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Abstract5

The Sivers function describes the correlation between the transverse spin of a nucleon and the trans-6

verse motion of its partons. It was extracted from measurements of the azimuthal asymmetry of7

hadrons produced in semi-inclusive deep inelastic scattering of leptons off transversely polarised nu-8

cleon targets, and it turned out to be non-zero for quarks. In this letter the evaluation of the Sivers9

asymmetry for gluons in the same process is presented. The analysis method is based on a Monte10

Carlo simulation that includes three hard processes: photon-gluon fusion, QCD Compton scattering11

and leading-order virtual-photon absorption process. The Sivers asymmetries of the three processes12

are simultaneously extracted using the LEPTO event generator and a neural network approach. The13

method is applied to samples of events containing at least two hadrons with large transverse mo-14

mentum from the COMPASS data taken with a 160 GeV/c muon beam scattered off transversely15

polarised deuterons and protons. With a significance of more than two standard deviations a negative16

value is obtained for the gluon Sivers asymmetry. The result of a similar analysis for a Collins-like17

asymmetry for gluons is consistent with zero.18

(to be submitted to Phys. Lett. B)19



1 Introduction
An interesting and recently examined property of the quark distribution in a nucleon that is po-20

larised transversely to its momentum is the fact that it is not left-right symmetric with respect to the21

plane defined by the directions of nucleon spin and momentum. This asymmetry of the distribution func-22

tion is called the Sivers effect and was first suggested [1] as an explanation for the large left-right single23

transverse spin asymmetries observed for pions produced in the reaction p↑p→ πX [2, 3, 4]. On the basis24

of T-invariance arguments the existence of such an asymmetric distribution, known as Sivers distribution25

function, was originally excluded [5]. Ten years later it was recognised however that it was indeed pos-26

sible [6]. At that time it was also predicted that the Sivers function in semi-inclusive measurements of27

hadron production in DIS (SIDIS) and in the Drell-Yan process have opposite sign [7], a property referred28

to as “restricted universality”. A few years later the Sivers effect was experimentally observed in SIDIS29

experiments on transversely polarised proton targets, first by the HERMES Collaboration [8] and then30

by the COMPASS Collaboration [9]. Using the first HERMES data and the early COMPASS data taken31

with a transversely polarised deuteron target [10], a combined analysis soon allowed for first extractions32

of the Sivers function for u and d-quarks [11, 12, 13]. More precise measurements of the Sivers effect were33

performed since by the HERMES [14] and COMPASS [15, 16, 17] Collaborations, and new measurements34

with a transversely polarised 3He target were also carried out at JLab [18, 19]. More information can be35

found in recent reviews [20, 21, 22].36

At this point the question arises whether the gluon distribution in a transversely polarised nucleon37

is left-right symmetric or exhibits a Sivers effect similar to the quark distributions. Recently, the issue38

has been discussed repeatedly in the literature and the properties of the gluon Sivers distributions have39

been studied in great detail [23, 24]. While it was found that a non-zero Sivers function implies motion40

of partons in the nucleon, presently the connection between the Sivers function and the parton orbital41

angular momentum in the nucleon can only be described in a model-dependent way [25]. The correspon-42

dence between the Sivers effect and the transverse motion of partons has been originally proposed by43

M. Burkardt [26, 27, 28]. Hence it is of great interest to know whether there exists a gluon Sivers effect44

or not.45

Presently, little is known on the gluon Sivers function. An important theoretical constraint comes46

from the so-called Burkardt sum rule [29]. It states, based on the presence of QCD colour-gauge links,47

that the total transverse momentum of all partons inside a transversely polarised proton should vanish.48

Fits to the Sivers asymmetry using SIDIS data [13] almost fulfil, within uncertainties, the Burkardt sum49

rule, leaving little space for a gluon contribution. From the null result of the COMPASS experiment for50

the Sivers asymmetry of positive and negative hadrons produced on a transversely polarised deuteron51

target [10], together with additional theoretical considerations, Brodsky and Gardner [30] stated that the52

gluon contribution to the parton orbital angular momentum should be negligible, and consequently that53

the gluon Sivers effect should be small. Also, using the so-called transverse momentum dependent (TMD)54

generalised parton model and the most recent phenomenological information on the quark Sivers distri-55

butions coming from SIDIS data, interesting constraints on our knowledge of the gluon Sivers function56

were derived [31] from the recent precise data on the transverse single spin asymmetry AN (p↑p→ π0X)57

measured at central rapidity by the PHENIX Collaboration at RHIC [32].58

In DIS, the leading-order virtual-photon absorption process (LP) does not provide direct access59

to the gluon distribution since the virtual-photon does not couple to the gluon, so that higher-order60

processes have to be studied, i.e. QCD Compton scattering (QCDC) and Photon-Gluon Fusion (PGF).61

It is well known that in lepton-proton scattering one of the most promising processes to directly probe62

the gluon is open charm production, `p↑ → `′cc̄X. This is the channel that the COMPASS Collaboration63

has investigated at length in order to measure ∆g/g , the gluon polarisation in a longitudinally polarised64

nucleon [33]. Tagging the charm quark by identifying D-mesons in the final state has the advantage65

that in the lowest order of the strong coupling constant there are no other contributions to the cross66

section and one becomes essentially sensitive to the gluon distribution function. An alternative method67

to tag the gluon in DIS, which has the advantage of higher statistics, has also been developed and68

used by COMPASS, i.e. the production of high-pT hadrons [34, 35]. In the LP, the hadron transverse69

momentum pT with respect to the virtual photon direction (in the frame where the nucleon momentum is70

parallel to this direction) originates from the intrinsic transverse momentum kT of the struck quark in the71

nucleon and its fragmentation, which both lead to a small transverse component. On the contrary, both72

the QCDC and PGF hard processes can provide hadrons with high transverse momentum. Therefore,73

tagging events with hadrons of high transverse momentum pT enhances the contribution of higher-order74

processes. Nevertheless, although in the high-pT sample the PGF fraction is enriched, in order to single75

out the contribution of the PGF process to the measured asymmetry the contributions from LP and76

QCDC have to be subtracted [36].77
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In this letter, the gluon Sivers effect is investigated using COMPASS data collected by scattering78

a 160 GeV/c muon beam off transversely polarised deuterons and protons. The experimental set-up and79

the data selection are described in Section 2. In Section 3 the measurement is described. The details of80

the analysis are given in Section 4. The procedure of neural network (NN) training with a Monte Carlo81

data sample is shown in Section 5. Section 6 contains the overview of the systematic studies. In Section 782

the results are presented. Summary and conclusions are given in Section 8.83

2 Experimental set-up and data samples
The COMPASS experiment uses a fixed target set-up and a polarised muon beam delivered by the84

M2 beam line of the CERN SPS. The transversely polarised deuteron target used for the 2003 and 200485

data taking consisted of two oppositely polarised cylindrical cells situated along the beam, each 60 cm86

long with a 10 cm gap in between. In 2010 the transversely polarised proton target consisted of three cells:87

30 cm, 60 cm and 30 cm long with the central cell oppositely polarised to the downstream and upstream88

cell and 5 cm gaps between the cells. During all data taking periods the polarisation was reversed once per89

week, in this way systematic effects due to acceptance are cancelled. For the deuteron runs the target was90

filled with 6LiD. The 6Li nucleus can be regarded as one quasi-free deuteron and a 4He core. The average91

dilution factor fd, defined as the ratio of the DIS cross section on polarisable nucleons in the target92

to the cross section on all target nucleons, amounts to 0.36 and includes also electromagnetic radiative93

corrections. The average polarisation of the deuteron was 0.50. For the asymmetry measurements on94

the proton, NH3 was used as a target. Its average dilution factor fp amounts to 0.15 and the proton95

polarisation to 0.80. In both cases, the naturally polarised muon beam of 160 GeV/c was used. The basic96

features of the COMPASS spectrometer, as described in Ref. [37], are the same for 2003-4 and 2010 data97

taking. Several upgrades were performed in 2005, the main one being the installation of a new target98

magnet, which allowed to increase the polar angle acceptance from 70 mrad to 180 mrad.99

A crucial point of this analysis is the search for an observable that is strongly correlated with the100

gluon azimuthal angle φg. In the LEPTO generator [38], gluons are accessed via PGF with a quark-101

antiquark pair in the final state and the fragmentation process is described by the Lund model [39]. As102

a result of MC studies, the best correlation is found between φg and φP , where the latter denotes the103

azimuthal angle of the vector sum P of the two hadron momenta. For the present analysis, two charged104

hadrons for each event are selected. If more than two charged hadrons are reconstructed in an event, only105

the hadron with the largest transverse momentum, pT1, and the one with the second-largest transverse106

momentum, pT2, are taken into account. In order to enhance the PGF fraction in the sample and at107

the same time the correlation between φg and φP , a further requirement is applied to the transverse108

momenta of the two hadrons: pT1 > 0.7 GeV/c and pT2 > 0.4 GeV/c. Moreover, the fractional energies109

of the two hadrons must fulfil the following conditions: zi > 0.1 (i=1,2) and z1 + z2 < 0.9, where the110

last requirement rejects events from diffractive vector meson production. Hadron pairs are selected with111

no charge constraint. With this choice the correlation coefficient is 0.54. The Sivers asymmetry is then112

obtained as the sine modulation in the Sivers angle, φSiv = φP − φS . Here φS is the azimuthal angle of113

the nucleon spin vector.114

The same kinematic data selection is used for both deuteron and proton data. The requirement115

on photon virtuality, Q2 > 1 (GeV/c)2, selects events in the perturbative region and the one on the116

mass of the hadronic final state, W > 5 GeV/c2, removes the region of the exclusive nucleon resonance117

production. The Bjorken-x variable covers the range 0.003 < xBj < 0.7. For the fractional energy of the118

virtual photon, y, the limit y > 0.1 removes a region sensitive to experimental biases and the requirement119

y < 0.9 rejects events with large electromagnetic radiative corrections.120

3 Sivers asymmetry in two hadron production
In order to extract the gluon Sivers asymmetry, µ+N → µ′+2h+X events are selected as described121

in Section 2. By labelling with the symbol ↑ the cross section associated to a target cell polarised upwards122

in the laboratory and by ↓ the cross section of a target cell polarised downwards in the laboratory, the123

Sivers asymmetry can be written as124

A2h
T (~x, φSiv) =

∆σ(~x, φSiv)

σ(~x)
, (1)

where ~x = (xBj , Q
2, pT1, pT2, z1, z2), ∆σ ≡ d7σ↑ − d7σ↓ and σ ≡ d7σ↑ + d7σ↓. All cross sections are125

integrated over the two azimuthal angles φS and φR, where φR is the azimuthal angle of the relative126

momentum of the two hadrons, R = P 1 − P 2. The number of events in a φSiv bin is given by127

N(~x, φSiv) = α(~x, φSiv)
(
1 + fPTA

Siv(~x) sinφSiv
)
. (2)
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Here f is the dilution factor, PT the target polarisation and α = anΦσ0 an acceptance-dependent factor,128

where a is the total spectrometer acceptance, n the density of scattering centres, Φ the beam flux and σ0129

the spin-averaged part of the cross section. From here on, the Sivers asymmetry A2h
T (~x, φSiv) is factorised130

into the azimuth-independent amplitude ASiv(~x) and the modulation sinφSiv.131

In order to extract the Sivers asymmetry of the gluon, the amplitude of the sinφSiv modulation is132

extracted from data. The general expression for the cross section of SIDIS production with at least133

one hadron in the final state is well known [40]. It contains eight azimuthal modulations, which are134

functions of the single-hadron azimuthal angle and φS . In the absence of correlations possibly introduced135

by experimental effects, they are all orthogonal, so that the Sivers asymmetry can either be extracted as136

the amplitude of the sinφSiv modulation or one can perform a simultaneous fit of all eight amplitudes. For137

the case of heavy-quark pair and dijet production in lepton-nucleon collisions, all azimuthal asymmetries138

associated to the gluon distribution function have been recently worked out in Ref. 41. There, the Sivers139

asymmetry is defined as the amplitude of the sin (φT − φS) modulation, where φT is the azimuthal angle140

of the transverse-momentum vector of the quark-antiquark pair, qT . In our analysis, φT is replaced by φP ,141

due to its correlation with the gluon azimuthal angle φg, and the Sivers asymmetry is extracted taking142

into account only the sin (φP − φS) modulation in the cross section. It has been verified that including in143

the cross section the same eight transverse-spin modulations as in SIDIS single-hadron production [40]144

and extracting simultaneously all asymmetries gives the same result on the gluon Sivers asymmetry.145

In order to determine the Sivers asymmetry for gluons from two-hadron production in SIDIS, it146

is necessary to assume that the main contributors to muon-nucleon DIS are the three processes (Fig. 1)147

as presented in Ref. [38]. This model is successful in describing the unpolarised data. At COMPASS148

kinematics, the leading process appears at zero-order QCD in the total DIS cross section and it is the149

dominant process, while the other two processes, photon-gluon fusion and QCD Compton, are first-order150

QCD processes and hence suppressed. However, their contribution can be enhanced by constraining the151

transverse momentum of the produced hadrons, as mentioned above.152

Introducing the process fractions Rj = σj/σ (j ∈ {PGF, QCDC, LP}), the amplitude of the Sivers153

asymmetry can be expressed in terms of the amplitudes of the three contributing processes:154

fPTA
Siv sinφSiv =

∆σ

σ
=
σPGF

σ

∆σPGF

σPGF
+
σQCDC

σ

∆σQCDC

σQCDC
+
σLP
σ

∆σLP
σLP

= fPT (RPGFA
Siv
PGF +RQCDCA

Siv
QCDC +RLPA

Siv
LP ) sinφSiv,

(3)

with σ =
∑
j

σj , ∆σ =
∑
j

∆σj and fPTA
Siv
j sinφSiv = ∆σj/σj . The determination of Rj is done on155

an event-by-event basis by using the neural networks (NN) trained on Monte Carlo data as described in156

Section 5.157

4 Asymmetry extraction using the methods of weights
The method adopted in the present analysis was already applied to extract the gluon polarisation158

from the longitudinal double-spin asymmetry in the SIDIS measurement of single-hadron production [36].159

Both for the deuteron data (two target cells) and the proton data (three target cells), four target con-160

figurations can be introduced. In the case of the two-cell target: 1 - upstream, 2 - downstream, 3 -161

upstream′, 4 - downstream′. In the case of the three-cell target: 1 - (upstream+downstream), 2 - centre,162

3 - (upstream′+downstream′), 4 - centre′. Here upstream′, centre′ and downstream′ denote the cells after163

(a) (b) (c)

Figure 1: Feynman diagrams considered for γ∗N scattering: a) photon-gluon fusion (PGF) , b) gluon
radiation (QCD Compton scattering), c) Leading order process (LP).
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the polarisation reversal and configuration 1 has the polarisation pointing upwards in the laboratory164

frame. Decomposing the Sivers asymmetry into the asymmetries of the contributing processes (Eq. (3))165

and introducing the Sivers modulation βtj(~x, φSiv) = Rj(~x)f(~x)P tT sinφSiv, which is specific for process j,166

one can rewrite Eq. (2):167

N t(~x, φSiv) = αt(~x, φSiv)
(

1 + βtPGF(~x, φSiv)ASivPGF(~x)

+ βtQCDC(~x, φSiv)ASivQCDC(~x) + βtLP(~x, φSiv)ASivLP (~x)
)
,

(4)

where t = 1, 2, 3, 4 denotes the target configuration.168

In order to minimise statistical uncertainties for each process, a weighting factor is introduced. It is169

known [42] that the choice ωj = βj for the weight optimises the statistical uncertainty but variations of170

the target polarisation PT in time may introduce a bias to the final result. Therefore, the weighting factor171

ωj ≡ βj/PT is used instead. Each of the four equations (4) is weighted three times with ωj depending on172

the process j ∈ {PGF, QCDC, LP} and integrated over φSiv and ~x, yielding twelve observed quantities173

qtj :174

qtj =

∫
d~xdφSivωj(~x, φSiv)N t(~x, φSiv)

= α̃tj

(
1 + {βtPGF}ωj

{
ASivPGF

}
βPGFωj

+ {βtQCDC}ωj

{
ASivQCDC

}
βQCDCωj

+ {βtLP}ωj

{
ASivLP

}
βLPωj

)
,

(5)

where α̃tj is the ωj-weighted acceptance-dependent factor. The quantities {βti}ωj
and {ASiv

i }βt
iωj

are175

weighted averages, where the weight factor is denoted in the subscript 1).176

The acceptance factors α̃tj cancel when for asymmetry extraction one uses the double ratio177

rj :=
q1j q

4
j

q2j q
3
j

(6)

as the data taking was performed such that α̃1
j α̃

4
j/α̃

2
j α̃

3
j = 1. If this condition is not fulfilled, false asym-178

metries may occur. It is checked that this is not the case (see Section 6).179

180

In the analysis, the quantities qj and {βti}ωj
are approximated as follows:181

qtj ≈
Nt∑
k=1

ωkj , (7)

182

{βti}ωj
≈

Nt∑
k=1

βt,ki ωkj

Nt∑
k=1

ωkj

. (8)

The latter approximation holds for small observed raw asymmetries, i.e. ωA � 1. In order to avoid183

numerical inconsistencies in Eq. (8) due to a zero-pole when integrating over the full range of φSiv
2),184

two bins in φSiv ([0;π], [π; 2π]) are introduced. In the aforementioned three double ratios given in Eq. (6)185

only asymmetries are unknown. However, in order to solve the system of equations one needs to assume186

that the weighted asymmetry for a given process i is the same for the three different weights ωjβi, i.e.187

{Ai}βiωPGF = {Ai}βiωQCDC = {Ai}βiωLP . This means that the values of ωj and Ai must be uncorrelated.188

For example, since ωj is proportional to Rj , which strongly depends on the hadron transverse momentum,189

one has to use a kinematic region where the asymmetries Ai are expected to be independent of pT . Under190

these assumptions, the number of unknown weighted asymmetries is three, which exactly corresponds to191

the number of equations of type (6). These equations are solved by a χ2 fit that includes simultaneously192

both bins in φSiv.193

1) {β}ω =

∫
αβωd~xdφSiv∫
αωd~xdφSiv

, {A}βω =

∫
Aαβωd~xdφSiv∫
αβωd~xdφSiv

2) Note that ωkj , which contains sinφSiv, is integrated in the region 0 to 2π.
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Assuming that Ai can be approximated by a linear function of xi and that xi is not correlated with194

ωj , results in195

{Ai}βiωi
= Ai({xi}βiωi

). (9)

This approximation allows to interpret the obtained results as an asymmetry value measured at the196

weighted value of xi. For each process, the weighted value of xi is obtained from MC using the relation197

{xi}βiωi =

Ni∑
k=1

xki β
k
i ω

k
i

Ni∑
k=1

βki ω
k
i

. (10)

Here, Ni is the number of events of type i in MC data. The assumption that the values of xi are not198

correlated with ωj , which allows us to consider only {xi}ωiβi , was verified using MC data. The details of199

the analysis are given in [43].200

5 Monte Carlo optimisation and Neural Network training
The present analysis is very similar to the one used for the ∆g/g extraction from high-pT hadron201

pairs [35] and single hadrons [36]. For the NN training with custom input, output and target vector the202

package NetMaker [44] is used. The NN is trained with a Monte Carlo sample with process identification.203

As input vector the following six kinematic variables are chosen: xBj , Q
2, pT1, pT2, pL1, pL2. The latter204

two are the longitudinal components of the hadron momenta. The trained neural network is applied to the205

data by taking the vector of the aforementioned six variables, and its output is interpreted as probabilities206

that the given event is a result of one of the three contributing processes. Hence the simulated distributions207

of these variables need to be in agreement with the corresponding distributions in the data samples.208

Using the LEPTO generator (version 6.5) [38], two separate MC data samples were produced to209

simulate the deuteron and proton data. The generator is tuned to the COMPASS data sample obtained210

with the high-pT hadron-pair selection as described in Ref. [35]. The MSTW08 parameterisation of input211

PDFs [45] was chosen as it gives a good description of the F2 structure function in the COMPASS212

kinematic range and is valid down to Q2 = 1 (GeV/c)2. Electromagnetic radiative corrections [46] were213

applied as a weighting factor to the MC distributions shown in Figures 2 and 3 but not in the MC samples214

used in NN training. This difference was studied and it was estimated to be negligible.215

The generated events were processed by COMGEANT, the COMPASS detector simulation program216

based on GEANT3. The MC samples for the proton and deuteron data differ in the target material and217

in the spectrometer set-up. The FLUKA package [47] is used in order to simulate secondary interactions.218

As the next step, the COMPASS reconstruction program CORAL was applied. The same data selection219

as for real events was used for MC data. Figures 2 and 3 show the comparison between experimental220

and MC data for the case of the deuteron and proton data, respectively.221

The main goal of the NN parameterisation is the estimation of the process fractions Rj . In the222

typical case of signal and background separation, the expected NN output would be set to one for the223

signal and zero for the background. The output value returned by the NN would then correspond to224

the fraction of signal events in the sample in the given phase space point of the input parameter vector.225

In the present analysis, the process fractions were estimated simultaneously. In order to have a closure226

relation on the process probabilities, the sum of them must add up to one, hence only two independent227

output variables from the NN are needed. The estimation of the process fractions Rj from the NN output228

is accomplished by assigning to each event the probabilities PPGF
NN , PQCDC

NN and PLP
NN. The distribution229

of the NN output after training is shown in Fig. 4 on the “Mandelstam representation”, i.e. as points230

in an equilateral triangle with unit height. Points outside of the triangle refer to one estimator being231

negative, which is possible because in the training the estimators are not bound to be positive. The direct232

separation of the PGF process using this distribution is statistically less efficient than weighting each233

event by the three probabilities obtained from the NN output values. These probabilities are used as234

values of the process fractions (RPGF, RQCDC and RLP) in the data analysis described in Section 4.235

For the validation of the NN training, a statistically independent MC sample is used to check how236

the NN works on a sample different from the one used for the training. In each bin of PNN (the value237

assigned to every MC event by the trained NN), the true fraction obtained from LEPTO based on the238

process ID, PMC, is calculated. The results for the NN trained with a MC sample for the proton data are239

presented in Fig. 5. Altogether, the agreement between PNN and PMC for all three processes is satisfactory.240

However, for the two last bins of PGF, the two last bins of QCDC and the last bin of LP the neural241

network output does not coincide with the true fraction of the given process. This discrepancy concerns242
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Figure 2: Comparison of distributions of kinematic variables between experimental and MC high-pT
deuteron data.
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Figure 3: Comparison of distributions of kinematic variables between experimental and MC high-pT
proton data.
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a small part of the event sample and is included as a part of the MC-dependent systematic uncertainty.243

Because of the good agreement between MC and real data, it is assumed that the fractions in Eq. 3 can244

be taken from the trained NN, which means that on average Rj = P jNN.245

6 Systematic uncertainties
The main source of systematic uncertainties is the dependence of the final results on the Monte Carlo246

settings and tuning. In order to estimate this uncertainty, different MC settings were used in the process247

of neural network training. Different combinations of fragmentation parameters were used, the default248

LEPTO tuning or the COMPASS tuning for the high-pT selected sample. The event generation was249

done with and without the ‘Parton Shower’ [48]. Two PDF sets were used (MSTW08 or CTEQ5L [49]).250

Two different parameterisations of the longitudinal structure function FL are used, either from LEPTO251

or the R = σL/σT parameterisation of Ref. [50]. For secondary interactions, either the FLUKA or the252

GHEISHA [51] package were used.253

Figure 6 shows the results for the gluon Sivers asymmetry when using eight different MC productions254

of the deuteron and proton data. The final result is presented on the top. These two MC productions,255

using FLUKA and Parton Shower, yield the best comparison between experimental and MC data, which256

is shown in Fig. 2 and 3. The systematic uncertainty originating from different MC tunings is calculated257

as (APGF
max −APGF

min )/2.258
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Figure 6: Systematic changes in the final result caused by using different MC settings. Besides the final
result shown on the top, seven other results are shown that are obtained with MC samples that differ
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from R = σL/σT , MSTW or CTEQ5L PDF sets, FLUKA or GHEISHA for secondary interactions. The
results for deuteron data are shown in the left panel and for the proton data on the right panel.

The systematic uncertainty due to false asymmetries was studied by extracting the asymmetries between259

the two parts of the same target cell. The results are found to be compatible with zero. Furthermore it was260

checked how a small artificial false Sivers asymmetry influences the final result. When a false asymmetry261

of 1% is introduced, for both proton and deuteron data the final result changes by 25% of the statistical262

error. No systematic uncertainty is assigned to account for false asymmetries.263

The final state of the photon-gluon-fusion process is a quark-antiquark pair. Thus most of the264

hadron pairs produced from this subprocess should have opposite charge. Although a selection q1q2 = −1265

slightly increases the (φg, φP ) correlation, it also reduces the statistics. The results with and without this266

requirement are statistically consistent. The requirement of opposite charges of the two hadrons is hence267

not included in the data selection.268

Radiative corrections were not included in the MC production that is used in the main analysis of269

this letter. In order to estimate the systematic uncertainty introduced by this omission, a separate MC270

sample is used that was produced for the 2006 COMPASS set-up including radiative corrections based271

on RADGEN [52]. The difference in the final value for the gluon Sivers asymmetry for the proton is only272

0.018, which corresponds to 21% of the statistical uncertainty. A corresponding systematic uncertainty273

is assigned due to the fact that radiative corrections are not included in the MC simulations and hence274

in the NN training.275

Our results are obtained in only one xg bin for ASiv
PGF, one xC bin for ASiv

QCDC and one xBj bin for276

ASiv
LP . As the asymmetries are strongly correlated binning in xBj affects the values of ASiv

PGF and ASiv
QCDC,277

which are extracted in a single bin as before. The ASiv
PGF result changes by 0.07 for deuteron data and278

0.011 for proton data when two xBj bins are introduced, and these values are taken as an estimate of the279

related systematic uncertainty (see Table 1).280

The asymmetries ASiv
j of Eq. (4) were also extracted using the unbinned maximum likelihood281

method that, as expected, yields the same results of APGF as the above described analysis. Concerning282

the orthogonality of different modulations of the cross section, it was checked by what amount the Sivers283

asymmetry changes, when also the other seven asymmetries were included in the fit (see above). The284

change in the final result of the PGF asymmetry is negligible for both deuteron and proton data.285

The systematic uncertainties on target polarisation and dilution factor are multiplicative and esti-286

mated to be about 5% and 2% of the statistical uncertainty, respectively. The final systematic uncertainty287

is obtained by summing all components in quadrature. All above mentioned contributions and the final288

systematic uncertainty are listed in Table 1.289

7 Results
The method presented in Section 4 with the use of trained neural networks was applied to the two290

data sets described in Section 2. The gluon Sivers asymmetry as extracted from lepton nucleon DIS, in291
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deuteron data proton data
source uncertainty fraction of σstat uncertainty fraction of σstat

Monte Carlo settings 0.060 40% 0.054 64%
radiative corrections 0.018 12% 0.018 21%
one or two xBj bins 0.07 47% 0.011 13%

include 7 other asymmetries 0.003 2% 0.005 6%
target polarisation 0.0075 5% 0.0043 5%

dilution factor 0.003 2% 0.0018 2%

total
√∑

σ2
i 0.10 63% 0.06 69%

Table 1: Summary on systematic uncertainties of the final values of the gluon Sivers asymmetry for
deuteron and proton data.

which at least two high-pT hadrons are detected, is shown in Fig. 7 and presented in Table 2 together292

with the contribution of the two other hard processes, i.e. QCD Compton and leading process. The result293

of the analysis of the deuteron data is ASiv,dPGF = −0.14±0.15(stat.)±0.10(syst.) measured at 〈xg〉 = 0.13.294

The proton result, ASiv,pPGF = −0.26± 0.09(stat.)± 0.06(syst.) obtained at 〈xg〉 = 0.15, is consistent with295

the deuteron result within less than one standard deviation of the combined statistical uncertainty. The296

two results are expected to be consistent, as presumably the transverse motion of gluons is the same297

in neutron and proton. Combining the proton and deuteron results, the measured effect is negative,298

ASivPGF = −0.23± 0.08(stat)± 0.05(syst), which is away from zero by more than two standard deviations299

of the quadratically combined uncertainty. This result is particularly interesting in view of the gluon300

contribution to the proton spin. A non-zero gluon Sivers effect is a signature of gluon transverse motion301

in the proton [25]. The recent analysis of the PHENIX data [31] gives a gluon Sivers effect for protons,302

which is compatible with zero. The COMPASS result for the proton target is negative and more than303

two standard deviations below zero, but it should be noted that the two results are obtained for different304

centre of mass energy and xg values. Even more important, one has to recall that the existence of colour305

gauge links complicates the picture, as they lead to two different universal gluon Sivers functions, which306

in the different processes combine with process-dependent calculable factors [53]. As a result, the gluon307

Sivers function that appears in one process can be different from the one appearing in a different process,308

and assessment of compatibility requires a deeper theoretical analysis.309
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Figure 7: Sivers two-hadron asymmetry extracted for Photon-Gluon fusion (PGF), QCD Compton
(QCDC) and Leading Process (LP) from the COMPASS high-pT deuteron (left) and proton (right)
data. The x range is the RMS of the logarithmic distribution of x in the MC simulation. The red bands
indicate the systematic uncertainties. Note the different ordinate scale used in the third row of panels.
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deuteron data proton data
process asymmetry statistical error systematic uncertainty asymmetry statistical error systematic uncertainty

PGF -0.14 0.15 0.10 -0.26 0.09 0.06
QCDC 0.12 0.11 0.08 0.13 0.05 0.03

LP -0.03 0.02 0.01 0.03 0.01 0.01

Table 2: Summary of Sivers asymmetries, ASivPGF , A
Siv
QCDC , A

Siv
LP , obtained for deuteron and proton data.

For the asymmetry of the leading process, the high-pT sample of the COMPASS proton data310

has provided a positive value (see Fig.7 right-bottom panel). It can be compared with the COMPASS311

results on the Sivers asymmetry for charged hadrons produced in SIDIS `p → `′h±X single-hadron312

production [17], which for negative hadrons was found to be about zero and for positive hadrons different313

from zero and positive, so that for the two-hadron final state a positive value may indeed be expected.314

The same analysis method was also applied to extract the Collins-like asymmetry for charged315

hadrons, i.e. the cross section dependence on the sine of the Collins angle (φP +φS−π). To this purpose,316

the asymmetries A
sin (φP+φS−π)
PGF , A

sin (φP+φS−π)
QCDC , A

sin (φP+φS−π)
LP were determined for the same COMPASS317

high-pT deuteron and proton data samples. The results are shown in Fig. 8. The amplitude of the Collins318

modulation for gluons is found to be consistent with zero, in agreement with the naive expectation that319

is based on the fact that there is no gluon transversity distribution [54]. Recently it was suggested that a320

transversity-like TMD gluon distribution hg1 could generate a sin (φS + φT ) modulation in leptoproduction321

of two jets or heavy quarks [41]. In this case the results shown in Fig. 8 provide a bound to the size of hg1.322

The results given in the present letter can also be interpreted such that no false systematic asymmetry323

is introduced by the rather complex analysis method used, and that the result obtained for the gluon324

Sivers asymmetry, which is definitely different from zero, is strengthened. It should also be noted that325

the Collins-like asymmetry of the leading process for the proton is found to be consistent with zero for326

high-pT hadron pairs, in qualitative agreement with the measurement of the Collins asymmetry in single-327

hadron SIDIS measurement [55], where opposite values of about equal size were observed for positive and328

negative hadrons.329
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Figure 8: Collins-like two-hadron asymmetry extracted for Photon-Gluon fusion (PGF), QCD Compton
(QCDC) and Leading Process (LP) from the COMPASS high-pT deuteron (left) and proton (right) data.
The x range is the RMS of the logarithmic distribution of x in the MC simulation. The red bands indicate
the systematic uncertainties.

8 Summary and conclusions
The Sivers asymmetry for gluons is extracted from the measurement of high-pT hadron pairs in330

SIDIS at COMPASS off transversely polarised deuterons and protons. The analysis is very similar to331

the one already used by the COMPASS collaboration in order to measure ∆g/g , the gluon polarisation332

in a longitudinally polarised nucleon. The large kinematic acceptance and the high energy of the muon333

beam make the sample containing two high-pT hadrons sufficiently large for the present analysis, which334

is limited to a small part of the accessible phase space. The criteria applied to select hadron pairs335

allow to enhance the contribution of the photon-gluon fusion process with respect to the leading-order336
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virtual-photon absorption process. The Sivers asymmetry was then obtained as the amplitude of the sine337

modulation in the Sivers angle, φSiv = φP − φS .338

In spite of the enrichment of the PGF fraction in the high-pT hadron pair sample, in order to single339

out the contribution of the PGF process to the asymmetry it is necessary to subtract the contributions340

from the other two processes, LP and QCDC. In this analysis, the fractions of the three processes were341

determined from MC algorithms, and the three corresponding asymmetries were extracted from the data342

using a NN technique. Therefore, the analysis requires a precise MC description of the data, so that343

these quantities can be calculated reliably. Since the results derived from a NN approach strongly depend344

on the Monte Carlo sample on which the network was trained, much effort was devoted to obtain a345

good description of the experimental data by MC simulations, and the analysis was repeated using eight346

different MCs and the (small) differences in the results were included in the systematic uncertainties.347

Averaging results obtained from the deuteron and proton data, the measured gluon Sivers asym-348

metry turns out to be −0.23 ± 0.08(stat.) ± 0.05(syst.), which is away from zero by more than two349

standard deviations of the total experimental uncertainty. This result supports the existence of a trans-350

verse motion of gluons in a transversely polarised nucleon, although the quantification of this motion is351

model-dependent.352

In addition, another result obtained in this work from the same data is the extraction of the Collins-353

like gluon asymmetry, i.e. the amplitude of the sine modulation of the Collins angle φCol = φP +φS − π.354

Recent developments have hypothesised a non-zero Collins-like gluon asymmetry that however is not355

related to transversity. Our result on the Collins-like asymmetry, which is obtained from the same hadron-356

pair data that we used to extract the non-zero result on the gluon Sivers asymmetry, is found to be357

compatible with zero.358
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