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Abstract
I give a brief introduction to generalized parton distributions, their physics,
and opportunities for measuring them in µp collisions.

1. WHAT ARE GENERALIZED PARTON DISTRIBUTIONS?

Generalized parton distributions (GPDs) [1–4] have been recognized in the last few years as a tool to
study hadron structure in new ways. Unifying the concepts of parton distributions and of hadronic form
factors, GPDs contain a wealth of information about how quarks and gluons make up hadrons. Advances
in experimental technology raise the hope of studying the exclusive processes where these functions
appear.

The study of ordinary parton distributions provides us with detailed knowledge about the dis-
tribution of momentum and spin of quarks, antiquarks, and gluons. It is, however, important that the
momentum probed in this way is the longitudinal momentum of the partons in a fast moving hadron. All
information about the transverse structure is integrated over in the parton densities. One has in particular
lost information about the role of the orbital angular momentum of partons in making a proton of total
spin 1

2 . Clearly, orbital angular momentum should play a role at resolution scales where one can talk
about partons: the simple splitting process q → qg of a light quark moving along the z-axis generates
orbital angular momentum Lz , since this is the only way for it to conserve the total angular momentum
Jz [5]. In order to access such information one needs quantities that involve transverse momenta, and
this can be achieved in the exclusive scattering processes described by GPDs.

A good example to see the similarities and differences between usual parton densities and their
generalization is the Compton amplitude. Via the optical theorem, the cross section for inclusive deep
inelastic scattering (DIS) can be obtained from the imaginary part of the forward amplitude γ ∗p → γ∗p.
In the Bjorken region of large photon virtuality Q2 and collision energy, this amplitude factorizes into a
parton distribution and a perturbatively calculable scattering process at the level of quarks and gluons.
The simplest diagram for this is shown in Fig. 1a. The amplitude for deeply virtual Compton scattering
(DVCS) γ∗p → γp, a completely exclusive process, factorizes in an analogous way if in addition to
the Bjorken limit we require a small invariant momentum transfer t to the proton. Since the two proton
momenta in the diagram of Fig. 1a are now different, the non-perturbative dynamics is not described by
ordinary parton distributions, but by quantities which generalize them. In addition, the finite momentum
transfer to the proton makes a second space–time structure of the process possible. Whereas in Fig. 1a
the partonic subprocess is the scattering of a photon on a quark or antiquark, the virtual photon can also
annihilate a quark–antiquark pair with transverse separation of order 1/Q in the proton target, as shown
in Fig. 1b.

Like the usual parton densities, GPDs are defined through matrix elements of quark and gluon
operators, for instance

(Pn)

∫

dλ

2π
eiλx(Pn)〈p′, s′| q̄(−1

2λn) (nγ) q( 1
2λn) |p, s〉

= ū(p′, s′)(nγ)u(p, s)H(x, ξ, t) + ū(p′, s′)
iσαβnα(p′ − p)β

2m
u(p, s)E(x, ξ, t) . (1)

Here n is a light-like vector which determines the direction we call ‘longitudinal’. These definitions
provide the basis for deriving important properties of the distributions:
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Fig. 1: Feynman diagrams for the Compton amplitude in the regime where it factorizes into a parton distribution and a hard

partonic subprocess: (a) quark–photon scattering, (b) annihilation of a quark–antiquark pair.

• In the limit where the two states |p, s〉 and p′, s′〉 become equal, one finds that H becomes the
usual quark density, which thus provides boundary values for this function. On the other hand,
the forward limit of the distribution E cannot be measured in the same way as usual parton dis-
tributions, since it appears multiplied by the momentum transfer p′ − p. Evaluating the spinors
in the right-hand side of Eq. (1) one finds in fact that E appears in the transition between a left-
and a right-handed proton. Since the quark helicity remains the same, angular momentum balance
requires orbital angular momentum, which is provided only if the proton momenta p and p ′ differ
in their transverse components.

• Taking moments of these distributions in the momentum fraction x gives the matrix elements of
local currents, for instance of the vector current in Eq. (1). The moments of GPDs are thus given
by elastic form factors. The well-known electromagnetic Dirac and Pauli form factors, F1(t) and
F2(t), are respectively obtained as lowest x-moments of the GPDs H and E. Of particular interest
is the second moment 1

2

∫

dxx(H + E), whose value at t = 0 gives the total angular momentum
of the quark species in question, including its spin and orbital angular momentum [2]. Note also
that such moments are well suited to be calculated in lattice QCD.

• The quark–antiquark operator in Eq. (1) must be renormalized. The variation of the distributions
with the renormalization scale µ is described by evolution equations that generalize the well-known
DGLAP equations for parton densities, with evolution kernels known to two-loop accuracy [6].
Physically, µ−1 corresponds to the spatial resolution at which the partons are probed in the hard
scattering process.

GPDs depend on three kinematical variables: x and ξ parametrize the independent longitudinal momen-
tum fractions of the partons, whereas the dependence on t = (p′ − p)2 takes into account that there can
also be a transverse momentum transfer. A very intuitive representation of the physics encoded in GPDs
is obtained by a Fourier transform from (p′ − p)⊥ to transverse position b⊥ [7–9]. The resulting picture
is shown in Fig. 2. GPDs describe at the same time the longitudinal momentum of partons and their
distance from the transverse ‘centre’ of the proton, and in this sense provide a fully three-dimensional
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Fig. 2: Representation of a GPD in impact parameter space. Longitudinal momentum fractions refer to the average proton

momentum 1

2
(p + p

′) and are indicated above or below lines. The regions (a) and (b) correspond to those in Fig. 1.



image of partons in a hadron.

The usual parton densities are obtained in this picture by setting ξ = 0 and integrating over
the transverse position b⊥. Further analysis shows that the ‘blobs’ in Fig. 2 represent the light-cone
wave functions of the incoming or the outgoing proton [10]. This highlights another difference between
GPDs and their forward limit. Usual parton densities are given by squared wave functions and therefore
represent probabilities. In contrast, GPDs correlate wave functions for different parton configurations
and thus are genuinely quantum-mechanical interference terms. In region (b) they coherently probe qq̄
pairs within the target.

There is an increasing amount of effort to better understand the dynamics of GPDs by various
strategies of modelling them, a recent overview is given in Ref. [11]. Among many interesting features is
the possibility to treat these quantities with methods of chiral perturbation theory and thus to investigate
the role of chiral symmetry and its breaking in nucleon structure. Much remains to be done in this area:
the rich physics content of GPDs is mirrored in a considerable complexity of their behaviour on x, ξ and
t. Theoretical ideas will have to be tested against the constraints from data.

2. HOW TO MEASURE GENERALIZED PARTON DISTRIBUTIONS?

The appearance of GPDs in exclusive scattering processes is established by factorization theorems [12],
which are very similar to those for inclusive processes such as DIS or Drell–Yan pair production. The
foremost example is DVCS shown in Fig. 1. It is the process whose theory is most advanced, and the
one which is probably the cleanest for extracting information on the unknown distributions. A large
class of other reactions is provided by meson production, see Fig. 3. It provides a wealth of different
channels and thus a handle to disentangle GPDs for different quark flavours and for gluons and to test
the universality of the extracted functions. The comparatively large cross sections of some channels (for
instance the production of ρ0 mesons) will allow detailed studies in several kinematical variables. On the
other hand the complexity of these processes, containing nonperturbative information on both the target
and the produced meson, makes them more difficult to analyse. Also, there is reason to believe that the
values of Q2 where the simple factorized description of Fig. 3 is adequate, are larger than for DVCS,
maybe 10 GeV2 and more.

Fortunately there are predictions of factorization which can be tested directly in the data, without
previous knowledge of the nonperturbative functions one aims to extract. In the limit of large Q2 at fixed
Bjorken variable xB and fixed t, the amplitude for γ∗p → γp should become independent of Q2 up
to logarithmic corrections; this is the precise analog of Bjorken scaling for DIS. The analogous scaling
predicted for the meson production amplitude is like 1/Q. In practice such tests require a sufficiently
large lever arm in Q2 at fixed xB : for this the rather high beam energy of COMPASS presents an
important advantage. A further prediction concerns the helicity structure of the process: at large Q2

the dominant amplitudes for DVCS are for a transverse γ∗, whereas for meson production longitudinal
γ∗ and longitudinal meson polarization should dominate. Other polarizations are suppressed by further
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Fig. 3: Diagrams for meson leptoproduction with (a) gluon and (b) quark exchange with the target.
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Fig. 4: Diagrams for the (a) Compton and (b) the Bethe–Heitler processes, contributing to leptoproduction µp→ µpγ.

powers of 1/Q. The meson polarization is experimentally accessible from the decay angular distribution
if the meson decays (for instance ρ0 → π+π−). Information on the polarization of the virtual photon
is contained in the azimuthal angle ϕ between the hadron and the lepton planes in the leptoproduction
process µp → µpρ, µp → µpγ, etc. This angle corresponds in fact to a rotation around the momentum
of the exchanged γ∗ and is hence intricately related with the angular momentum along this direction.

The cleanest and most detailed access to the exclusive dynamics at amplitude level is possible in
DVCS. In this case not only Compton scattering (Fig. 4a) but also the Bethe–Heitler process (Fig. 4b)
contribute to the leptoproduction amplitude. Which mechanism dominates at given Q2 and xB depends
mainly on the lepton beam energy E`. Large values of 1/y = 2mpE` xB/Q2 favour DVCS and small
values of 1/y favour Bethe–Heitler. The Bethe–Heitler process is completely calculable in QED, together
with our knowledge of the elastic proton form factors at small t.

In kinematics where the Bethe–Heitler amplitude is sizeable, one can use the interference of the
two processes to gain information about the Compton amplitude, including its phase. This is highly
valuable since GPDs enter the γ∗p amplitude through integrals of the type

∫

dx
H(x, ξ, t)

x − ξ + iε
. (2)

Since GPDs are real-valued due to time reversal invariance, the real and imaginary parts of this expression
contain very distinct information on H . This information can be accessed in suitable observables, which
can be identified by using the structure of the Bethe–Heitler and Compton processes at large Q2 and
small t, but without knowledge of the unknown Compton amplitudes [13]. To see how this works let us
consider an unpolarized target and discuss the dependence of the cross section on the angle ϕ, and on the
charge e` and longitudinal polarization P` of the muon beam. We schematically have

dσ(µp → µpγ)

dϕ

= ABH(cos(ϕ), cos(2ϕ), cos(3ϕ), cos(4ϕ))

+ AINT(cos(ϕ), cos(2ϕ))
(

e`

[

c1 cos(ϕ)ReA(γ∗

T ) + c2 cos(2ϕ)ReA(γ∗

L) + . . .
]

+e`P`

[

s1 sin(ϕ) ImA(γ∗

T ) + s2 sin(2ϕ) ImA(γ∗

L)
])

+ AVCS(cos(ϕ), cos(2ϕ), P` sin(ϕ)), (3)

where ABH, AINT, ci, si are known expressions and A represents γ∗p → γp amplitudes for different
γ∗ polarization. The . . . in brackets stand for a ϕ-independent term and a term with cos(3ϕ). Both are
expected to be small in the kinematics under study but can readily be included in a full analysis. With
muon beams one naturally reverses both charge and helicity at once, but we see how all four expressions
in the interference can be separated: in the cross section difference σ(µ+) − σ(µ−) the Bethe–Heitler



contribution ABH drops out and one has access to the real parts of A(γ∗

T,L). With angular analysis one
can separate these two and test, for instance, the scaling predictions A(γ ∗

T ) ∼ Q0 and A(γ∗

L) ∼ Q−1 of
the factorization theorem. In the sum of cross sections σ(µ+) + σ(µ−) the imaginary parts of A(γ∗

T,L)
can be separated from the Bethe–Heitler and VCS contributions by their angular dependence, since their
coefficients change sign under ϕ → −ϕ whereas the other contributions do not.

In the region of moderate to large xB DVCS can be analysed along similar lines to meson produc-
tion, if necessary after subtraction of the Bethe–Heitler term and integration over ϕ. Part of this kine-
matics overlaps with the xB and Q2 values where HERMES can access Compton amplitudes through
the Bethe–Heitler interference due to its lower beam energy [14]. Comparison of data in this region will
provide valuable cross checks, with the analysis in the interference region giving more detailed access to
the Compton process and the analysis in the VCS dominated regime being less involved and hence more
robust.

3. CONCLUSIONS

Generalized parton distributions permit one to study qualitatively new aspects of hadron structure, in-
cluding detailed information on the longitudinal and transverse distribution of quarks and gluons, their
orbital angular momentum, quantum mechanical interference effects, and qq̄ pairs in the target wave
function. The theory of how to measure these quantities in exclusive processes rests on solid founda-
tions. Valuable data on Compton scattering and meson production can be obtained at COMPASS in
a wide kinematical region, and with specific advantages from having polarized lepton beams of both
charges.
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