detail in Ref. [47]. They contain exclusive events from the inelastic
reaction

π− + p→ π−π−π+ + p, (1)

which is induced by a high-energy π− beam impinging on a hydrogen target. The dominant
reaction mechanism is single-diffractive scattering, where the target particle scatters elastically
and the beam pion is excited via the exchange of a Pomeron with the target nucleon to a
short-lived intermediate state X− that then decays into π−π−π+ as shown in Fig. 2. The
experimental setup and the criteria that were applied to select exclusive events of reaction (1)
are described in detail in Refs. [47, 50]. Here, we give only a brief summary.
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FIG. 2: Single-diffractive dissociation of a beam pion on a target proton into the π−π−π+ final
state via exchange of a Pomeron P. In this scattering process, an intermediate 3π state X−

with well-defined quantum numbers is produced. The decay of X− is described using the isobar
model, which assumes that the decay proceeds via intermediate π−π+ states ξ0, the so-called
isobars, which also have well-defined quantum numbers. See Sec. III for details.

The COMPASS experiment [51,52] is located at the M2 beam line of the CERN Super Proton
Synchrotron. A beam of negatively charged secondary pions with 190 GeV/c momentum was
incident on a 40 cm long liquid-hydrogen target. The data selection required a recoil-proton
signal and an exclusive measurement was ensured through a variety of criteria [47].

Reaction (1) depends on two Mandelstam variables: the squared π−p center-of-momentum
energy s, which is fixed to about (19 GeV)2 by the beam momentum, and the squared four-
momentum t transferred from the beam to the target particle. It is convenient to define the
reduced four-momentum transfer squared

t′ ≡ |t| − |t|min ≥ 0, (2)

where

|t|min ≈

(
m2

3π −m2
π

2|~pbeam|

)2

(3)

is the minimum absolute value of the four-momentum transfer needed to excite the beam pion to
a 3π state with invariant mass m3π.[b] The beam momentum ~pbeam is defined in the laboratory
frame. For the present analysis, t′ was chosen to be in the range from 0.1 to 1.0 (GeV/c)2, where
the lower bound is dictated by the acceptance of the recoil-proton detector and the upper bound
by the experimental decrease of the number of events with t′.

Since reaction (1) is dominated by Pomeron exchange, which conserves isospin I and G parity
of the beam pion, only intermediate states X− with IG = 1− can be produced. This limits
the analysis to meson states that belong to the πJ and aJ families. This analysis focuses on
3π resonances with masses up to about 2 GeV/c2. We hence selected the m3π range from
0.5 to 2.5 GeV/c2.

III Partial-wave analysis method

We extract the π1(1600) contribution with JPC = 1−+ from the COMPASS data through
a partial-wave analysis (PWA) using a model comprising 88 partial waves (see Table 4 in

[b]For the kinematic range considered here, |t|min is well below 10−3 (GeV/c)2 and hence t′ ≈ −t.
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Appendix A). The PWA model has already been described in detail in Refs. [47, 53], so we will
provide here only a brief description.

We subdivide the data into 100 equidistant 20 MeV/c2 wide bins of the invariant mass m3π of
the 3π system and into 11 nonequidistant bins of the reduced four-momentum transfer squared
t′ (see Tab. IV in Ref. [47]) resulting in 1100 kinematic (m3π, t

′) cells. We fit each of these cells
independently with a PWA model for the intensity distribution,

I(τ ;m3π, t
′) =

∑
ε=±1

Nε
r∑

r=1

∣∣∣∣N
ε
waves∑
a

T rεa (m3π, t
′)Ψ εa(τ ;m3π)

∣∣∣∣
2

+ Iflat(m3π, t
′), (4)

using an unbinned extended maximum likelihood approach. Here, τ represents the five three-body
phase-space variables in a given (m3π, t

′) cell (see Sec. III in Ref. [47] for a concrete choice for τ).
The indices ε and r are explained below. The transition amplitude T rεa encodes the (unknown)
strength and phase of partial wave a, while the decay amplitude Ψ εa(τ) encodes the (known)
dependence on τ . Within a given (m3π, t

′) cell, we neglect the dependence on m3π and t′, i.e.,
T rεa is constant and Ψ εa depends only on τ . The term Iflat is the intensity of the so-called flat
wave, which represents three uncorrelated final-state pions that are distributed isotropically in
the three-body phase space. The flat wave contributes only 3.1 % to the total intensity.

The partial waves that enter Eq. (4) are uniquely defined by the quantum numbers of the
intermediate state X− and its decay mode (see Fig. 2). The X− quantum numbers are: isospin I,
G parity, spin J , parity P , C parity, and the projection M of J along the beam axis.[c] We
express the amplitudes in Eq. (4) in the reflectivity basis [54]. As a consequence, M ≥ 0 and an
additional quantum number of X−, the reflectivity ε = ±1, is introduced. The formulation in
the reflectivity basis allows us to take into account parity conservation in the scattering process
by summing incoherently over ε. In addition, at high s and neglecting corrections of order
1/s, ε corresponds to the naturality of the exchange particle in the scattering process [55–57].
Since at high s the scattering process is dominated by Pomeron exchange, which has ε = +1,
partial-wave amplitudes with ε = −1 are suppressed. Hence the two reflectivity sectors are in
general described using wave sets with different numbers N ε

waves of waves.

For the COMPASS data, we find that a PWA model with N ε=+1
waves = 80, N ε=−1

waves = 7, and the flat
wave describes the data well [47]. This 88-wave set is listed in Table 4 in Appendix A. As we will
show in Sec. IV, the wave set has a strong influence on the shape and intensity of the spin-exotic
JPC = 1−+ wave with M ε = 1+, which contains a potential π1(1600) signal.

The incoherent sum over the index r in Eq. (4) is used to model the incoherence in the scattering
process. Incoherences may, for example, arise due to spin flip and spin non-flip of the target
proton. Also performing the PWA over wide t′ ranges may lead to effective incoherence because
the transition amplitudes of the various waves have different t′ dependences (see discussion below).
The number N ε

r of incoherent terms corresponds to the rank of the spin-density submatrix with
reflectivity ε. Since the two values of ε correspond to different production mechanisms, the
rank may be different for different ε. For the COMPASS data, we find that a PWA model
with N ε=+1

r = 1 and N ε=−1
r = 2 describes the data well [47]. This means that all positive-

reflectivity waves are assumed to be fully coherent. The sum of the negative-reflectivity amplitudes
contributes only 2.2 % to the total intensity confirming the dominance of positive-reflectivity
waves.

We construct the decay amplitudes in Eq. (4) using the helicity formalism and the isobar model

[c]Although the C parity is not defined for charged systems, it is customary to quote the JPC quantum numbers
of the corresponding neutral partner state in the isospin triplet. For nonstrange light mesons, the C parity is
related to the G parity via G = C eiπIy , where Iy is the y component of the isospin.
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(see Sec. III in Ref. [47] for details), i.e., we assume that the decay X− → π−π−π+ proceeds via
two subsequent two-particle decays, X− → ξ0 π− and ξ0 → π−π+, with intermediate two-pion
states ξ0, which are called isobars (see Fig. 2). The decay amplitude of a partial wave contains a
propagator term ∆a(mπ−π+) that describes this isobar resonance and that we refer to as dynamic
isobar amplitude. In the case of the ρ(770) resonance, which dominates the JPCM ε = 1−+1+

wave, we use a relativistic Breit-Wigner amplitude with mass-dependent width as given by
Eqs. (31) and (40) in Ref. [47] as the dynamic isobar amplitude.

In the following, we adopt the partial-wave notation JPCM εξ0πL, where ξ0πL defines the decay
mode of X− and L is the orbital angular momentum between the isobar and the bachelor π−

(see Fig. 2). This means that the wave index in Eq. (4) is given by

a = JPCM εξ0πL. (5)

The t′ dependence of the transition amplitudes T rεa (m3π, t
′) in Eq. (4) is in general unknown and

may be different for different waves a. In diffractive reactions, the t′ spectra of the transition
amplitudes exhibit an approximately exponential decrease with t′ in the range t′ . 1 (GeV/c)2.
This behavior can be explained in the framework of Regge theory [58]. For partial waves with
M 6= 0, the t′ spectra are modified by an additional factor (t′)|M |, which is given by the forward
limit of the Wigner D-functions [58]. This factor suppresses the intensity of the waves toward
small t′, i.e., the transition amplitude is approximately proportional to (t′)|M |/2. Diffractive
production of JPC = 1−+ waves requires M = 1. This follows from parity conservation and the
dominance of natural-parity exchange in hadronic high-energy scattering reactions [54].[d] As a
consequence, 1−+ partial-wave amplitudes with positive reflectivity are suppressed at low t′.

In the analyses of small data sets (some of which will be discussed in Sec. IV below), where a
binning in t′ is not possible, the t′ dependence of the transition amplitudes is often modeled by
replacing the transition amplitudes via

T rεa (m3π, t
′)→ T rεa (m3π, t

′) f εa(t′), (6)

where the f εa(t′) are empirical real-valued functions. The parameters of these functions are usually
determined from data by performing the PWA in wide m3π ranges and narrow t′ bins. This
approach assumes that the shapes of the t′ spectra of the partial waves are largely independent
of m3π and also does not take into account possible t′ dependences of the relative phases between
the partial waves. However, we have shown in Ref. [47], by performing the PWA in 11 narrow
t′ bins and extracting the t′ dependences in a model-independent way, that for some waves the
above assumptions do not hold.

IV Previous results on π1(1600)→ ρ(770)π

In the past two decades, several experiments studied the 1−+1+ρ(770)πP wave in the 3π final
state. The key parameters of the analyzed data samples and the employed PWA models are listed
in Table 1. A list of the wave sets can be found in Table 4 in Appendix A. In Fig. 3, we show the
intensity distributions of the 1−+1+ρ(770)πP wave as obtained in the previous analyses. Based
on these distributions, the previous experiments arrived at seemingly contradictory conclusions
concerning the existence of a π1(1600) signal in the ρ(770)π channel. We will briefly summarize
these findings in the following.

The BNL E852 experiment was the first to claim a signal for π1(1600)→ ρ(770)π based on a
PWA performed on 250× 103 events obtained using an 18.3 GeV/c pion beam incident on a

[d]M = 0 would be allowed only in unnatural-parity exchange with ε = −1.
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Table 1: Key parameters of the data sets and the PWA models used in analyses of diffractively
produced 3π events studying a possible spin-exotic JPC = 1−+ resonance in the ρ(770)π channel.
The table also indicates whether the model takes into account different t′ dependences of the
partial-wave amplitudes either by binning in t′ or by modeling. The wave sets are listed in
Table 4 in Appendix A.

Experiment Data set PWA model

BNL E852 [41,42] 18.3 GeV/c π− beam
proton target
250× 103 π−π−π+ events

21 waves, rank 1
0.05 < t′ < 1.0 (GeV/c)2

same t′ dependence for all partial-wave am-
plitudes

VES [37] 36.6 GeV/c π− beam
beryllium target
3.0× 106 π−π−π+ events

44 waves, “maximum” rank
0.03 < t′ < 1.0 (GeV/c)2

fεa(t′) = (t′)|M |/2 [see Eq. (6)]

BNL E852 [45] 18.3 GeV/c π− beam
proton target
2.6× 106 π−π−π+ events
3.0× 106 π−π0π0 events

36 waves, rank 1
0.08 < t′ < 0.53 (GeV/c)2

12 t′ bins

COMPASS [43] 190 GeV/c π− beam
lead target
420× 103 π−π−π+ events

42 waves, rank 2
0.1 < t′ < 1.0 (GeV/c)2

fεa(t′) for each partial wave a [see Eq. (6)]

COMPASS [46,47] 190 GeV/c π− beam
proton target
46× 106 π−π−π+ events

88 waves, rank 1[e]

0.1 < t′ < 1.0 (GeV/c)2

11 t′ bins

[e]A rank-1 spin-density matrix was used for the 80 waves with positive reflectivity. For the 7 waves with
negative reflectivity (see Table 4 in Appendix A), which together contribute only 2.2 % to the total intensity, we
used a rank-2 spin-density matrix.
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FIG. 3: Comparison of intensity distributions of the spin-exotic 1−+1+ρ(770)πP wave as obtained
by different experiments measuring diffractive dissociation of a pion beam into 3π. Blue data
points: (a) 21-wave fit of BNL E852 data in the range 0.05 < t′ < 1.0 (GeV/c)2, (b) 44-wave
fit of VES data in the range 0.03 < t′ < 1.0 (GeV/c)2, (c) 36-wave fit of BNL E852 data in
the range 0.18 < t′ < 0.23 (GeV/c)2, and (d) 42-wave fit of COMPASS lead-target data in the
range 0.1 < t′ < 1.0 (GeV/c)2. The gray shaded area in panel (a) shows the result of a leakage
study performed by the BNL E852 experiment [42]. The red data points show the results of
corresponding analyses of the COMPASS proton-target data using 11 t′ bins in the range 0.1 < t′

< 1.0 (GeV/c)2: (a) t′-summed intensity distribution from the 21-wave PWA, (b) t′-summed
intensity distribution from the 88-wave PWA, (c) intensity distribution from the 36-wave PWA
in the range 0.189 < t′ < 0.220 (GeV/c)2, and (d) intensity distribution from the 88-wave PWA
in the range 0.449 < t′ < 0.724 (GeV/c)2. The red data points are scaled such that the intensity
integrals of the blue and red data points in the region where they overlap are equal. The blue
data points are taken from (a) Fig. 18(b) in Ref. [42], (b) Fig. 4(a) in Ref. [37], (c) Fig. 25(a) in
Ref. [45], and (d) Fig. 2(d) in Ref. [43]. The red data points in (d) are taken from Fig. 43(j) in
Ref. [46].
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FIG. 4: Comparison of the phases of the spin-exotic 1−+1+ρ(770)πP wave with respect to the
2−+0+f2(1270)πS wave as obtained by different experiments measuring diffractive dissociation
of a pion beam into 3π. Blue data points: 21-wave fit of BNL E852 data in the range 0.05 < t′

< 1.0 (GeV/c)2 (shifted by −180°

[f]); Green data points: 36-wave fit of BNL E852 data in
the range 0.18 < t′ < 0.23 (GeV/c)2 (shifted by +180°

[f]); Orange data points: 42-wave fit
of COMPASS lead-target data in the range 0.1 < t′ < 1.0 (GeV/c)2; Red data points: 88-
wave fit of COMPASS proton-target data in the range 0.449 < t′ < 0.742 (GeV/c)2 (values for
m3π < 1.1 GeV/c2 not shown). The data points were taken from Fig. 19(i) in Ref. [42] (blue),
Fig. 33 in Ref. [45] (green), Fig. 3(b) in Ref. [43] (orange), and Fig. 121 in Ref. [53] (red).

[f]Phase shifts of ±180° may be caused e.g., by different choices of the analyzers in the definition of the
coordinates systems or by different conventions used for the Wigner D-functions.

proton target in the kinematic range 0.05 < t′ < 1.0 (GeV/c)2 [41,42]. The employed PWA model
included 21 waves (see Table 4 in Appendix A) and a rank-1 spin-density matrix. The different
t′ dependences of the partial-wave amplitudes were not taken into account. The blue data
points in Fig. 3(a) show the resulting intensity distribution of the 1−+1+ρ(770)πP wave. This
distribution has two broad enhancements. The one in the 1.1 to 1.4 GeV/c2 region was attributed
to wrongly assigned intensity leaking from the dominant 1++0+ρ(770)πS wave into the 1−+1+

ρ(770)πP wave. This leakage was caused by the finite instrumental resolution in combination
with a nonuniform detector acceptance. An estimate of this leakage obtained using Monte Carlo
techniques is shown by the gray-shaded histogram in Fig. 3(a). The second peak at 1.6 GeV/c2

is accompanied by phase motions with respect to many waves (see e.g., blue data points in
Fig. 4 and Fig. 19 in Ref. [42]) and was hence interpreted as the π1(1600). A simultaneous fit
of the 1−+1+ρ(770)πP and 2−+0+f2(1270)πS amplitudes and their relative phase (see Fig. 24
in Ref. [42]) yielded Breit-Wigner parameters of mπ1(1600) = 1593± 8 (stat.) +29

−47 (sys.) MeV/c2

and Γπ1(1600) = 168 ± 20 (stat.) +150
−12 (sys.) MeV/c2. It is noteworthy that the π1(1600) peak

remained when the PWA was performed in a low-t′ region around 0.1 (GeV/c)2. However, a
strong dependence of the shape and magnitude of the π1(1600) signal on the PWA model was
observed.

The VES experiment at IHEP used a 36.6 GeV/c pion beam on a solid-beryllium target and
performed a PWA on 3.0× 106 events in the kinematic range 0.03 < t′ < 1.0 (GeV/c)2 [37]. The
PWA model contained 44 waves (see Table 4 in Appendix A) and the spin-density matrix used
in the PWA fit had maximum allowed rank. To search for resonances, they extracted from
this spin-density matrix a rank-1 spin-density matrix of fully coherent partial-wave amplitudes.
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In the PWA model, the partial-wave amplitudes were multiplied by an additional factor of
f εa(t′) = (t′)|M |/2 [59] [see Eq. (6)] to take into account the fact that the partial-wave intensity
is proportional to (t′)|M |. Using this approach, also the VES experiment observed significant
intensity in the 1−+1+ρ(770)πP wave [see blue data points in Fig. 3(b)]. However, they did
not observe a peak at 1.6 GeV/c2 comparable to the one found in the BNL E852 analysis in
Refs. [41, 42]. Instead, they found a very broad intensity distribution with a slow phase motion
of about 60° in the 1.6 GeV/c2 region (see Fig. 4 in Ref. [37]). From this they concluded that the
ρ(770)π data alone are inconclusive concerning the existence of a π1(1600) signal. However, in a
combined fit of the intensity distributions of the 1−+ wave in the b1(1235)π, η′π, and ρ(770)π
channels, they found a satisfactory description of the data using a π1(1600) resonance with
mπ1(1600) = 1560± 60 MeV/c2 and Γπ1(1600) = 340± 50 MeV/c2 (see Fig. 6 in Ref. [37]).

Dzierba et al. [45] performed a PWA of a second BNL E852 data sample of 5.6× 106 3π events,
which is a factor 20 larger than the one used in the first analysis in Refs. [41,42]. The analysis was
performed independently in 12 t′ bins in the range from 0.08 to 0.53 (GeV/c)2. The PWA model
employed a rank-1 spin-density matrix and a set of 36 partial waves (see Table 4 in Appendix A).
This wave set was derived from a larger parent wave set. The resulting intensity distribution
of the 1−+1+ρ(770)πP wave is broad and structureless and shows no peak at 1.6 GeV/c2. As
an example, the blue data points in Fig. 3(c) show the intensity distribution in the t′ bin from
0.18 to 0.23 (GeV/c)2. The shape of the intensity distribution was found to change strongly
with t′ (see Fig. 31 in Ref. [45]). With increasing t′, intensity moves from the 1.2 GeV/c2 region
to higher masses. Applying the 21-wave set from Refs. [41,42], yielded a peak at 1.6 GeV/c2 in
the 1−+1+ρ(770)πP intensity distribution consistent with the first analysis of BNL E852 data
(see Figs. 24 and 25 in Ref. [45]). The authors of Ref. [45] showed that leakage from the π2(1670)
causes this peak, if the 2−+0+ρ(770)πP , the 2−+0+ρ(770)πF , and the 2−+1+ρ(770)πF wave are
omitted from the 36-wave model (see Figs. 27 and 28 in Ref. [45]); the latter two waves were
missing in the 21-wave model used in Refs. [41, 42]. Using moments of the Wigner D-functions,
Dzierba et al. demonstrated that the 36-wave model describes the data significantly better than
the 21-wave model. Based on these observations, they concluded that the BNL E852 data
provide no evidence for the existence of a π1(1600) in the ρ(770)π channel. For the discussion
in Sec. IV A below it is important to note that this conclusion was based only on data in the
range t′ < 0.53 (GeV/c)2 and that it was not corroborated by any kind of resonance-model fit.
In the 36-wave PWA, Dzierba et al. observed an enhancement around 1.6 GeV/c2 in the higher
t′ bins (see Fig. 31 in Ref. [45]) and an approximately constant phase of the 1−+1+ρ(770)πP
wave with respect to the 2−+0+f2(1270)πS wave around 1.6 GeV/c2 (see green data points in
Fig. 4 shown in this paper and Figs. 25(b) and 33 in Ref. [45]). These effects could be a sign for
a 1−+ resonance with similar parameters as the π2(1670), but were both ascribed to remaining
leakage from the π2(1670) into the 1−+ wave.

In contrast, the first analysis of a much smaller data sample of 420× 103 events obtained by the
COMPASS experiment using a 190 GeV/c pion beam on a solid-lead target showed clear evidence
for a π1(1600) signal in the 1−+1+ρ(770)πP wave [43]. We performed the PWA employing a
rank-2 spin-density matrix and a set of 42 waves (see Table 4 in Appendix A) in the range 0.1 < t′

< 1.0 (GeV/c)2 using a parametrization for the t′ dependence of the partial-wave amplitudes like
in Eq. (6) with different parameters for each wave. The 42-wave set is similar to the 36-wave set
used by Dzierba et al. in Ref. [45] having 29 waves in common. In particular, it contains those
three 2−+ waves that were found to make the peak at 1.6 GeV/c2 disappear (see discussion above).
The resulting intensity distribution of the 1−+1+ρ(770)πP wave is shown as blue data points
in Fig. 3(d). By performing a resonance-model fit of 6 partial-wave amplitudes simultaneously,
we obtained Breit-Wigner parameters of mπ1(1600) = 1660 ± 10 (stat.) +0

−64 (sys.) MeV/c2 and

Γπ1(1600) = 269± 21 (stat.) +42
−64 (sys.) MeV/c2. The π1(1600) parameters are similar to the ones
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found for the π2(1670), which are mπ2(1670) = 1658± 3 (stat.) +24
−8 (sys.) MeV/c2 and Γπ2(1670) =

271 ± 9 (stat.) +22
−24 (sys.) MeV/c2. This explains the approximately constant phase observed

between the 1−+1+ρ(770)πP and 2−+0+f2(1270)πS waves (see orange data points in Fig. 4).

A Comparison of previous results with COMPASS proton-target data

The COMPASS collaboration has recently published a detailed PWA of the π−π−π+ final state
using a PWA model with 88 waves (see Tables 1 and 4). Here, we focus on the 1−+1+ρ(770)πP
wave. The red data points in Fig. 3(b) show the intensity distribution summed over the 11 t′

bins. It is similar to the one found by the VES experiment in a similar t′ range [37] (blue data
points). We do not observe a peak at 1.6 GeV/c2 like in the BNL E852 21-wave PWA [41,42] [cf.
blue data points in Fig. 3(a)]. Surprisingly, the t′-summed intensity distributions in Fig. 3(b)
are different from the one obtained in the analysis of the COMPASS lead-target data [43] [blue
points in Fig. 3(d)]. Näıvely, one could expect these intensity distributions to be similar because
t′ > 0.1 (GeV/c)2, i.e., far above the region corresponding to coherent scattering off the lead
nucleus, and hence the beam pion scatters off quasi-free nucleons inside the nucleus. In the
COMPASS proton-target data, the shape of the intensity distribution of the 1−+1+ρ(770)πP
wave exhibits a surprisingly strong dependence on t′ (see Fig. 13 shown in this paper and Fig. 43 in
Ref. [46]), and confirms a similar observation made by Dzierba et al. [45]. At low t′, the intensity
distribution is dominated by a broad structure that extends from about 1.0 to 1.7 GeV/c2. With
increasing t′, the structure becomes narrower and its maximum moves to about 1.6 GeV/c2.
Interestingly, for t′ & 0.5 (GeV/c)2 (i.e., above the kinematic range considered by Dzierba et
al. [45]) the intensity distribution actually resembles the one that we obtained in the analysis of
the COMPASS lead-target data in the range 0.1 < t′ < 1.0 (GeV/c)2 [see Fig. 3(d)].

In the COMPASS proton-target data, we observe slow phase motions of the 1−+1+ρ(770)πP
wave with respect to other waves in the 1.6 GeV/c2 region (see Fig. 44 in Ref. [46]). As an
example, the red data points in Fig. 4 show the phase with respect to the 2−+0+f2(1270)πS
wave. Compared to the rather large differences in the intensity distributions (see Fig. 3), the
m3π dependence of the phases of the 1−+1+ρ(770)πP wave relative to other waves is more
robust with respect to changes of the analysis model. The phase motion from the COMPASS
proton-target data is less pronounced than the one observed by the BNL E852 collaboration but
agrees qualitatively with the phase motions observed by Dzierba et al. and in the analysis of the
COMPASS lead-target data. We have no explanation for the approximately +60° offset of the
phase motion reported by Dzierba et al. [45] with respect to the other analyses.[g]

The strong t′ dependence of the shape of the intensity distribution hints at large contributions
from nonresonant processes related, e.g., to the Deck effect [48]. This was confirmed by our
resonance-model fit, which describes the partial-wave intensities and interference terms of
14 selected partial waves simultaneously [46]. The resonance-model fit was performed for the
first time simultaneously in all t′ bins with the resonance parameters, i.e., masses and widths,
forced to be the same across the t′ bins. In this t′-resolved approach, we exploit the in general
different t′ dependences of the resonant and nonresonant amplitudes to better disentangle the
two contributions. This eventually yields more realistic estimates for the resonance parameters.
The model reproduces the 1−+1+ρ(770)πP intensities and phase motions well by a t′-dependent
interference between the π1(1600) and a nonresonant component.[h] The latter strongly changes

[g]The panels in Fig. 33 in Ref. [45] that correspond to the t′ bins number 6 and 7 show the same data points.
Thus it is unclear whether the shown phase motion is that of bin 6 or bin 7. However, this probably does not
explain the phase offset with respect to the other analyses since the phase in the m3π = 1.6 GeV/c2 region depends
only weakly on t′.

[h]We parametrize the nonresonant amplitude using Eqs. (27) and (28) in Ref. [46]. This is a phenomenological
parametrization in the form of a Gaussian in the two-body breakup momentum of the isobar-pion decay that was
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shape, strength, and phase with t′. At low t′, the intensity is dominated by the large nonresonant
component, which interferes constructively with the π1(1600) at low masses. With increasing t′,
the strength of the nonresonant component decreases more quickly than that of the π1(1600) so
that the latter becomes the dominant component. For t′ & 0.5 (GeV/c)2, i.e., in the two highest
t′ bins, the nonresonant component is small or even vanishing in the 1.6 GeV/c2 mass region,
and the broad peak in the data is nearly entirely described by the π1(1600). The resonance
model is not able to reproduce a narrow enhancement at about 1.1 GeV/c2, which appears at
low t′. This structure is not accompanied by any phase motion and the intensity in this mass
region is sensitive to details of the PWA model. This makes a resonance interpretation unlikely
and we hence suspect this structure to be an artifact induced by imperfections in the analysis
method. A similar observation has been made in the VES analysis [37]. A similar structure
also appears in a more advanced PWA (see Sec. V and Fig. 8), where we significantly reduce
the model bias introduced by the chosen parametrizations for the dynamic isobar amplitudes.
Hence its appearance does not seem to be tightly related to how well the isobar amplitudes are
described by the PWA model.

From the resonance-model fit, we obtain Breit-Wigner parameters of mπ1(1600) =

1600 +110
−60 MeV/c2 and Γπ1(1600) = 580 +100

−230 MeV/c2. The quoted uncertainties are systematic
only (see Ref. [46] for details on the performed studies); the statistical uncertainties are more than
an order of magnitude smaller and hence negligible. Although the mass value agrees well with the
one found in our analysis of the COMPASS lead-target data [43] (see Sec. IV), the width found in
the proton-target data is considerably larger. The reason for this discrepancy is not understood.
However, it could be related to the fact that relative to the π1(1600) the contribution from the
nonresonant components is much larger in the proton-target data than in the lead-target data.
Also, our resonance models, which we use to decompose the partial-wave amplitudes into coherent
sums of Breit-Wigner resonances and nonresonant amplitudes, might render the resonance param-
eters process-dependent [61]. In addition, due to the much smaller data sample, the analysis of the
lead-target data was performed by integrating over t′ and by modeling the t′ dependence of the
partial-wave amplitudes according to Eq. (6). Therefore, a potential t′ dependence of the shape of
the 1−+1+ρ(770)πP amplitude was not taken into account. A recent coupled-channel analysis of
COMPASS data on diffractively produced ηπ− and η′π− final states performed by the JPAC collab-
oration finds a resonance pole with parameters of mπ1(1600) = 1564±24 (stat.)±86 (sys.) MeV/c2

and Γπ1(1600) = 492 ± 54 (stat.) ± 102 (sys.) MeV/c2 [40] that are more consistent with the
Breit-Wigner parameters we find in the COMPASS proton-target data.

Are the different results from previous analyses, in particular the two analyses based on BNL E852
data, caused by inconsistencies of the data or by the different PWA models? In order to answer
this question, we investigate the impact of the different analysis models used for the BNL E852
data, by applying the 21-wave set from Refs. [41, 42] and the 36-wave set from Ref. [45] (see
Table 4 in Appendix A) to the high-precision COMPASS proton-target data sample keeping
the subdivision into 11 t′ bins. The red data points in Fig. 3(a) show the t′-summed intensity
distribution of the 1−+1+ρ(770)πP wave as obtained from the PWA using the 21-wave set.
The intensity distribution exhibits a clear peak slightly above 1.6 GeV/c2, similar to the signal
found in the BNL E852 analysis in Refs. [41, 42] (blue data points). In the low-mass region,
the intensities from the two analyses shown in Fig. 3(a) are not directly comparable. The
COMPASS acceptance is much more uniform than the acceptance of the BNL E852 experiment
and hence leakage induced by the experimental acceptance is much suppressed. We also confirm
the finding of Dzierba et al. that the 1.6 GeV/c2 peak vanishes by applying the 36-wave set
to the COMPASS proton-target data. As an example, we compare in Fig. 3(c) the intensity

inspired by Ref. [60].
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distributions around t′ = 0.2 (GeV/c)2. Consequently, our data support the conclusion from
Ref. [45] that the 1.6 GeV/c2 peak observed in Refs. [41, 42] is an artificial structure caused
by using a wave set that misses important waves. This conclusion is further supported by the
fact that using the 21-wave set we find contrary to the expected dominance of natural-parity
exchange a peak of similar height in the same mass region in the 1−+1−ρ(770)πP wave, which
has negative reflectivity corresponding to unnatural-parity exchange. This has also been pointed
out by VES [37].

Our t′-resolved analysis using the 88-wave set also confirms the finding of Dzierba et al. that the
π1(1600) signal is weak compared to the nonresonant component in the range t′ . 0.5 (GeV/c)2.
In the range t′ < 0.53 (GeV/c)2 analyzed in Ref. [45], we find that the π1(1600) signal is masked
by the dominant contributions from nonresonant processes. However, our analysis contradicts
the conclusion from Ref. [45] that there is no evidence for the π1(1600) in 3π. The COMPASS
proton-target data require a π1(1600) resonance in the range t′ & 0.5 (GeV/c)2 and also the
COMPASS lead-target data cannot be described without a π1(1600).

It is not yet understood why the π1(1600) signal is enhanced with respect to the nonresonant
component in the lead-target data as compared to our proton-target data. However, we do
observe a general enhancement of the intensity of waves with spin projection M = 1 over those
with M = 0 in the lead-target data [50].

B Summary: previous results and comparison with COMPASS data

Using our highly precise COMPASS proton-target data we reproduce the key PWA results of all
previous analyses of the 1−+1+ρ(770)πP wave by applying their analysis models. We conclude
that this wave contains a π1(1600) signal and that the discrepancies and mutual inconsistencies
observed in previous analyses originate either from model artifacts or from studying too restricted
t′ ranges. The PWA model with 21 waves used in Refs. [41, 42] contained too few waves leading
to an artificial peak being misinterpreted as the π1(1600). The analysis in Ref. [45] excluded
the region t′ > 0.53 (GeV/c)2 and hence missed the region, in which the π1(1600) signal rises
above the nonresonant background. Since the VES analysis was not performed in t′ bins, their
π1(1600) signal was also diluted by large nonresonant contributions.

A remaining puzzle is that in γ+π± → π±π−π+ reactions the production of the π1(1600) seems to
be much less prominent than expected considering vector-meson dominance and the observation
of the ρ(770)π decay.[i] The CLAS [62,63] and the COMPASS Primakoff experiment [64,65] find
nearly vanishing intensities of the 1−+ wave in the 1.6 GeV/c2 mass region. This, however, could
in principle be due to destructive interference of a π1(1600) with a nonresonant component—a
hypothesis that could be verified by resonance-model fits. In the future, much more precise
photoproduction data from Jefferson Laboratory will help to clarify the situation.

V Study of dynamic isobar amplitudes

The partial-wave analyses of the 3π final state performed so far (see Sec. IV) used the conventional
isobar model where isobar resonances are described using fixed parametrizations for their dynamic
amplitude ∆(mξ) (see Sec. III) with resonance parameters taken from previous experiments [20].
Even though this approach is quite common, it might introduce a model bias in the analysis
because the fixed dynamic amplitudes might deviate from the true ones present in real data. The
differences could be due to distortions of the two-particle dynamic amplitudes, caused by the

[i]The absolute partial width π1(1600)→ ρ(770)π is currently unknown. However, our results suggest that the
branching fraction might be in the percent region.
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presence of the third pion, or due to contributions from excited isobar resonances or nonresonant
processes.

To study this possible bias in our PWA model, we re-analyze our data set using the freed-isobar
PWA method presented in detail in Refs. [49, 66]. This analysis technique no longer relies on
fixed parametrizations for the dynamic isobar amplitudes, but allows to extract these amplitudes
from the data themselves with much reduced model dependence. In this approach, the fixed
parametrization for the dynamic amplitude ∆a(mξ) of an isobar ξ in wave a (see Eq. (5)) is
replaced by a set of piecewise constant amplitudes defined over a contiguous set of intervals in
the π−π+ mass mξ that are indexed by k, i.e.,[j]

∆a(mξ) =
∑
k

Ta,kΠk,ξ(mξ) with Πk,ξ(mξ) =

{
1, if mk,ξ ≤ mξ < mk+1,ξ,

0, otherwise.
(7)

This way, the dynamic amplitude for isobar ξ is approximated by the set {Ta,k} of complex-
valued constants. This method allows us not only to estimate the model bias caused by the fixed
dynamic isobar amplitudes in our PWA model, but also to study the dynamic isobar amplitudes
themselves.

In our PWA model, we factorize the decay amplitude Ψa of partial wave a in Eq. (4) into the
dynamic isobar amplitude ∆a and an angular amplitude Ka. Including the Bose symmetrization
with respect to the two indistinguishable π− in the π−1 π

−
2 π

+
3 final state, we write for a given

(m3π, t
′) cell (see Eq. (47) in Ref. [47]):[k]

Ψa(τ13, τ23) = Ka(τ13)∆a(m13) +Ka(τ23)∆a(m23). (8)

It is important that ∆a depends only on the invariant mass mij of the π−i π
+
j subsystems forming

the isobar and that Ka depends only on the four angular variables in the set of five phase-space
variables of the three-body system represented by τij (see Sec. III A in Ref. [47] for details on
the definition of the coordinate systems). Inserting Eq. (7) into Eq. (8) and defining separate
transition and decay amplitudes for every π−π+ mass interval k via

Ta,k ≡ Ta Ta,k (9)

and

Ψa,k(τ13, τ23) ≡ Ka(τ13)Πk,ξ(m13) +Ka(τ23)Πk,ξ(m23), (10)

the expression for the intensity distribution in Eq. (4) can be written as[l]

I(τ13, τ23) =

∣∣∣∣∑
a

∑
k

Ta,k Ψa,k(τ13, τ23)

∣∣∣∣2 + Iflat. (11)

Note that although Eq. (11) contains an additional sum over the two-pion mass intervals k, the
mathematical structure is exactly the same as in Eq. (4). We can thus use the same extended
maximum likelihood approach to determine the set {Ta,k} of the unknown fit parameters from
the data.

[j]In the following, we discuss PWA models with rank 1 and waves with positive reflectivity. We hence omit the
ε and r indices from here onwards.

[k]The angular amplitude is that part of the decay amplitude, which depends only on the decay angles and not

on m3π or mπ−π+ . It is given by Eqs. (11) and (7) in Ref. [47] without the dynamic parts fJλ 0 and f
Jξ
0 0 .

[l]See footnote [j].
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Performing a freed-isobar PWA in (m3π, t
′) cells, yields transition amplitudes Ta,k(m3π, t

′) =
Ta(m3π,mξ, t

′) that now depend not only on m3π and t′ but also on mξ via the index k. According
to Eq. (9), a freed-isobar transition amplitude contains information on both the 3π system and
the π−π+ subsystem. For each freed-isobar wave in the PWA model and each (m3π, t

′) cell,
the method yields an Argand diagram ranging in mξ from 2mπ to m3π −mπ. It is important
to note that in the freed-isobar approach, we do not make any assumptions on the resonance
content of the π−π+ subsystem. The freed-isobar PWA thus allows us to determine from the
data the overall amplitude of all π−π+ intermediate states with given JPC quantum numbers in
the 3π partial wave defined by a. This amplitude hence includes in principle all contributing
π−π+ resonances, potential nonresonant contributions, as well as distortions due to final-state
interactions. Note that a π−π+ system with even relative orbital angular momentum, i.e., even J ,
has IG JPC quantum numbers 0+ J++, which correspond to fJ states, or 2+ J++, which would
be flavor-exotic. A π−π+ system with odd relative orbital angular momentum, i.e., odd J , has
IG JPC quantum numbers 1+ J−−, which correspond to ρJ states.

In the ansatz in Eq. (11), we sum coherently over the index k of the mπ−π+ intervals. This
takes into account the interference of the amplitudes in different mπ−π+ intervals due to Bose
symmetrization of the final-state particles. This is conceptually different from the binning in m3π

and t′, where all kinematic bins are independent.

The obtained dynamic isobar amplitudes can be different for every wave a, even though they
might describe π−π+ subsystems with the same relative orbital angular momentum. The reduced
model dependence of the freed-isobar method and the additional information on the π−π+

subsystems come at the price of a considerably larger number of fit parameters compared to
the conventional fixed-isobar PWA. Thus even for large data sets, the freed-isobar approach is
feasible only when it is applied to a selected subset of partial waves in the PWA model, while for
the remaining partial waves the conventional fixed isobar parametrizations are used.

Based on the COMPASS proton-target data, we have performed a freed-isobar PWA already in
Ref. [47] to extract the dynamic π−π+ S-wave amplitudes in three different 3π partial waves.

A Freed-isobar analysis model

In the following, we apply the freed-isobar method to the 1−+1+ρ(770)πP wave. Since this wave
has a low relative intensity of only 0.8 % it is prone to potential leakage effects. Therefore, it
does not suffice to free the dynamic isobar amplitude only in the 1−+ wave. Small imperfections
in the description of the dynamic isobar amplitudes of waves with much higher relative intensity
could create tensions between model and data, which in turn could induce leakage into the freed
1−+ wave due to its high flexibility.

Therefore, we free all 12 waves of our 88-wave PWA model (see Table 4 in Appendix A), that
obtained a relative intensity of more than 1 % in the conventional PWA. In addition to these
12 waves, we free the 1−+1+ρ(770)πP wave to study its 1−− dynamic isobar amplitude. The
88-wave PWA model contains subsets of waves with identical quantum numbers but different
IG JPC = 0+ 0++ isobar resonances. Such waves are absorbed in a single freed-isobar wave with
JPC = 0++ of the π−π+ subsystem (indicated by the brackets in Table 2). As a consequence,
3 additional waves with a relative intensity below 1 % are also freed. In total, we replace the
dynamic isobar amplitudes of 16 of the original 88 fixed-isobar waves by 12 waves with freed-isobar
amplitudes (see Tables 2 and 4); 72 waves with fixed dynamic isobar amplitudes remain in the
freed-isobar PWA model. In the conventional fixed-isobar PWA, the intensity sum of the 16 freed
waves accounts for 83.3 % of the total intensity.

For the freed-isobar waves, we choose mπ−π+ intervals with a width of 40 MeV/c2 except in the
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Table 2: Waves in the freed-isobar PWA model with dynamic isobar amplitudes parametrized
according to Eq. (7). The notation [ππ]JPC represents a π−π+ subsystem with well-defined
JPC quantum numbers.[m] The center column lists the corresponding waves in the conventional
88-wave fixed-isobar PWA (see Table 4 in Appendix A) and the right column their relative
intensity as obtained in Ref. [47].

Freed wave Fixed wave(s) Relative

intensity

0−+0+[ππ]0++πS


0−+0+[ππ]SπS 8.0 %

0−+0+f0(980)πS 2.4 %

0−+0+f0(1500)πS 0.1 %

0−+0+[ππ]1−−πP 0−+0+ρ(770)πP 3.5 %

1++0+[ππ]0++πP

{
1++0+[ππ]SπP 4.1 %

1++0+f0(980)πP 0.3 %

1++0+[ππ]1−−πS 1++0+ρ(770)πS 32.7 %

1++1+[ππ]1−−πS 1++1+ρ(770)πS 4.1 %

1−+1+[ππ]1−−πP 1−+1+ρ(770)πP 0.8 %

2++1+[ππ]1−−πD 2++1+ρ(770)πD 7.7 %

2−+0+[ππ]0++πD

{
2−+0+[ππ]SπD 3.0 %

2−+0+f0(980)πD 0.6 %

2−+0+[ππ]1−−πP 2−+0+ρ(770)πP 3.8 %

2−+1+[ππ]1−−πP 2−+1+ρ(770)πP 3.3 %

2−+0+[ππ]1−−πF 2−+0+ρ(770)πF 2.2 %

2−+0+[ππ]2++πS 2−+0+f2(1270)πS 6.7 %

Intensity sum 83.3%

[m]In the fixed-isobar PWA, [ππ]S represents a parametrization for the broad component of the π−π+ S-wave
amplitude based on Ref. [67] (see Sec. III A in Ref. [47] for details).
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Table 3: Borders of the four nonequidistant t′ bins, in which the freed-isobar PWA is performed.
The intervals are chosen such that each bin contains approximately 11.5× 106 events.

Bin 1 2 3 4

t′ [(GeV/c)2] 0.100 0.141 0.194 0.326 1.000

regions of the known ρ(770), f0(980), and f2(1270) resonances, where we use a finer binning. For
the waves with JPC = 1−− isobars, we use an interval width of 20 MeV/c2 in the range from
0.64 to 0.92 GeV/c2.[n] Our freed-isobar PWA model (see Table 2) has a much larger number of
fit parameters than the conventional fixed-isobar PWA.[o] In order to sufficiently constrain the
fit parameters by data, we increase the m3π bin width from 20 MeV/c2 in the fixed-isobar PWA
to 40 MeV/c2 in the freed-isobar PWA and reduce in addition the number of t′ bins from 11 to 4
(see Table 3). We thus decrease the total number of kinematic (m3π, t

′) cells in the analyzed
range from 1100 in the fixed-isobar PWA to 200 in the freed-isobar PWA. All other parameters
of the PWA remain as described in Ref. [47]. For the m3π bins below 0.98 GeV/c2, the results
from the freed-isobar PWA turn out to be not well-determined by the data. This is probably
related to the fact that this m3π region corresponds to the range mπ−π+ . 0.8 GeV/c2 where
most isobar resonances, which otherwise stabilize the fit, are absent. Therefore, we exclude this
m3π range from the following analysis.

In a freed-isobar PWA mathematical ambiguities, so-called zero modes, may arise at the level of
the decay amplitudes leading to ambiguous solutions for the transition amplitudes {Ta,k}. These
ambiguities can be resolved by imposing conditions on the mπ−π+ dependence of the dynamic
isobar amplitudes [49,66]. We give details on the zero mode in the 1−+1+[ππ]1−−πP wave and
its resolution in Appendix B. The zero modes are confined to sectors with the same JPCM ε

quantum numbers of the 3π system. Therefore, similar ambiguities present in other waves have
no influence on the results extracted for the spin-exotic wave. In the following, we will discuss
only zero-mode corrected results.

B Freed-isobar results for the JPC = 1−+ wave

In the following, we will present results for the 1−+1+[ππ]1−−πP wave obtained from the freed-
isobar PWA with 12 freed waves as listed in Tables 2 and 4. Figure 5 shows the partial-wave
intensities |Ta,k|2 for the four t′ bins listed in Table 3. Here, the

Ta,k =
Ta,k√
wk

(12)

are the transition amplitudes for the mπ−π+ intervals k [see Eqs. (7) and (9)] normalized by
the width wk of the intervals. We observe a clear correlation of the m3π distribution of the 3π
system with IG JPCM ε = 1− 1−+1+ with the mπ−π+ distribution of the π−π+ subsystem with
IG JPC = 1− 1−−. The mπ−π+ spectra are dominated by a peak in the ρ(770) region. The shape
of the m3π spectrum in the ρ(770) region depends strongly on t′. At low t′, it is characterized by
a broad structure peaking at low values of m3π around 1.1 GeV/c2. A similar enhancement is
observed in the conventional fixed-isobar PWA (see Sec. IV A). The freed-isobar PWA shows
that this enhancement indeed contains mainly ρ(770)π (see discussion below). With increasing t′,

[n]For JPC = 0++ isobars, we use an interval width of 10 MeV/c2 in the range from 0.92 to 1.08 GeV/c2; for
JPC = 2++, an interval width of 20 MeV/c2 from 1.18 to 1.40 GeV/c2.

[o]In the highest m3π bin at 2.48 GeV/c2, the number of free parameters in the freed-isobar PWA is 1520. This
number decreases with decreasing m3π because fewer mπ−π+ intervals are kinematically allowed. In the same
m3π bin, the 88-wave fixed-isobar PWA model (see Table 4 in Appendix A) has 184 free parameters.
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FIG. 5: Two-dimensional intensity distribution of the 1−+1+[ππ]1−−πP wave obtained in the
freed-isobar PWA (after correction for the zero mode) as a function of m3π and mπ−π+ for all
four t′ bins. The color scale represents the intensity in units of number of events per 40 MeV/c2

interval in mπ−π+ and in m3π. The white vertical lines indicate the m3π bins shown in Fig. 6.

the intensity in the low-mass region decreases quickly and in the highest t′ bin, a peak emerges
in the m3π = 1.6 GeV/c2 region [see Fig. 5(d)].

The left column of Fig. 6 shows the intensity distributions as a function of mπ−π+ for selected
m3π bins that are indicated by vertical lines in Fig. 5. The mass bin 1.34 < m3π < 1.38 GeV/c2

is dominated by nonresonant contributions, whereas the bin 1.58 < m3π < 1.62 GeV/c2 lies in
the π1(1600) resonance region. For the low-mass region, we show, as an example, only the data
in the highest t′ bin, while for the π1(1600) resonance region, we present the results for the lowest
and the highest of the four t′ bins.

Since the freed-isobar PWA extracts the amplitude as a function of m3π and mπ−π+ , we have also
information about the phase as a function of mπ−π+ . This is shown in the right column of Fig. 6
in the form of Argand diagrams for the selected m3π bins. The dominant ρ(770) peak in the
intensity spectra corresponds to a clear circular structure in the Argand diagrams with a phase
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FIG. 6: The [ππ]1−− dynamic isobar amplitude in the 1−+1+[ππ]1−−πP wave as a function
of mπ−π+ for selected m3π and t′ bins. Left column: intensities; Right column: Argand diagrams.
The blue data points with error bars or error ellipses, respectively, are the result of the freed-isobar
PWA corrected for the zero mode. In the Argand diagrams, the data points are connected by
lines to indicate the order and the red numbers correspond to mπ−π+ values in GeV/c2. The
line segments highlighted in orange correspond to the mπ−π+ range from 0.64 to 0.92 GeV/c2

around the ρ(770). The overall phase of the Argand diagrams is fixed by the 4++1+ρ(770)πG
wave. For comparison, the fixed parametrization of the dynamic isobar amplitude for the ρ(770)
as used in the conventional PWA is shown by the gray lines with the ρ(770) region indicated by
thicker lines. In the Argand diagrams, the orange point indicates the nominal ρ(770) mass and
the green- and red-circled points indicate the lowest and the highest mπ−π+ interval, respectively.
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motion by about 180°. This confirms, that the presence of the ρ(770) has not been artificially
enforced by the fixed parametrizations of the dynamic isobar amplitudes as used in previous
analyses. Just as the mπ−π+ spectra, also the Argand diagrams exhibit no strong dependence
on m3π or t′. The spin-exotic wave is clearly dominated by the ρ(770) over the full m3π region
and in all four t′ bins.

We study the freed-isobar transition amplitudes that we extracted from the data in terms of
isobar resonances and possible distortions. In a first study, we investigate the ρ(770) resonance
in the presence of another pion, which together form a 3π system with JPC = 1−+. Lacking an
elaborate model, we perform this study by fitting the JPC = 1−− dynamic isobar amplitudes
with a ρ(770) Breit-Wigner model of the form

T̂a(mπ−π+ ;m3π, t
′) = Ca(m3π, t

′)
Na(m3π,mπ−π+)

m2
ρ(770) −m

2
π−π+ − imρ(770)Γ (mπ−π+)

(13)

in every (m3π, t
′) cell independently. Here, a = 1−+1+[ππ]1−−πP , Na(m3π,mπ−π+) is a normal-

ization factor, which takes into account the variation of the mπ−π+ bin width, the self-interference
of the Breit-Wigner amplitude due to Bose symmetrization, and the angular-momentum barrier
factors FL(m3π;mπ−π+ ,mπ) and FJξ(mπ−π+ ;mπ,mπ) from Eqs. (10) and (8) of Ref. [47], and
Γ (mπ−π+) is the mass-dependent total width of the ρ(770) as given by Eq. (40) in Ref. [47].
In the fits, the resonance parameters mρ(770) and Γρ(770) are fixed to the values used in the
conventional fixed-isobar PWA (see Tab. III in Ref. [47]). The only free fit parameter is the
complex-valued coupling Ca(m3π, t

′), which determines strength and phase of the ρ(770) signal
in the given (m3π, t

′) cell, i.e., radius and rotation of the resonance circle about the origin in the
Argand diagram. The model is evaluated at those mπ−π+ values that correspond to the centers
of the mπ−π+ intervals defined in Eq. (7).

The fits are limited to the region mπ−π+ < 1.12 GeV/c2 to avoid bias from excited ρ resonances
at higher masses. The results of these fits are shown as gray curves in Fig. 6.[p] The resulting
curves are in good agreement with the extracted dynamic isobar amplitudes in the m3π region of
the π1(1600), which confirms the validity of the isobar model. For the lower m3π bin shown, the
agreement is slightly worse, which could hint at a stronger influence of nonresonant contributions
in this mass region.

In a second study, we let the ρ(770) resonance parameters float in the fit and determine them
independently for every (m3π, t

′) cell. We hence do not assume anymore that we can factorize the
mπ−π+ dependence of the transition amplitudes from their m3π and t′ dependence. The weighted
average of the obtained ρ(770) mass values is about 760 MeV/c2, only slightly below the PDG
averages. The weighted average of the obtained ρ(770) width values is approximately 130 MeV/c2,
which lies 15 to 20 MeV/c2 below the PDG averages. We have currently no explanation why the
ρ(770) in the 1−+ wave appears so much narrower.[q] The ρ(770) parameters exhibit variations of
about ±10 % with m3π (see Fig. 7), while they show little variation with t′ [66]. More advanced
models are needed to study the distortion of the ρ(770) line shape due to effects of final-state
interaction and interfering contributions from nonresonant processes in the π−π+ system.

[p]These fits also resolve the mathematical ambiguity discussed in Sec. V A. This is explained in detail in
Appendix B.

[q]Allowing the range parameter qR (see below Eq. (39) in Ref. [47]) of the angular-momentum barrier factor
FJξ of the ρ(770) decay as an additional free fit parameter, yields slightly larger width values in some m3π regions.
However, qualitatively the picture remains unchanged.
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FIG. 7: Parameters of the ρ(770) resonance obtained by fitting the JPC = 1−− dynamic isobar
amplitudes of the spin-exotic wave from the freed-isobar PWA. The fit is performed independently
in every (m3π, t

′) cell; the results shown are for the highest t′ bin. (a) shows the ρ(770) mass
and (b) the ρ(770) width. The gray lines indicate the corresponding parameter values used in
the conventional PWA.

C Comparison with the conventional partial-wave analysis

In order to directly compare the results from the freed-isobar PWA with the conventional PWA
with fixed parametrizations for the dynamic isobar amplitudes, we repeated the latter with
the same 88-wave PWA model as in Ref. [47] but applying the coarser binning in m3π and t′

from the freed-isobar PWA (see Sec. V A and Table 3). From the result of the freed-isobar
PWA, we obtain intensity distributions as a function of m3π and t′ alone by summing the
contributions of the freed-isobar transition amplitudes {Ta,k} [see Eqs. (7) and (9)] from all
mπ−π+ intervals coherently. Doing so, we take into account the interference of amplitudes in
different mπ−π+ intervals, i.e., the so-called overlaps, that arise due to Bose symmetrization of
the final-state particles. The intensity of these coherent sums is by definition not affected by the
zero-mode ambiguity mentioned in Sec. V A (see also Appendix B).

In Fig. 8, we overlay the intensity distributions from the freed-isobar PWA obtained as described
above (orange data points) with the corresponding distributions from the conventional fixed-
isobar PWA (blue data points). Although the 1−+ wave contributes only about 1 % to the total
intensity, the distributions are surprisingly similar. The shapes of the intensity distributions
are consistent in both approaches, regardless of the t′ bin. However, the intensity of the 1−+

wave is higher for the freed-isobar PWA. This intensity increase is not caused by freeing the
dynamic isobar amplitude of the 1−+ wave itself, but rather by the other 11 freed-isobar waves
(see Table 2). Keeping these 11 freed waves but fixing the dynamic isobar amplitude in the
1−+ wave to the ρ(770), like in the conventional PWA, yields basically the same 1−+ intensity
distribution as in the PWA with 12 freed waves. Further systematic studies show that no single
freed wave causes the increase of the 1−+ intensity, but that this is the result of the interplay of all
11 freed waves. This suggests that—unlike for the 1−+ wave—the fixed-isobar amplitudes, which
in the conventional 88-wave PWA correspond to the these 11 freed-isobar waves, do not match
the data completely. Deviations could be caused, for example, by unsuitable parametrizations
and/or parameters used for the dynamic isobar amplitudes or by neglecting higher excited isobar
resonances that may become relevant at higher values of m3π.
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FIG. 8: Comparison of the m3π intensity distributions of the 1−+1+[ππ]1−−πP wave from the
freed-isobar PWA (orange data points) and of the 1−+1+ρ(770)πP wave from the conventional
PWA (blue data points). For the former, the intensities are calculated by coherently summing
the contributions from all mπ−π+ intervals. (a) shows the lowest and (b) the highest t′ bin. The
shaded m3π range is excluded from the freed-isobar PWA.

Another way to compare the two PWA methods is to use the information that we obtain by
fitting the mπ−π+ dependence of the amplitudes extracted by the freed-isobar PWA with Eq. (13)
using the same fixed ρ(770) parameters as in Ref. [47] (gray curves in Fig. 6). The interesting
information is contained in the complex-valued quantity

Ta(m3π, t
′) ≡ Ca(m3π, t

′)Na(m3π) (14)

that we determine for every (m3π, t
′) cell and that is directly comparable to the transition

amplitude Ta(m3π, t
′) obtained in the fixed-isobar PWA.[r] In Fig. 9(a), we compare the intensity

distribution |Ta(m3π)|2 from the freed-isobar PWA (red data points) to the intensity distribution
from the fixed-isobar PWA (blue data points) for the 1−+ wave in the highest t′ bin. The red
data points in Fig. 9(a) are very similar to the orange ones in Fig. 8(b). This confirms that the
1−+ wave is well described a dynamic isobar amplitude containing only the ρ(770).

As explained in Sec. V, the amplitudes {Ta,k} determined by the freed-isobar PWA contain
information on both the 3π system and the π−π+ subsystem [see Eqs. (7) and (9)]. In order to
consistently extract the m3π dependence of the phase of a freed wave, we thus need to model
the mπ−π+ dependence of the freed-isobar transition amplitude. This is accomplished by the
introduction of the amplitude Ta(m3π, t

′) via Eqs. (13) and (14), which defines the phase of
the 1−+ wave that can be compared to the phase obtained in the fixed-isobar PWA. We use
the fixed-isobar 4++1+ρ(770)πG wave as reference wave since it exhibits a nonzero intensity
distribution over a broad m3π range and a clear signal of the a4(2040).[s] From the fits of Eq. (13)
with fixed ρ(770) parameters we obtain Fig. 9(b). In this figure, we compare the phase of the
1−+ wave with respect to the 4++1+ρ(770)πG wave obtained from the freed-isobar PWA in

[r]Note that Na contains a normalization factor we choose such that |Ta|2 gives the number of events per interval
in m3π and t′.

[s]Usually, the largest waves in the PWA model are used as reference waves. However, in the freed-isobar PWA
model these waves use freed dynamic isobar amplitudes (see Tables 2 and 4) and therefore do not offer a consistent
reference phase.
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FIG. 9: (a) intensity distribution and (b) phase of the spin-exotic wave with respect to the
4++1+ρ(770)πG wave in the highest t′ bin. The red data points represent the 1−+1+[ππ]1−−
πP amplitude from the freed-isobar PWA after modelling the mπ−π+ dependence using the
ρ(770) Breit-Wigner amplitude in Eq. (13); the blue data points represent the 1−+1+ρ(770)πP
amplitude from the conventional fixed-isobar PWA. The red curve represents the result of a fit
of a resonance model to the red data points, which is the coherent sum of a resonant amplitude
for the π1(1600) (magenta curve) and a nonresonant term (green curve).

the way described above (red data points) with the corresponding phase from the fixed-isobar
PWA (blue data points). The two phase motions are in qualitative agreement in the m3π range
from about 1.4 to 2.0 GeV/c2. For m3π . 1.2 GeV/c2, the phase is not well determined because
the intensities of the two waves are small. The rapid phase motion at 1.2 GeV/c2 is caused
by the nearly vanishing intensity of the 4++ wave. The rising phase motion in the range from
1.4 to 1.7 GeV/c2 indicates the presence of the π1(1600) in the 1−+ wave, whereas the falling
phase motion from 1.7 to 2.0 GeV/c2 is caused by the a4(2040) in the 4++ wave. Similar rising
phase motions are also observed with respect to other waves, e.g., with respect to the 4−+0+

ρ(770)πF and 6−+0+ρ(770)πH waves discussed in Sec. VI.

To further check the consistency between the conventional and the freed-isobar PWA, we fit
the m3π dependence of the amplitude Ta defined in Eqs. (13) and (14) simultaneously for all
four t′ bins using the same Breit-Wigner model as in Ref. [46]. However, we cannot perform the
same 14-wave fit as given in Tab. II of Ref. [46] because most of the selected 14 waves are in the
set of 12 freed waves (see Tables 2 and 4) and hence do not provide well-defined phases. Here,
we perform a much simpler fit that only includes the 1−+ intensity distribution, i.e., |Ta(m3π)|2,
and the phase of Ta(m3π) with respect to the amplitude of the fixed-isobar 4++1+ρ(770)πG
wave. The 4++1+ρ(770)πG wave was included in the 14-wave resonance-model fit in Ref. [46],
which was another reason to choose it as the reference wave. The m3π fit range is restricted
to the overlap region from 1.26 to 2.02 GeV/c2 of the fit ranges of the 1−+ and the 4++ waves
in the resonance-model fit in Ref. [46]. We take the parametrizations for the 1−+ and the 4++

partial-wave amplitudes from Ref. [46] and use them to model the real and imaginary part of
Ta(m3π). In the fit, we let the parameters of the π1(1600) and the nonresonant component in
the 1−+ wave float. We describe the phase of the 4++ wave without any free parameters by using
the fit result from Ref. [46]. Since the phase of the 4++ wave depends on the t′ bin, we have
to translate the eleven t′ bins used in Ref. [46] to the four bins used here. Thus, for our four
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t′ bins we construct a linear combination of the phases in the eleven t′ bins, using the overlap of
the corresponding t′ bins weighted with the t′ distribution of all events as coefficients. This is
possible, since the phase of the 4++ wave changes smoothly with t′. In an alternate approach, we
replace these linear combinations of the phases in t′ bins by a single phase taken from the closest
of the eleven t′ bins yielding a very similar result. The found π1(1600) resonance parameters are

mπ1(1600) = 1550 MeV/c2 and Γπ1(1600) = 500 MeV/c2. (15)

These values are compatible with those found in Ref. [46] and are based on the same data. We
do not give any uncertainties in Eq. (15), since we did not perform systematic studies and the
statistical uncertainties are negligible compared to the systematic ones. The latter are expected
to be in the same order of magnitude as those quoted in Ref. [46]. Increasing the lower m3π limit
of the fit range to 1.34 GeV/c2, for example, yields a π1(1600) that is 30 MeV/c2 heavier and
180 MeV/c2 narrower.

D Summary: dynamic isobar amplitude in the JPC = 1−+ wave

In conclusion, the results for the spin-exotic JPC = 1−+ wave from the freed-isobar PWA confirm
the findings from the conventional PWA with fixed parametrizations of the dynamic isobar
amplitudes presented in Refs. [46, 47] in several important aspects: (i) The emergence of the
ρ(770) resonance in the π−π+ subsystem of the 1−+ wave, as shown in Figs. 5 and 6, confirms that
the assumption of the 1−+ wave decaying via a ρ(770) isobar is indeed valid. (ii) The observed
agreement of the extracted dynamic isobar amplitude of the JPC = 1−− π−π+ subsystem with
the ρ(770) amplitude used in the conventional PWA validates the chosen ρ(770) parametrization
and the parameter values within about 10 %. (iii) We observe good agreement between the
results from the freed-isobar PWA with those from the fixed-isobar PWA in terms of the phase
motions and the shape of the intensity distributions as function of m3π, as shown in Figs. 8
and 9. Thus the structures observed in the 1−+ amplitude in the conventional PWA are not
an artifact due to the employed parametrizations for the dynamic isobar amplitudes. This is
supported by the similarity of the π1(1600) resonance parameters from the freed-isobar PWA
with those from the 14-wave resonance-model fit from Ref. [46].

VI The Deck process and its projection into the JPC = 1−+ wave

Most partial-wave amplitudes contained in the 88-wave set used to analyze the COMPASS
proton-target data (see Secs. III and IV A) contain coherent contributions from resonant and
nonresonant processes. Aiming at extracting the resonant components through fits of resonance
models to the m3π and t′ dependence of the spin-density matrix, COMPASS has used a simple
empirical description for the amplitude of the nonresonant processes (see Sec. IV A 2 in Ref. [53]).
Our resonance-model fits reveal contributions of nonresonant processes that are very different
for the various partial waves. The intensity of the nonresonant contributions shows a strong
dependence on t′ that is often more pronounced than that of the resonances. In the analyzed m3π

and t′ range, the nonresonant components are expected to originate predominantly from double-
Regge exchange processes, of which the so-called Deck effect is the most prominent one. In
Fig. 10, we show the diagram of the Deck process for the π−π−π+ final state. In this process, a
quasi on-shell pion is exchanged between the vertices a and b becoming real by scattering off the
target proton via Pomeron or Reggeon exchange. The π−π+ state produced at vertex a, originally
taken to be the ρ(770), is the only appearing resonance. The described process was proposed by
R. T. Deck in Ref. [48] as an alternative explanation to a1(1260) resonance production in the
ρ(770)π S-wave channel [68,69].



26

π−

p p

ξ0 π−

π+

π−

π−

P, R

a

b

c

d

s

sππ

sπp

tπ

t

FIG. 10: Schematic diagram of the Deck process with the relevant kinematic variables.

In the COMPASS proton-target data, we found that the shape of the intensity distribution of
the spin-exotic 1−+1+ρ(770)πP wave changes strongly with t′ [46], which is indicative of large
nonresonant contributions that seem to contribute particularly at low t′ as already discussed
in Sec. IV. This is consistent with the result of our resonance-model fit, where we found that
the 1−+ wave is strongly dominated by nonresonant amplitudes at low t′. In this paper, we
investigate the role of the Deck process in this wave by determining the intensity distribution of
the Deck model in the 1−+1+ρ(770)πP wave and by comparing it to the analytical description
of the nonresonant component that we obtained in our resonance-model fit. We also study
projections of the Deck amplitude into waves with higher spin for which no confirmed resonances
exist [20] and compare with the corresponding intensity distributions obtained from real data.
To perform these studies we use pseudo data generated according to a model of the Deck process
using Monte Carlo techniques. Since the pseudo data contain only nonresonant contributions, the
direct comparison with real data neglects the interference between the resonant and nonresonant
wave components. However, similar intensity distributions in real and pseudo data would point
to dominant contributions from nonresonant Deck-like processes in the real data.

For our first attempt to model the Deck process, we use the simplified model from Refs. [70–72]
to construct the Deck amplitude that we use to generate the pseudo data. In the model, the
Deck amplitude is factorized into three terms (cf. Fig. 10): (i) an amplitude Aππ that describes
the π−π+ → π−π+ scattering including the vertices a and d, (ii) a stable-particle propagator
that describes the pion exchange, and (iii) an amplitude Aπp that describes the π−p → π−p
scattering including the vertices b and c. We hence write the Deck amplitude as:[t]

ADeck(sππ, sπp, tπ, t) = Aππ(sππ, tπ)
e
b
2
tπ

m2
π − tπ

Aπp(sπp, t). (16)

It is important to note that we Bose-symmetrize the amplitude in Eq. (16) with respect to
the two indistinguishable π−. The kinematic variables are defined in Fig. 10 with sππ being
the squared center-of-momentum energy of the π−π+ system between vertices a and d, tπ the
squared four-momentum transferred by the exchange pion, sπp the squared center-of-momentum
energy of the π−p system including the vertices b and c, and t the squared four-momentum
transferred to the target. Note, that both t and tπ are negative. Like in the original Deck model
in Ref. [48], we only take into account pion exchange between vertices a and b in Fig. 10, while
possible additional processes like ρ(770) meson exchange are neglected.

The π−π+ → π−π+ amplitude in Eq. (16) is taken from Ref. [73], using the result of a so-called
energy-dependent analysis based on data for the reaction π−p→ π−π+n measured at 17.2 GeV/c

[t]Since we do not use the Deck amplitude to calculate absolute cross sections, the normalization of Eq. (16) is
irrelevant.
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pion-beam momentum. This analysis yielded the ππ partial-wave amplitudes T I` for orbital
angular momenta ` = 0, 1, 2, 3 between the two pions. The model included amplitudes with
isospin I = 0 of the ππ system for even ` and I = 1 for odd `. In addition, an I = 2 amplitude
was included for ` = 0. The P -, D-, and F -wave amplitudes are dominated by ρ(770), f2(1270),
and ρ3(1690), respectively. The parametrization of the S-, P -, and D-wave amplitudes T 0

0 , T 1
1 ,

and T 0
2 is based on K matrices that take into account the ππ and KK channels. The F -wave

amplitude is parametrized by a dynamic-width Breit-Wigner amplitude for the ρ3(1690) (see
Eq. (12d) in Ref. [73]). The S- and P -wave amplitudes use a K matrix containing two poles and
a constant background term (see Eqs. (12a), (12b) and (13a) in Ref. [73]), where the ρ(770) pole
in the P -wave includes the angular-momentum barrier factor. The K matrix for the D-wave
amplitude contains a single pole, which includes the angular-momentum barrier factor, and
a constant background term (see Eqs. (12c) and (13b) in Ref. [73]). For the I = 2 S-wave
amplitude, a scattering-length formula is used (see Eq. (14) in Ref. [73]). We use the parameters
given in Tab. 1 of Ref. [73].

For the propagator of the exchanged pion, we use in Eq. (16) the non-reggeized form containing
only the pion pole 1/(m2

π − tπ) and a form factor eb tπ (see Eq. (2.1) in Ref. [71]). We use a
slope parameter of b = 3.4 (GeV/c)−2, which provides a reasonable description of the angular
distributions of the COMPASS data in the m3π range from 2.3 to 2.5 GeV/c2 assuming that the
Deck process dominates in this mass range.

For the π−p→ π−p amplitude in Eq. (16) we employ the simple parametrization from Eq. (3.1)
in Ref. [70]:

Aπp(sπp, t) = i sπp e
a
2
t, (17)

with an exponential slope of a = 8 (GeV/c)−2.

Figure 11 shows the m3π and mπ−π+ distributions of the 75× 106 Deck Monte Carlo events The
various π−π+ resonances that are included in the model are reflected in the spectrum. In order to
roughly estimate the Deck-like contributions to the real-data intensity distributions, we perform
a PWA of the Deck Monte Carlo data using the same 88-wave PWA model that was applied to
the COMPASS proton-target data in Ref. [46] (see Table 4 in Appendix A). We show in Fig. 12
as an example the intensity distributions of the Deck model in the 4−+0+ρ(770)πF and 6−+

0+ρ(770)πH waves for low and high values of t′ superimposed with the real-data distributions.
Owing to the absence of confirmed resonances in these waves, we expect the measured intensities
to be dominated by nonresonant contributions. This hypothesis is supported by the fact that
the shapes of the Deck intensity distributions are in good qualitative agreement with the real
data over the full t′ range. Note that the Deck Monte Carlo data are normalized using only one
common factor for all waves that is determined from the 1−+ wave as described further below.

In Fig. 13, we compare the intensity distributions of the 1−+1+ρ(770)πP wave for Deck pseudo
data and real data, where the latter contains contributions from resonances as well as nonresonant
processes. In addition, we show curves that correspond to the nonresonant component found in
the resonance-model fit in Ref. [46]. We normalize the Deck intensity in the 1−+ wave to the
nonresonant curves from the resonance-model fit by matching their m3π-integrated intensities
summed over the lowest 9 of the 11 t′ bins. The two highest t′ bins are excluded from the
calculation of the normalization factor because in this region the π1(1600) resonance dominates
the 1−+ wave and hence the nonresonant component has a large systematic uncertainty. The same
normalization factor is also used for the other waves shown in Fig. 12. For the first 9 t′ bins, i.e.,
for t′ . 0.5 (GeV/c)2, the shapes of the Deck intensity distributions are in qualitative agreement
with the nonresonant curves from the resonance-model fit [see Figs. 13(a) to 13(c)]. This shows
that the empirical parametrization used for the nonresonant component in the resonance-model
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FIG. 11: (a) π−π−π+ invariant mass spectrum for the Deck Monte Carlo sample. (b) invariant
mass distribution of the π−π+ subsystem (2 entries per event). The arrows indicate 2π resonances
included in the Deck model.

fit is able to capture the gross features of the Deck amplitudes. We find that the t′ dependence
of the Deck intensity is shallower than that of the nonresonant curve leading to an undershoot of
the Deck intensity at low t′ [see Fig. 13(a)] and an overshoot at high t′ [see Fig. 13(c)]. For the
two highest t′ bins, i.e., for t′ & 0.5 (GeV/c)2, the shapes of the Deck intensity distribution and
the nonresonant curve start to deviate [see Fig. 13(d)]. The observed behavior of the Deck model
is consistent with our finding in Ref. [46] that at low t′ the broad structure in the 1−+ intensity
distribution is mostly due to nonresonant contributions masking the small π1(1600) signal.

A Summary: the Deck process and the JPC = 1−+ wave

We have studied a simple model for the Deck process [see Eq. (16) and Fig. 10] and have compared
its intensity distribution in selected waves with the ones obtained from real data. With only one
common normalization factor, we find that the Deck intensity is in qualitative agreement with
the measured intensity distributions of the 4−+0+ρ(770)πF and 6−+0+ρ(770)πH waves in the
analyzed t′ range. This is consistent with the expectation that these waves are dominated by
nonresonant components because there are no confirmed π4 or π6 resonances [20].

We find that the Deck intensity distribution in the spin-exotic 1−+1+ρ(770)πP wave qualitatively
reproduces the strong t′ dependence of intensity and shape of the nonresonant component that
we extracted in our resonance-model fit in Ref. [46] in the range t′ . 0.5 (GeV/c)2. In this
t′ range, the intensity of the nonresonant contribution is similar to or larger than the intensity of
the π1(1600) component. However, with regard to the t′ dependence it must be recognized that
the present simple version of the Deck model does not adequately describe the background yield
in the high-t′ range where the π1(1600) resonance dominates the 1−+ wave (see Fig. 13).

Nuclear effects such as absorption seem to play an important role in the scattering process
in the t′ range between 0.1 and 1.0 (GeV/c)2, so that the process cannot be described simply
as incoherent scattering off quasi-free nucleons. There are currently no models available that
describe Deck-like processes on nuclear targets. Such models could help to better understand the
enhancement of the π1(1600) signal relative to the nonresonant component that we observe in
the lead-target data as compared to the proton-target data (see Sec. IV).
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FIG. 12: Intensity distributions of the 4−+0+ρ(770)πF wave (left column) and the 6−+0+ρ(770)
πH wave (right column) for two t′ bins as obtained from the 88-wave PWA. The real data are
represented by the blue data points; the Deck pseudo data by the green data points. The pseudo
data are normalized using a common factor for all waves (see text for details).
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FIG. 13: Intensity distributions of the 1−+1+ρ(770)πP wave in different t′ bins as obtained from
the 88-wave PWA. The real data are represented by the blue data points; the Deck pseudo data
by the green data points. The green curve represents the nonresonant component determined in
the resonance-model fit in Ref. [46]. The pseudo data are normalized using a common factor for
all waves (see text for details).
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Appendix

A Compilation of wave sets used in partial-wave analyses of the 3π system

Table 4 lists the wave sets used in the partial-wave analyses that are summarized in Table 1.

Table 4: Comparison of the 88-wave set used for the COMPASS proton-target data with the
wave sets of BNL E852, VES, Dzierba et al., and the one used for the COMPASS lead-target
data. Entries that are not in the COMPASS 88-wave set are additionally highlighted in red.
Entries highlighted in blue indicate waves that are replaced in the freed-isobar PWA by waves
with dynamic isobar amplitudes parametrized according to Eq. (7) (see also Table 2).

JPC Mε Isobar L COMPASS BNL E852 VES Dzierba et al. COMPASS
88 waves 21 waves 44 waves 36 waves 42 waves

Tab. IX in [47] Tab. I in [42] [37] Tab. IV in [45] [43]

0−+ 0+ [ππ]S S X X X X X
0−+ 0+ ρ(770) P X X X X X
0−+ 0+ f0(980) S X X X X X
0−+ 0+ f2(1270) D X X
0−+ 0+ f0(1500) S X

1++ 0+ [ππ]S P X X X X
1++ 1+ [ππ]S P X X X
1++ 0+ ρ(770) S X X X X X
1++ 1+ ρ(770) S X X X X X
1++ 0+ ρ(770) D X X X X
1++ 1+ ρ(770) D X X X
1++ 0+ f0(980) P X X X
1++ 1+ f0(980) P X
1++ 0+ f2(1270) P X X X
1++ 1+ f2(1270) P X X X X
1++ 0+ f2(1270) F X
1++ 0+ ρ3(1690) D X
1++ 0+ ρ3(1690) G X

1−+ 1+ ρ(770) P X X X X X

2++ 1+ ρ(770) D X X X X X
2++ 2+ ρ(770) D X
2++ 1+ f2(1270) P X X X
2++ 2+ f2(1270) P X
2++ 1+ ρ3(1690) D X

2−+ 0+ [ππ]S D X X X X X
2−+ 1+ [ππ]S D X X X X
2−+ 0+ ρ(770) P X X X X X
2−+ 1+ ρ(770) P X X X X
2−+ 2+ ρ(770) P X
2−+ 0+ ρ(770) F X X X X
2−+ 1+ ρ(770) F X X X X
2−+ 0+ f0(980) D X X X
2−+ 1+ f0(980) D X
2−+ 0+ f2(1270) S X X X X X
2−+ 1+ f2(1270) S X X X X X
2−+ 2+ f2(1270) S X
2−+ 0+ f2(1270) D X X X X X
2−+ 1+ f2(1270) D X X X X X
2−+ 2+ f2(1270) D X
2−+ 0+ f2(1270) G X
2−+ 0+ ρ3(1690) P X X
2−+ 1+ ρ3(1690) P X X

3++ 0+ [ππ]S F X
3++ 1+ [ππ]S F X
3++ 0+ ρ(770) D X X X X
3++ 1+ ρ(770) D X X
3++ 0+ ρ(770) G X
3++ 1+ ρ(770) G X
3++ 0+ f2(1270) P X X X X

(Table continued)
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Table 4: (Continued)

JPC Mε Isobar L COMPASS BNL E852 VES Dzierba et al. COMPASS
88 waves 21 waves 44 waves 36 waves 42 waves

3++ 1+ f2(1270) P X X
3++ 0+ ρ3(1690) S X X X X X
3++ 1+ ρ3(1690) S X X X
3++ 0+ ρ3(1690) I X

3−+ 1+ ρ(770) F X
3−+ 1+ f2(1270) D X

4++ 1+ ρ(770) G X X X X
4++ 2+ ρ(770) G X
4++ 1+ f2(1270) F X X X X
4++ 2+ f2(1270) F X
4++ 1+ ρ3(1690) D X X

4−+ 0+ [ππ]S G X
4−+ 0+ ρ(770) F X X X X
4−+ 1+ ρ(770) F X X
4−+ 0+ f2(1270) D X X
4−+ 1+ f2(1270) D X
4−+ 0+ f2(1270) G X
4−+ 0+ ρ3(1690) P X X

5++ 0+ [ππ]S H X
5++ 1+ [ππ]S H X
5++ 0+ ρ(770) G X
5++ 0+ f2(1270) F X
5++ 1+ f2(1270) F X
5++ 0+ f2(1270) H X
5++ 0+ ρ3(1690) D X

6++ 1+ ρ(770) I X
6++ 1+ f2(1270) H X

6−+ 0+ [ππ]S I X
6−+ 1+ [ππ]S I X
6−+ 0+ ρ(770) H X
6−+ 1+ ρ(770) H X
6−+ 0+ f2(1270) G X
6−+ 0+ ρ3(1690) F X

1++ 1− ρ(770) S X X X X

1−+ 0− ρ(770) P X X X X X
1−+ 1− ρ(770) P X X X X X
2++ 0− ρ(770) D X X X X X
2++ 1− ρ(770) D X
2++ 0− f2(1270) P X X
2++ 1− f2(1270) P X X

2−+ 1− ρ(770) P X
2−+ 1− f2(1270) S X X X X

Flat X X X X X

B Ambiguity in the JPC = 1−+ amplitude in the freed-isobar partial-wave
analysis

As has been already mentioned in Sec. V, continuous mathematical ambiguities of certain decay
amplitudes, called zero modes, may appear in a freed-isobar PWA. Methods to detect and resolve
zero modes are discussed in detail in Refs. [49,66]. Because of zero modes, different values of the
transition amplitudes {Ta,k} defined in Eqs. (7) and (9) may lead to the same total amplitude∑

k Ta,k Ψa,k in Eq. (11), where k labels the mπ−π+ intervals. Zero modes may appear in sets
of freed waves that have the same JPCM ε quantum numbers but describe decays via different
isobars. In special cases, such as the one described below, zero modes may also appear within a
single freed wave due to Bose symmetrization of final-state particles.
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In the following, we focus on the zero mode present within the 1−+1+[ππ]1−−πP wave. For the
employed wave set (see Tables 2 and 4), it is mathematically well defined and it is the only zero
mode affecting this wave. First, we show the origin of this zero-mode ambiguity in the 1−+ wave.
To this end, we express the angular amplitude Ka(τ) with a = 1−+1+[ππ]1−−πP in Eq. (10) in
the helicity formalism:[u][v]

Ka(τ) ∝
∑
λ=±1

− λ√
2

(ε=+1)D1*
1,λ(φGJ, ϑGJ, 0)D1*

λ,0(φHF, ϑHF, 0). (B1)

Here, λ is the helicity of the 1−− isobar. The factor −λ/
√

2 is the Clebsch-Gordan coefficient
(L 0 Jξ λ | J λ) that describes the coupling of the relative orbital angular momentum L = 1
between the isobar and the bachelor π− with the spin Jξ = 1 of the isobar to the spin J = 1
of X. The angular distributions of the decays X− → ξ0 +π− and ξ0 → π−+π+ are described by
Wigner D-functions, where the one for the X− decay is defined in the reflectivity basis according
to Eq. (19) in Ref. [47]. The subscripts GJ and HF of the angles denote the Gottfried-Jackson
and helicity rest frames of X and the isobar, respectively (see Sec. III A in Ref. [47] for the
definition of the coordinate systems). Inserting the D-functions

(ε=+1)D1
1,λ(φGJ, ϑGJ, 0) =

1√
2

(
cosφGJ − iλ sinφGJ cosϑGJ

)
(B2)

and

D1
λ,0(φHF, ϑHF, 0) = − λ√

2
e−iλ φHF sinϑHF (B3)

with λ = ±1 into Eq. (B1), we find

Ka(τ) ∝
(

cosφGJ cosφHF − cosϑGJ sinφGJ sinφHF

)
sinϑHF. (B4)

The π−1 π
−
2 π

+
3 system contains two indistinguishable π− and hence Eq. (B4) needs to be Bose-

symmetrized. We choose the isobar to decay into π−1 π
+
3 and the vector ~pHF

1 to represent the
momentum of π−1 in the helicity rest frame of this isobar. We calculate the magnitude of this
vector using the two-body breakup-momentum

q2(m,m1,m2) =

[
m2 − (m1 +m2)2

] [
m2 − (m1 −m2)2

]
4m2

. (B5)

Thus |~pHF
1 | = q13, where

qij ≡ q(mij ,mπ,mπ) (B6)

is the breakup momentum between pions i and j with mij being the invariant mass of the
two-pion system. Using the above equations, we express the x and y components of ~pHF

1 using
the helicity angles as spherical coordinates:

q13 cosφHF sinϑHF = pHF
1,x =

cos ϑ̂GJ

sinϑGJ
Q23 −

cosϑGJ

sinϑGJ

~p13 · ~p23

Q13
, (B7)

q13 sinφHF sinϑHF = pHF
1,y = Q23 sin ϑ̂GJ sin(φGJ − φ̂GJ). (B8)

[u]Also cf. with Eqs. (11) and (7) in Ref. [47].
[v]To ease the notation, we omit the wave index a in this section.
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Here, angles with a hat (“ˆ”) indicate the Bose-symmetrized system, where the isobar decays
into π−2 π

+
3 . The ~pij represent the sums of the momenta of particles i and j in the 3π center-of-

momentum system and the Qij are the two-body breakup momenta of the 3π system given by

Qij ≡ q(m3π,mij ,mπ). (B9)

The right-hand sides of Eqs. (B7) and (B8) are obtained from transforming the four-momentum
vector of π+

1 from the Gottfried-Jackson frame into the helicity frame of the isobar. This
calculation can be found in the supplemental material in Appendix E.

The angular amplitude Ka(τ) in Eq. (B4) depends on the helicity angles with the coordinate
system in the helicity rest frame depending on the particles forming the isobar. Equations (B7)
and (B8) allow us to replace the dependencies of Ka(τ) on the helicity angles by expressions
depending only on Gottfried-Jackson angles for the two combinations of the final-state particles
that correspond to Bose symmetrization. The coordinate system in the Gottfried-Jackson rest
frame does not depend on the particles forming the isobar.[w] Expressing in addition the scalar
product ~p13 · ~p23 in Eq. (B7) in terms of the Gottfried-Jackson angles, we obtain

Ka(τ13) ∝ Q23

q13

(
cosφGJ sinϑGJ cos ϑ̂GJ − cos φ̂GJ sin ϑ̂GJ cosϑGJ

)
, (B10)

where τ13 is the set of phase-space variables for the isobar decaying into π−1 π
+
3 . Performing the

Bose symmetrization and including the dynamic isobar amplitude ∆(mij), we find for the decay
amplitude

Ψa(τ13, τ23) = Ka(τ13)∆(m13) +Ka(τ23)∆(m23). (B11)

This amplitude exactly vanishes at every point in phase space if the dynamic amplitude ∆(mij)
has the form

∆̃(mij) = Qij qij . (B12)

This is because the two terms in the bracket in Eq. (B10) are Bose-symmetrized versions of each
other and thus

Ka(τ13) = −Q23

q13

q23

Q13
Ka(τ23). (B13)

Consequently, changing the dynamic isobar amplitude according to

∆(mij)→ ∆(mij) + C ∆̃(mij) (B14)

with an arbitrary complex-valued coefficient C does not alter the decay amplitude and hence also
leaves the intensity as well as the likelihood function unchanged. Therefore, the coefficient C
represents a mathematical ambiguity, or zero mode, in the PWA model that is defined by the
real-valued zero-mode shape ∆̃(mij). In the conventional PWA, this ambiguity does not appear
owing to the fixed parametrization of the dynamic isobar amplitudes. However, in a freed-isobar
PWA a shift in the direction of the zero mode is possible due to the freedom in the dynamic
isobar amplitudes.

Let {T fit
k } be the set of binned transition amplitudes as defined in Eqs. (7) and (9) that are

extracted in a freed-isobar PWA, with k being the index of the mπ−π+ interval. The {T fit
k } might

[w]Therefore, (ϑGJ, φGJ) and (ϑ̂GJ, φ̂GJ) in Eq. (B10) are two different sets of angles defined in the same
coordinate system.
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be shifted away from their physical values {T phys
k } in the direction of the zero mode ∆̃(mij)

according to Eq. (B14). Thus for each mπ−π+ interval, the center of which is represented by mk,
we have[x]

T fit
k = T phys

k + C ∆̃k with ∆̃k ≡ ∆̃(mk). (B15)

Since the ambiguity represented by C in Eq. (B15) leaves the intensity and therefore the likelihood
function unchanged, it can only be resolved by imposing prior knowledge about the dynamic
isobar amplitudes.[y] For the 1−+ wave, we can safely assume the {T phys

k } to contain the ρ(770)
resonance. We resolve the zero-mode ambiguity by determining that value of C that minimizes
the deviation of {T fit

k } from the ρ(770) Breit-Wigner amplitude. The deviation is measured by
the residuals

δk(C) ≡ T fit
k − C ∆̃k − T̂a(mk;m3π, t

′), (B16)

where T̂a(mk;m3π, t
′) is the Breit-Wigner amplitude for the ρ(770) resonance as given by Eq. (13).

To determine C and thereby resolve the zero-mode ambiguity, we minimize the Mahalanobis
distance[z]

χ2(C) =
∑
k,l

δk(C)V−1
kl δl(C), (B17)

where V is the covariance matrix of the {T fit
k } (see Appendix C). Since we cannot exclude

contributions from excited ρ states at higher mπ−π+ , we limit the sum in Eq. (B17) to those
mπ−π+ intervals k and l where mπ−π+ < 1.12 GeV/c2.[aa]

Imposing the ρ(770) Breit-Wigner amplitude in Eq. (B16) by minimizing the χ2 function in
Eq. (B17), we determine only one complex-valued degree of freedom, i.e., C, from the data. The
real-valued zero-mode shape ∆̃(mij) that enters Eq. (B17) is fixed and given by Eq. (B12). It
is important to note that this procedure does not lead to a circular argument, i.e., we do not
get out what we put in. This is because our procedure that resolves the zero-mode ambiguity
cannot artificially generate a fake ρ(770) resonance signal in the π−π+ isobar amplitude, i.e., a
circular structure in the Argand diagram, if the ρ(770) is not contained in the data. This has
been verified through Monte-Carlo studies [49,66]. In other words, we do not demand that the
dynamic isobar amplitude is described entirely by the ρ(770) as in conventional PWA method.
Instead, we only impose the ρ(770) to be a part of the amplitude. We hence fix a single complex
value, i.e., C, using minimal assumptions on the shape of the dynamic isobar amplitude. This still
leaves 2(n− 1) complex-valued degrees of freedom, where n is the number of mπ−π+ intervals,
that are determined from the data. The freed-isobar PWA thus yields much more information on
the dynamic isobar amplitude in the 1−+1+[ππ]1−−πP wave than the conventional PWA method,
which only returns a single complex-valued parameter, i.e., the transition amplitude, for this
wave.

In Fig. 14, we show the result of the freed-isobar PWA (green data points) and the corresponding
zero-mode corrected amplitude (blue data points) for an exemplary (m3π, t

′) cell. The green
points are shifted away from their physical value by the zero mode with an accidental value
for the coefficient C, which is different in every (m3π, t

′) cell. The gray histogram represents

[x]Since the shape of the zero mode is multiplied with an arbitrary coefficient, we normalize it to
∑
k ∆̃

2
k = 1.

[y]This is conceptually similar to gauge fixing in gauge symmetries.
[z]Since the δk are complex-valued, while the covariance matrix describes real-valued quantities, the sum over

the mπ−π+ interval indices k and l runs implicitly also over the real and imaginary parts of the corresponding
amplitudes (see also Sec. IV B in Ref. [46]).

[aa]The covariance matrix is first cut to this mπ−π+ range and then inverted.
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FIG. 14: Similar to Fig. 6 but showing the effect of resolving the zero-mode ambiguity in the
1−+1+[ππ]1−−πP wave using, as an example, the highest t′ bin and an m3π bin in the π1(1600)
resonance region. (a) shows the intensity distribution and (b) the corresponding Argand diagram
as a function of mπ−π+ . The green data points correspond to the set {T fit

k } of binned transition
amplitudes [defined in Eqs. (7) and (9)] as extracted in the freed-isobar PWA. The blue data
points represent the transition amplitudes {T fit

k − C ∆̃k} after resolving the zero-mode ambiguity
by minimizing Eq. (B17). The upper limit mπ−π+ = 1.12 GeV/c2 of the range used in this
minimization is indicated by the vertical line in (a). The gray histogram represents the ρ(770)
Breit-Wigner amplitude used to resolve the zero-mode ambiguity. In the Argand diagram,
corresponding green and blue data points are connected by gray lines representing the {C ∆̃k}
values.

the ρ(770) Breit-Wigner amplitude T̂a(mk;m3π, t
′) used in Eqs. (B16) and (B17) to resolve the

zero-mode ambiguity. Since the zero-mode shape given in Eq. (B12) is real valued, all green
points in the Argand diagram are shifted in parallel directions to the blue points. It should
be noted that only data for mπ−π+ < 1.12 GeV/c2 were used to resolve the ambiguity. The
resulting zero-mode corrected amplitude agrees well with the ρ(770) Breit-Wigner also in the
mass region mπ−π+ > 1.12 GeV/c2. This method to resolve the ambiguity is used to produce
Figs. 5 and 6. Note that the zero mode does not influence the m3π intensity distributions
obtained by summing the contributions of the freed-isobar transition amplitudes {Ta,k} from all
mπ−π+ intervals coherently (see Fig. 8).

We have studied several constraints to resolve the zero-mode ambiguity. In a first study, we
extend the fit range to the full kinematically allowed mπ−π+ range. In a second study, we allow
the ρ(770) resonance parameters to float in the fit that resolves the ambiguity. In this approach,
we either use a single set of ρ(770) resonance parameters while simultaneously fitting all (m3π, t

′)
cells or we allow for different ρ(770) resonance parameters in each (m3π, t

′) cell. The resulting
ρ(770) resonance parameters obtained using the above approaches are discussed in Sec. V B. All
these approaches yield similar results for the zero-mode corrected amplitudes (see also discussion
in Sec. V).

In a third study, we try to resolve the zero mode by minimizing the variation of the zero-mode
corrected amplitudes between neighboring m3π bins. This means we do not make any assumption
on the mπ−π+ dependence of the amplitudes and just require a smooth behavior as a function
of m3π. The resulting zero-mode corrected amplitudes still exhibit a clear ρ(770) resonance
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signal but the method induces a considerable bias towards small intensities of the dynamic isobar
amplitudes across all m3π and mπ−π+ bins. Because of this observed bias, we do do not use this
approach.

C Preparation of the covariance matrix

In the freed-isobar PWA, the zero-mode coefficient C in Eq. (B15) is a nuisance parameter that
contains no physical information and is not constrained by the data (see Appendix B). But
since C mixes with all other fit parameters, it influences the uncertainties of these parameters.
We thus want to remove the corresponding uncertainties from the covariance matrix V of the
extracted transition amplitudes {T fit

k } that we obtain from the minimizing algorithm. Since the
zero-mode ∆̃(mij) in Eq. (B12) is real-valued, the ambiguity does not mix real and imaginary
parts of the transition amplitudes. We therefore remove the uncertainty that corresponds to the
zero-mode individually from the covariance matrices VRe and VIm of real and imaginary parts of
the transition amplitudes. Those entries of the covariance that mix real and imaginary parts of
the {T fit

k } are unaffected by the zero mode. To this end, we define a projection operator P that
acts on the covariance matrix according to

VRe, Im → P ·VRe, Im ·P. (C1)

This projection operator is an n×n real-valued matrix, where n is the number of mπ−π+ intervals.
It is defined as

Pkl ≡ δkl − ∆̃k ∆̃l, (C2)

so that

P · ~̃∆ = ~0, P · ~̃∆⊥ = ~̃∆⊥, and P ·P = P. (C3)

Here, ~̃∆⊥ is an arbitrary direction in the space of the {T fit
k } that is orthogonal to the zero

mode ~̃∆.[ab]

By construction, the covariance matrices VRe, Im in Eq. (C1), from which we removed the
uncertainties corresponding to the zero mode, have eigenvectors in the direction of the zero
mode with an eigenvalue of zero. However, using these matrices in Eq. (B17) would render the
χ2 function completely independent of the zero-mode coefficient C so that we would not be able
to determine C by minimizing this function. We hence reinsert the zero mode as an eigenvector
weighted with an arbitrary positive coefficient L, i.e., we perform the transformation

VRe, Im → P ·VRe, Im ·P + L ~̃∆⊗ ~̃∆. (C4)

Doing so, we ensure that the zero mode ~̃∆ is an eigenvector of the covariance matrix V and
therefore the determination of C is independent from the determination of all other fit parameters
in Eq. (B17). For this reason, the solutions for the zero-mode coefficient C and the other fit
parameters in Eq. (B16) are also independent of the particular choice for the value of L. We
verified numerically that this holds over seventeen orders of magnitude for the value of L.
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[ab] ~̃∆ is the vector that has the {∆̃k} as components.
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In this supplemental material, we provide additional information.

In Appendix E, we give details on the calculation of the zero mode in the spin-exotic 1−+1+

[ππ]1−−πP wave that is discussed in Appendix B. In Appendix F, we show the comparison
between freed-isobar and conventional PWA similar to Figs. 8 and 9 for the t′ bins that are not
shown in the paper. Finally, in Appendix G, we show the [ππ]1−− dynamic isobar amplitude
in the 1−+1+[ππ]1−−πP wave as a function of mπ−π+ similar to Fig. 6 for all (m3π, t

′) cells the
freed-isobar PWA was performed in.

E Ambiguity in the JPC = 1−+ amplitude in the freed-isobar partial-wave
analysis

In order to derive Eqs. (B7) and (B8), we consider the decay of a particle X into three particles 1,
2, and 3. We want to express momentum vectors defined in the helicity rest frame (HF) of the
(13) two-particle subsystem using variables defined in the Gottfried-Jackson rest frame (GJ) of
the (123) system X.

In the Gottfried-Jackson frame,

~p1 + ~p2 + ~p3 = ~0, (E1)

where ~pi is the three-momentum of particle i. Since we want to transform from the Gottfried-
Jackson into the (13) helicity frame, we consider the three-momentum vector

~p13 = ~p1 + ~p3 (E2)

of the (13) subsystem in the Gottfried-Jackson frame. The z axis of the (13) helicity frame is
given by the direction of ~p13, i.e.,

êHF
z =

~p13

p13
, (E3)

where p13 ≡|~p13|. The y axis is given by

êHF
y =

êGJ
z × êHF

z∣∣êGJ
z × êHF

z

∣∣ (E4)

and the x axis completes the right-handed orthonormal basis, i.e.,

êHF
x = êHF

y × êHF
z . (E5)

While the normalization of the x and z unit vectors of the helicity frame is trivial, we find the
normalization of the y unit vector to be∣∣∣êGJ

z × êHF
z

∣∣∣ = sinϑGJ. (E6)

Here, ϑGJ is the polar angle of ~p13 in the Gottfried-Jackson frame; the corresponding azimuthal
angle is φGJ.

Using Eqs. (E4) and (E6), we can rewrite Eq. (E5):

êHF
x =

1

sinϑGJ

(
êGJ
z × êHF

z

)
× êHF

z

=
1

sinϑGJ

[(
êGJ
z · êHF

z

)
êHF
z −

(
êHF
z · êHF

z

)
êGJ
z

]
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=
cosϑGJ

sinϑGJ
êHF
z −

1

sinϑGJ
êGJ
z . (E7)

Based on the expressions for the basis vectors of the helicity frame in the Gottfried-Jackson frame
in Eqs. (E3), (E4), (E6), and (E7), we can write down the corresponding rotation matrix R. The
rows of this matrix are given by the helicity-frame basis vectors, i.e.,

R =
(
êHF
x , êHF

y , êHF
z

)ᵀ
=

(
cosϑGJ

sinϑGJ

~p13

|~p13|
− 1

sinϑGJ
êGJ
z ,

êGJ
z × ~p13

sinϑGJ |~p13|
,
~p13

|~p13|

)ᵀ

. (E8)

Applying this matrix to a momentum vector ~p defined in the Gottfried-Jackson frame yields a
vector

~p ′ = R · ~p (E9)

that is defined in a rotated reference frame that differs from the (13) helicity frame merely
by a Lorentz boost along ~p13 direction into the rest frame of the (13) subsystem. Since the
~p13 direction corresponds to the z direction in the rotated frame, the boost does not affect the
x and y components of ~p ′ and hence the corresponding components of the vector ~pHF defined in
the helicity frame are given by

pHF
x = p′x and pHF

y = p′y. (E10)

However, the boost mixes the z component p′z and the energy E that corresponds to ~p and ~p ′.
Therefore,

pHF
z =

(
E13

m13
p′z −

p13

m13
E

)
, (E11)

where γ = E13/m13 and βγ = p13/m13 are the usual relativistic factors of the Lorentz boost.
Here, E13 and p13 are energy and momentum of the (13) subsystem in the Gottfried-Jackson
frame and m13 is the corresponding invariant mass. Using Eqs. (E8) to (E11), we can write all
components of ~pHF:

pHF
x =

cosϑGJ

sinϑGJ

~p13 · ~p
p13

− 1

sinϑGJ
pz (E12)

pHF
y =

(
êGJ
z × ~p13

)
· ~p

sinϑGJ p13
(E13)

pHF
z =

E13

m13

~p13 · ~p
p13

− p13

m13
E. (E14)

In order to derive Eqs. (B7) and (B8), we specifically need the expressions for pHF
1,x and pHF

1,y . Due
to Eq. (E1)

~p1 = −~p2 − ~p3 = −~p23 (E15)

and in particular

p1,z = −p23,z = −p23 cos ϑ̂GJ, (E16)
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where p23 and ϑ̂GJ are the magnitude and the polar angle of ~p23 in the Gottfried-Jackson frame;
the corresponding azimuthal angle is φ̂GJ. Using the above relations and Eq. (E12), we find

pHF
1,x =

cos ϑ̂GJ

sinϑGJ
p23 −

cosϑGJ

sinϑGJ

~p13 · ~p23

p13
. (E17)

We make use of the properties of the combination of dot and the cross products when calculat-
ing pHF

1,y via Eq. (E13):(
êGJ
z × ~p13

)
· ~p1 = −

(
êGJ
z × ~p13

)
· ~p23 (E18)

= − (~p13 × ~p23) · êGJ
z (E19)

= (~p23 × ~p13) · êGJ
z . (E20)

We thus need the z component of ~p23 × ~p13, which is given by

(~p23 × ~p13)z = p13 p23 sinϑGJ sin ϑ̂GJ

(
cosφGJ sin φ̂GJ − sinφGJ cos φ̂GJ

)
. (E21)

This simplifies to

(~p23 × ~p13)z = p13 p23 sinϑGJ sin ϑ̂GJ sin
(
φGJ − φ̂GJ

)
, (E22)

leading to

pHF
1,y = p23 sin ϑ̂GJ sin

(
φGJ − φ̂GJ

)
. (E23)

Since the momenta p13 and p23 are the breakup momenta Q13 and Q23 as defined in Eq. (B9),
Eqs. (E17) and (E23) are identical to Eqs. (B7) and (B8).
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F Comparison of the freed-isobar with the conventional partial-wave analysis

In Fig. 15, we show the comparison between the coherently summed result of the freed-isobar
PWA for the second and third t′ bin (similar to Fig. 8).
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FIG. 15: Comparison of the m3π intensity distributions of the 1−+1+[ππ]1−−πP wave from the
freed-isobar PWA (orange data points) and of the 1−+1+ρ(770)πP wave from the conventional
PWA (blue data points), similar to Fig. 8.

In Fig. 16, we show the results of the Breit-Wigner resonance-model fit to the results of the
freed-isobar PWA for the spin-exotic wave similar to Fig. 9 for the three lowest t′ bins.
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FIG. 16: Intensity distribution and phase of the spin-exotic wave with respect to the 4++1+

ρ(770)πG wave in the three lowest t′ bins, similar to Fig. 9.
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G Dynamic isobar amplitudes from freed-isobar partial-wave analysis

In addition to the three (m3π, t
′) cells shown in Fig. 6, we show in Figures 17 to 68 the [ππ]1−−

dynamic isobar amplitude in the 1−+1+[ππ]1−−πP wave as a function ofmπ−π+ for all 152 (m3π, t
′)

cells with m3π > 0.98 GeV/c2.
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FIG. 17: Intensity distributions and Argand diagrams similar to Fig. 6 for 0.98 < m3π <
1.06 GeV/c2 and 0.100 < t′ < 0.141 (GeV/c)2.
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FIG. 18: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.06 < m3π <
1.18 GeV/c2 and 0.100 < t′ < 0.141 (GeV/c)2.
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FIG. 19: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.18 < m3π <
1.30 GeV/c2 and 0.100 < t′ < 0.141 (GeV/c)2.
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FIG. 20: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.30 < m3π <
1.42 GeV/c2 and 0.100 < t′ < 0.141 (GeV/c)2.
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FIG. 21: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.42 < m3π <
1.54 GeV/c2 and 0.100 < t′ < 0.141 (GeV/c)2.
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FIG. 22: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.54 < m3π <
1.66 GeV/c2 and 0.100 < t′ < 0.141 (GeV/c)2.
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FIG. 23: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.66 < m3π <
1.78 GeV/c2 and 0.100 < t′ < 0.141 (GeV/c)2.
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FIG. 24: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.78 < m3π <
1.90 GeV/c2 and 0.100 < t′ < 0.141 (GeV/c)2.
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FIG. 25: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.90 < m3π <
2.02 GeV/c2 and 0.100 < t′ < 0.141 (GeV/c)2.
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FIG. 26: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.02 < m3π <
2.14 GeV/c2 and 0.100 < t′ < 0.141 (GeV/c)2.
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FIG. 27: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.14 < m3π <
2.26 GeV/c2 and 0.100 < t′ < 0.141 (GeV/c)2.
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FIG. 28: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.26 < m3π <
2.38 GeV/c2 and 0.100 < t′ < 0.141 (GeV/c)2.
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FIG. 29: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.38 < m3π <
2.50 GeV/c2 and 0.100 < t′ < 0.141 (GeV/c)2.
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FIG. 30: Intensity distributions and Argand diagrams similar to Fig. 6 for 0.98 < m3π <
1.06 GeV/c2 and 0.141 < t′ < 0.194 (GeV/c)2.
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FIG. 31: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.06 < m3π <
1.18 GeV/c2 and 0.141 < t′ < 0.194 (GeV/c)2.
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FIG. 32: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.18 < m3π <
1.30 GeV/c2 and 0.141 < t′ < 0.194 (GeV/c)2.
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FIG. 33: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.30 < m3π <
1.42 GeV/c2 and 0.141 < t′ < 0.194 (GeV/c)2.
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FIG. 34: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.42 < m3π <
1.54 GeV/c2 and 0.141 < t′ < 0.194 (GeV/c)2.
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FIG. 35: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.54 < m3π <
1.66 GeV/c2 and 0.141 < t′ < 0.194 (GeV/c)2.
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FIG. 36: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.66 < m3π <
1.78 GeV/c2 and 0.141 < t′ < 0.194 (GeV/c)2.
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FIG. 37: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.78 < m3π <
1.90 GeV/c2 and 0.141 < t′ < 0.194 (GeV/c)2.
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FIG. 38: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.90 < m3π <
2.02 GeV/c2 and 0.141 < t′ < 0.194 (GeV/c)2.
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FIG. 39: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.02 < m3π <
2.14 GeV/c2 and 0.141 < t′ < 0.194 (GeV/c)2.
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FIG. 40: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.14 < m3π <
2.26 GeV/c2 and 0.141 < t′ < 0.194 (GeV/c)2.
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FIG. 41: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.26 < m3π <
2.38 GeV/c2 and 0.141 < t′ < 0.194 (GeV/c)2.
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FIG. 42: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.38 < m3π <
2.50 GeV/c2 and 0.141 < t′ < 0.194 (GeV/c)2.
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FIG. 43: Intensity distributions and Argand diagrams similar to Fig. 6 for 0.98 < m3π <
1.06 GeV/c2 and 0.194 < t′ < 0.326 (GeV/c)2.
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FIG. 44: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.06 < m3π <
1.18 GeV/c2 and 0.194 < t′ < 0.326 (GeV/c)2.
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FIG. 45: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.18 < m3π <
1.30 GeV/c2 and 0.194 < t′ < 0.326 (GeV/c)2.
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FIG. 46: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.30 < m3π <
1.42 GeV/c2 and 0.194 < t′ < 0.326 (GeV/c)2.
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FIG. 47: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.42 < m3π <
1.54 GeV/c2 and 0.194 < t′ < 0.326 (GeV/c)2.
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FIG. 48: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.54 < m3π <
1.66 GeV/c2 and 0.194 < t′ < 0.326 (GeV/c)2.
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FIG. 49: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.66 < m3π <
1.78 GeV/c2 and 0.194 < t′ < 0.326 (GeV/c)2.
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FIG. 50: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.78 < m3π <
1.90 GeV/c2 and 0.194 < t′ < 0.326 (GeV/c)2.
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FIG. 51: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.90 < m3π <
2.02 GeV/c2 and 0.194 < t′ < 0.326 (GeV/c)2.
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FIG. 52: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.02 < m3π <
2.14 GeV/c2 and 0.194 < t′ < 0.326 (GeV/c)2.
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FIG. 53: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.14 < m3π <
2.26 GeV/c2 and 0.194 < t′ < 0.326 (GeV/c)2.
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FIG. 54: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.26 < m3π <
2.38 GeV/c2 and 0.194 < t′ < 0.326 (GeV/c)2.
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FIG. 55: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.38 < m3π <
2.50 GeV/c2 and 0.194 < t′ < 0.326 (GeV/c)2.
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FIG. 56: Intensity distributions and Argand diagrams similar to Fig. 6 for 0.98 < m3π <
1.06 GeV/c2 and 0.326 < t′ < 1.000 (GeV/c)2.
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FIG. 57: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.06 < m3π <
1.18 GeV/c2 and 0.326 < t′ < 1.000 (GeV/c)2.
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FIG. 58: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.18 < m3π <
1.30 GeV/c2 and 0.326 < t′ < 1.000 (GeV/c)2.
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FIG. 59: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.30 < m3π <
1.42 GeV/c2 and 0.326 < t′ < 1.000 (GeV/c)2.



92

0.5 1.0 1.5 2.0
mπ−π+ [GeV/c2]

0.0

0.5

1.0

∣ ∣ ∣ T a
,k

∣ ∣ ∣2

×105 1−+1+[ππ]1−−πP1.42 < m3π < 1.46 GeV/c2

0.326 < t′ < 1.000 (GeV/c)2

Freed-isobar PWA Fixed parametrization

(a)

−400 −200 0 200
Re(Ta,k)

−200

0

200

400

Im
(T

a,
k)

1−+1+[ππ]1−−πP1.42 < m3π < 1.46 GeV/c2

0.326 < t′ < 1.000 (GeV/c)2

Freed-isobar PWA Fixed parametrization

(b)

0.5 1.0 1.5 2.0
mπ−π+ [GeV/c2]

0.0

0.5

1.0

∣ ∣ ∣ T a
,k

∣ ∣ ∣2

×105 1−+1+[ππ]1−−πP1.46 < m3π < 1.50 GeV/c2

0.326 < t′ < 1.000 (GeV/c)2

Freed-isobar PWA Fixed parametrization

(c)

−400 −200 0 200
Re(Ta,k)

−200

0

200

400
Im

(T
a,

k)
1−+1+[ππ]1−−πP1.46 < m3π < 1.50 GeV/c2

0.326 < t′ < 1.000 (GeV/c)2

Freed-isobar PWA Fixed parametrization

(d)

0.5 1.0 1.5 2.0
mπ−π+ [GeV/c2]

0.0

0.5

1.0

∣ ∣ ∣ T a
,k

∣ ∣ ∣2

×105 1−+1+[ππ]1−−πP1.50 < m3π < 1.54 GeV/c2

0.326 < t′ < 1.000 (GeV/c)2

Freed-isobar PWA Fixed parametrization

(e)

−400 −200 0 200
Re(Ta,k)

−200

0

200

400

Im
(T

a,
k)

1−+1+[ππ]1−−πP1.50 < m3π < 1.54 GeV/c2

0.326 < t′ < 1.000 (GeV/c)2

Freed-isobar PWA Fixed parametrization

(f)

FIG. 60: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.42 < m3π <
1.54 GeV/c2 and 0.326 < t′ < 1.000 (GeV/c)2.
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FIG. 61: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.54 < m3π <
1.66 GeV/c2 and 0.326 < t′ < 1.000 (GeV/c)2.
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FIG. 62: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.66 < m3π <
1.78 GeV/c2 and 0.326 < t′ < 1.000 (GeV/c)2.
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FIG. 63: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.78 < m3π <
1.90 GeV/c2 and 0.326 < t′ < 1.000 (GeV/c)2.
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FIG. 64: Intensity distribution and Argand diagrams similar to Fig. 6 for 1.90 < m3π <
2.02 GeV/c2 and 0.326 < t′ < 1.000 (GeV/c)2.
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FIG. 65: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.02 < m3π <
2.14 GeV/c2 and 0.326 < t′ < 1.000 (GeV/c)2.
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FIG. 66: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.14 < m3π <
2.26 GeV/c2 and 0.326 < t′ < 1.000 (GeV/c)2.
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FIG. 67: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.26 < m3π <
2.38 GeV/c2 and 0.326 < t′ < 1.000 (GeV/c)2.
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FIG. 68: Intensity distribution and Argand diagrams similar to Fig. 6 for 2.38 < m3π <
2.50 GeV/c2 and 0.326 < t′ < 1.000 (GeV/c)2.


	Introduction
	Status of the [1600]

	Analyzed data sample
	Partial-wave analysis method
	Previous results on [1600] 
	Comparison of previous results with COMPASS proton-target data
	Summary: previous results and comparison with COMPASS data

	Study of dynamic isobar amplitudes
	Freed-isobar analysis model
	Freed-isobar results for the JPC = 1-+ wave
	Comparison with the conventional partial-wave analysis
	Summary: dynamic isobar amplitude in the JPC = 1-+ wave

	The Deck process and its projection into the JPC = 1-+ wave
	Summary: the Deck process and the JPC = 1-+ wave

	Compilation of wave sets used in partial-wave analyses of the 3 system
	Ambiguity in the JPC = 1-+ amplitude in the freed-isobar partial-wave analysis
	Preparation of the covariance matrix
	Acknowledgements
	References
	Supplemental Material
	Ambiguity in the JPC = 1-+ amplitude in the freed-isobar partial-wave analysis
	Comparison of the freed-isobar with the conventional partial-wave analysis
	Dynamic isobar amplitudes from freed-isobar partial-wave analysis
	[ ]1– dynamic isobar amplitude for 0.100 < t'< 0.141 (GeV/c)2
	[ ]1– dynamic isobar amplitude for 0.141 < t'< 0.194 (GeV/c)2
	[ ]1– dynamic isobar amplitude for 0.194 < t'< 0.326 (GeV/c)2
	[ ]1– dynamic isobar amplitude for 0.326 < t'< 1.000 (GeV/c)2


