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Abstract. The COMPASS fixed-target experiment at CERN SPS is dedicated to the study
of hadron structure and dynamics. In the physics programme using hadron beams, the focus is
on the detection of new states, in particular the search for JPC exotic states and glueballs.
After a short pilot run in 2004 (190 GeV/c negative pion beam, lead target), we started
our hadron spectroscopy programme in 2008 by collecting an unprecedented statistics with
a negative hadron beam (190 GeV/c) on a liquid hydrogen target. A similar amount of data
with positive hadron beam (190 GeV/c) has been taken in 2009, as well as some additional data
with negative beam on nuclear targets. The spectrometer features a large angular acceptance
and high momentum resolution and also good coverage by electromagnetic calorimetry, crucial
for the detection of final states involving π0 or η. A first important result is the observation of
a significant JPC spin exotic signal consistent with the disputed π1(1600) in the pilot run data.
This result was recently published. We present an overview of the status of various ongoing
analyses on the 2008/09 data.

1. Introduction
The existence of exotic states beyond the constituent quark model (CQM) has been speculated
about almost since the introduction of colour [1, 2]. Due to the self-coupling of gluons via colour-
charge, so-called hybrid mesons and glueball are allowed within Quantum Chromodynamics
while they are beyond the CQM. Hybrid mesons are qq̄ states with an admixture of gluons, and
glueballs are states with no quark content, only consisting of (constituent) gluons. According to
Lattice-QCD predictions [3], the glueball candidate lowest in mass has scalar quantum numbers,
JPC = 0++, and is expected to have a mass of ∼ 1.7 GeV/c2. A glueball candidate has been
observed by the Crystal Barrel and the WA102 experiments, however, mixing with ordinary
isoscalar mesons makes the interpretation difficult. Several light hybrids, on the other hand, are
predicted to have exotic JPC quantum numbers and are thus promising candidates in the search
for physics beyond the CQM. The lowest mass hybrid candidate for example is predicted [4] to
have exotic quantum numbers of spin, parity and charge conjugation JPC = 1−+ not attainable
by ordinary qq̄ states, and a mass between 1.3 and 2.2 GeV/c2.

Two experimentally observed 1−+ hybrid candidates in the light-quark sector have been
reported in the past in different decay channels, the π1(1400) mainly seen in ηπ decays, by e.g.
E852 [5], VES[6], and Crystal Barrel [7], and the π1(1600), observed by both E852 and VES
in the decay channels: ρπ [8, 9], η′π [6, 10], f1π [11, 12], and ωππ [12, 13]. In particular the
resonant nature of the ρπ decay channel of the π1(1600) observed in 3π final states is highly
disputed [12, 14]. COMPASS has started to shed new light on the puzzle of spin-exotics by the
observation of an 1−+ signal in the 2004 data, consistent with the famous π1(1600). It shows
clean phase motions with respect to other waves, confirming the resonance nature [15].
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Figure 1. (Left) Sketch of the two-stage COMPASS spectrometer. (Right) Measured Cherenkov
angle using RICH-1 versus particle momentum. Three bands appear corresponding to the
different masses of pions, kaons, and (anti-)protons; some additional contribution from δ-
electrons is present at low masses and angles.

2. The COMPASS experiment
The COMPASS two-stage spectrometer [16] at the CERN SPS features electromagnetic
calorimetry in both stages. Photon detection in a wide angular range at high resolution is
crucial for decay channels involving π0, η or η′, The Ring Imaging Cherenkov (RICH) detector
in the first stage allows for final state particle identification (PID). A good separation of pions
from kaons enables the study of kaonic final states. Two Cherenkov Differential counters with
Acromatic Ring focus (CEDAR) upstream of the target are used to identify the incoming
beam particle. Not only production of strangeness with the pion beam can thus be studied
but also kaon diffraction, tagging the kaon contribution in the negative hadron beam (96 %
π−, 3.5 % K−, 0.5 % p̄). After a short pilot run in 2004 of 190 GeV/c π− beam on a
lead target (Sec. 2.1), COMPASS recorded data with 190 GeV/c hadron beams in 2008/09,
providing excellent opportunity for simultaneous observation of new states in various decay
modes within the same experiment (Sec. 2.2, 2.3). Moreover, the data contain subsets with
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Figure 2. (Left) Diffractive meson production: The beam particle a is excited, via t-channel
Reggeon exchange, to a resonance c subsequently decaying into n mesons, the target stays
intact. (Right) Diffractive dissociation into 3π final states as described in the isobar model:
The produced resonance X− with quantum numbers JPCM ε decays into an isobar with
spin S and relative orbital angular momentum L with respect to the πbachelor. The isobar
subsequently decays into two pions. At high energies, the Pomeron is the dominant Regge-
trajectory.
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Figure 3. Top: (Left) 3π invariant mass, the most prominent resonances are indicated. (Right)
Fitted intensity of the exotic 1−+1+[ρπ]P wave. Bottom: (Left) PWA fits for the a1(1260):
Intensity of 1++0+[ρ−π]S wave. (Right) Phase motion of the exotic 1−+1+ versus 1++0+ wave.

different beam projectiles (π±,K±, p) and targets (H2, Ni, W, and Pb), allowing for systematic
studies not only of diffractive and central production but also Primakoff reactions [17] and
baryon spectroscopy [18].

2.1. Observation of a JPC = 1−+ exotic resonance – 2004 data
The quantum numbers spin J , parity P and C-parity of the produced resonance X−, together
with the spin projection given by M and ε (reflectivity), define a partial wave JPCM ε[isobar]L.
The partial wave analysis (PWA) is based on the isobar model, see Fig.2 (right). The resonance
X− decays via an intermediate di-pion resonance (the isobar), accompanied by a so-called
bachelor pion. The PWA method consists of two steps. First, a mass-independent fit is
performed on the data binned into 40 MeV/c2 wide mass intervals, no assumption on the
resonance structure of the 3π system is made at this level. A total set of 42 waves including
a flat background wave is fitted to the data using an extended maximum likelihood method,
which comprises acceptance corrections. Subsequently, the mass-dependent fit is applied to
the six main waves out of the result from the first step, and uses a χ2 minimisation. The
mass dependence is parameterised by relativistic Breit-Wigners (BW) and coherent background,
if present. The employed parameterisation of the spin density matrix has a rank of two,
accounting for spin-flip and spin-non-flip amplitudes at the baryon vertex. Fig. 3 shows the
intensity of the 1++ wave with the well-established a1(1260) and that of the spin-exotic 1−+

wave as well as the phase difference ∆Φ between the two, for the fits of all six waves, see [15].
The black data points represent the mass-independent fit, whereas the mass-independent one
is overlayed as solid line, the separation into background (dotted) and BW (dashed) is plotted
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Figure 4. Comparison of PWA intensities of main waves for neutral vs. charged mode.
(Top/Left) Intensities of the a2 (2++1+ going into ρ−π D wave) used for normalisation of charged
to neutral mode. Top/Right: (a1) 1++0+ into ρ−π D wave. (Bottom/Left) (π2) 2−+0+ into
f2(1270) π S wave. (Bottom/Right) (π2) 2−+0+ into ρ−π F wave.

where applicable. Especially the resonant nature of the exotic 1−+1+[ρπ]P wave is questioned
in previous observations, whereas our data shows a clear and rapid phase motion. Our result
of a mass of 1660 ± 10+0

−64 MeV/c2 and a width of 269 ± 21+42
−64 MeV/c2 is consistent with the

famous π1(1600) [15] already reported in the past but still controversially discussed.

2.2. First comparison of neutral versus charged mode – 2008 data (negative beam, H2 target)
An important cross-check of all analyses is the test for isospin symmetry in the observed spectra.
The ρπ decay channel of the π1(1600) for example, can be studied in two modes of 3π final states,
π−π+π− (charged) and π−π0π0 (neutral), respectively. The relative contribution should follow
isospin conservation, depending on the underlying isobars, as it is shown in Fig. 4. A first partial-
wave analysis (PWA) of main waves in diffractively produced 3π events has been performed for
both modes, applying the same model as for the 2004 result, for details see [19]. The wave
intensities shown are normalised in the same way to the well-known ρπ decay of the a2(1320) to
compensate for the different statistics analysed, thus making them comparable. We find similar
intensities for the ρπ decay, whereas a suppression factor of two is observed for the wave decaying
into f2π as expected due to the Clebsch-Gordon coefficients.
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Figure 5. Invariant mass spectra of the diffractively produced (KK̄π)− systems with the π−

beam on the liquid hydrogen target: (Left) K+K− (with pK− ≤ 30 GeV/c) (Right) K0
s K0

s .

Further ongoing analyses of neutral channels cover π−η and π−ηη final states (search for the
π1(1400) and lightest 0++ glueball candidate) as well as π−π−π+π0, π−π−π+η and π−π−π+π0π0

final states (accessible isobars: f1, b1, η, η′, ω). For all these channels, COMPASS has recorded
significantly higher statistics with respect to previous experiments, covering all spin-exotic meson
decay channels in the light quark sector reported in the past.

2.3. First glimpse on kaonic final states – 2008 data (negative beam, H2 target)
Final states including strange particles are interesting for both, glueball search in central
production as well as diffractively produced hybrids. Fig. 5 shows the KK̄ subsystems out
of the (KK̄π)− system, again for two different modes: K+K−π− (charged mode) and K0

s K0
s π−

(neutral mode) final states, respectively. In both cases, the spectra show a clear structure around
the expected f0(1500). The CEDARs were used to anti-tag the kaons in the beam, and the final
state kaons are identified using the RICH detector and the well resolved V 0 secondary vertex,
respectively; for details on the event selections, see [20].

Further ongoing analyses of kaonic final states cover the complementary (KK̄π)0 system
diffractively produced with the π− beam as well as kaon diffraction into K−π+π− final states
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Figure 6. Kaon diffraction into K−π+π− final states: (Left) Invariant mass of the total
diffractively produced system. (Right) Invariant mass of the subsystem K−π+.



using the beam kaons. In both cases, the RICH detector is used for final state PID and the
CEDARs for identifying the beam particle. Fig. 6 shows mass spectra for the study of kaon
diffraction into K−π+π− final states. The total mass spectrum and the K−π+ show the
prominent, well-known resonances as expected, similar as observed by WA03. Our statistics
collected in merely 2008 exceeds the one from WA03 by a factor of two, for details, see [21]
and references therein. The PWA of all kaonic final states mentioned in this paper are under
preparation.

3. Summary & conclusions
COMPASS has taken data with high-intensity, negatively as well as positively charged hadron
beams (π±,K±, p) on nuclear and liquid hydrogen targets. The data sample newly taken in
2008/09 exceeds the world data by a factor of 10-100, depending on the given final state. The
COMPASS data sets allow to address open issues in light-mesons spectroscopy at good accuracy,
even extending the region to higher masses beyond 2GeV/c2.
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