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Generalized Generalized partonparton distributionsdistributions

GPDs appear in various hard exclusive processes, 

e.g., hard electroproduction of photons (DVCS)
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DefinitionDefinition of of GPDsGPDs

Generically, GPDs are defined as matrix elements of light-ray operators

P = P1 + P2

For a nucleon (proton) target (mainly) four different twist-two GPDs appears:

ψ̄iγ+ψi ⇒ iq
V

= Ū(P2, S2)γ+U(P1, S1)Hi + Ū(P2, S2)
iσ+ν∆

ν

2M
U(P1, S1)Ei

ψ̄iγ+γ5ψi ⇒ iq
A

= Ū(P2, S2)γ+γ5U(P1, S1)H̃i + Ū(P2, S2)
γ5
2M

U(P1, S1)Ẽi

F (x, η,∆2, µ2) =

∫ ∞

−∞

dκ eiκn·P 〈P2|φ(−κn)φ(κn)(µ2)|P1〉
∣∣
η=n·∆

n·P

, n2 = 0

shorthand for GPDs:

∆ = P2 − P1

F = {H,E, H̃, Ẽ} & CFFs: F = {H, E , H̃, Ẽ}

∆2 ≡ t



Support of Support of GPDsGPDs –– a hint for dualitya hint for duality

a naive dual interpretation on partonic level:

central region  - η < x < η

mesonic exchange in t-channel

outer region η < x

partonic exchange in s-channel

support extension 

is unique [DM et al. 88/92]

ambiguous (D-term)
[DM, A. Schäfer (05)]

consider a quark GPD (anti-quark x → -x)
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∫ x+η
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0

dy (1− x)pf(y, (x− y)/η,∆2)



Overlap representation of Overlap representation of GPDsGPDs

QCD bound state problem might be formulated in LC quantization: 

P−|P, S〉 =
M2

P+
|P,S〉 , with P− = P 0 − P 3 , P+ = P 0 + P 3 , P⊥ = 0

formally, solution is expanded with respect to partonic degrees of freedom:

GPDs defined as overlap of LC-wave functions (outer region):

|P, S = {↑, ↓}〉 =
∑

n,λi

∫
[dxd2k]n ψ

↑,↓
n,λi

(xi,k⊥, λi)|n, xiP
+, xiP⊥ + k⊥i, λi〉

positivity constraints [Pobylitsa (02)] are satisfied

if Lorentz symmetry is correctly implemented,
central region follows from duality
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Jakob, Kroll (98)

F (x≥η, η,∆2) ∝
∑

n,λi

(
1− η

1 + η

) 2−n
2
∫
[dxd2k]nδ

(
x+ η

1 + η
− x1

)
ψ↑∗n,λi(x

′
i,k

′
⊥i)ψ

↑(↓)
n,λi

(xi,k⊥i)

x′1 =
x− η

1− η
, k

′
⊥,1 = k⊥,1 −

1− x

1− η
∆⊥

Note: x′1 → 0 for x→ η



Constraints on Constraints on GPDsGPDs
! polynomiality conditions arise from hidden Lorentz covariance

satisfied within spectral representation (D-term is misleading)

! lowest moment reduction to partonic form factor – related to observables

! first moment is given by the expectation value of the energy-momentum tensor 

! reduction to parton densities (PDs) 

! positivity constraints (requirement on GPDs and scheme)         [Pobylitsa (02)]

are automatically satisfied in the overlap representation

q(x) = lim
∆→0

H(x, η, t), ∆q(x) = lim
∆→0

H̃(x, η, t)

∫ 1

−η

dxxnF (x, η, t) = polynom of order n or n+ 1 in η

F (x, η, t) = (1− x)p
∫ 1

0

dy

∫ 1−y

−1+y

dz δ(x− y − zη)f(y, z, t), p = {0, 1}
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PartonicPartonic interpretation of interpretation of GPDsGPDs
y

xp

x

r⊥

p

δ r Q⊥ ~1

GPDsGPDs simultaneously carry information onsimultaneously carry information on

bothboth longitudinallongitudinal and  and  transversetransverse distribution distribution 

of of partonspartons in a protonin a proton

for for ηη=0=0 they have a they have a probabilistic interpretation probabilistic interpretation 

(infinite momentum frame)(infinite momentum frame) [Burkhardt (00)]

GPDsGPDs contain also information oncontain also information on

partonicpartonic angular momentum angular momentum [X. Ji (96)]

p
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Jza = lim
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1

2

∫ 1

−1

dxx (Ha +Ea) (x, η,∆
2)



GPDsGPDs
LCLC--wavewave

functionsfunctions

unintegratedunintegrated

PDsPDs

hard exclusivehard exclusive

processesprocessesexclusive exclusive 

processesprocesses

@ large t@ large t

form form 

factorsfactors

partonparton

densities densities 

((PDsPDs))

latticelattice

simulationssimulations

QCDQCD--modelsmodels

ReggeRegge--phenomphenom..

``amplitudes’’``amplitudes’’

tomography tomography 

spin content spin content 

dualityduality



GPD related hard exclusive processesGPD related hard exclusive processesGPD related hard exclusive processes

•• Deeply virtual Compton scattering Deeply virtual Compton scattering 
(clean probe)(clean probe)

γ∗ ( )*γ

p'

e e'

•• Hard exclusive meson production Hard exclusive meson production 
(flavor filter)(flavor filter)

γ ∗
M

p'p

e e'

•• etc.etc.

x

η

scanned area of the surface as scanned area of the surface as 

a  functions  of  lepton energya  functions  of  lepton energy

−+→ µµ'' peep

+µ
−µ

γp→ p′e+e−

ep→ e′p′γ

ep→ e′p′µ+µ−

ep→ e′p′π

ep→ e′p′ρ

ep→ e′nπ+

ep→ e′nρ+

twist-two observables:

cross sections 

transverse target spin 

asymmetries

measured from H1, ZEUS, HERMES; Hall A & B (CLAS) @ JLAB



Which Which partonicpartonic information can be accessed?information can be accessed?

Real and imaginary part of CFFs have to LO the following partonic interpretation:

Real part is given by a dispersion relation:

ℑmF(ξ,Q2,∆2) = πF (x = ξ, ξ,∆2,Q2)

ℜeF(ξ,∆2,Q2) = PV

∫ 1

−1

dx
1

ξ − x
F (x, ξ,∆2,Q2)

CFFs to LO are entirely determined:

in DIS:

ℜeF(ξ,∆2,Q2) = PV

∫ 1

−1

dξ′
1

ξ − ξ′
F (x = ξ′, ξ′,∆2,Q2) + C(∆2, Q2)

F

How strong is the skewness dependence?

x+ξ
2

x−ξ
2

−ξ

q(x,Q2) = F (x, η = 0,∆2 = 0,Q2)

1
ξ−x−i0

F(ξ,Q2,∆2)⇔ F (x = ξ, η = ξ,∆2,Q2), θ(|x| ≤ ξ)D(x/ξ,∆2,Q2)
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� lattice simulations of GPD moments (first few, heavy pion world)  [QCDSF,LHPC,…]

� bag model [Ji et al.], quark soliton model [Göke et al,…], BS-equation [Miller,…], ….

� overlap of LC wave functions [Brodsky, Feldmann, Diehl, Hwang, Jakob, Kroll]

� models for amplitudes (perhaps better understanding as for GPDs)

- resumming s-channel resonances [Close, Zhao]

- vector dominance & Regge inspired description [Guidal et al., M. Capua et al., …]

s

t

s-channel contributions 

(resonance region, large x)

t-channel contributions 

(Regge phenomenology, small x)  

??

take models (`knowledge’) for the amplitude and extract GPDs

How to get a realistic GPD model?How to get a realistic GPD model?



AnsatzAnsatz for for partonicpartonic partial wave amplitudespartial wave amplitudes

� at short distance a quark/anti-quark state 
is produced, labeled by conformal spin j+2

� they form an intermediate mesonic state 
with total angular momentum J
strength of coupling is

� mesons propagate with

� decaying into a nucleon anti-nucleon pair 
with given spin S and angular momentum L,
described by an impact form factor

! D-term arises from the SO(3) partial wave J=j+1  (j      -1)

F Jj (∆
2) =

fJj
J − α(∆2)

1

(1− ∆2

M2(J))
p

1
m2(J)−t ∝

1
J−α(t)

γ∗ γ(∗)

P̄1 P2

q̄q
fJjfJj , J ≤ j + 1

We work in conformal conformal MellinMellin--spacespace and use SO(3) SO(3) tt--channel partial waveschannel partial waves

Fj(η,∆
2, µ2) =

∫ 1

−1

dx ηjC
3/2
j (x/η)F (x, η,∆2, µ2) =

∑

J

F Jj (∆
2, µ2)d̂J(η)



PerturbativePerturbative and higher twist correctionsand higher twist corrections

� perturbative next--to--leading order corrections [conformal approach D.M. (94)]

� hard  scattering part for photon/meson electroproduction [A. Belitsky, D.M. (00,01)]

� flavor singlet part for meson electroproduction [D. Ivanov, L. Szymanowski (04) ]

�for all then flavor singlet twist--two anomalous dimensions [A. Belitsky, D.M. (98)]

�and flavor singlet twist--two evolution kernels [A. Belitsky, D.M., A. Freund (99,00)]

� perturbative next--to--next--to--leading order corrections to DVCS
[D.M. (05);  K.Kumerićki, K.Passek-Kumerićki, D.M., A. Schäfer (06/07)]

� evaluation of higher twist contributions

�completing the twist-three sector [A. Belitsky, D.M. (00)]

� target mass corrections (twist-4) to photon electroproduction [A.Belitsky,D.M.(01)]

� WW-approximation to helicity flip DVCS contribution [N. Kivel, L. Mankiewicz (01)]

o power suppressed corrections are not well understood



Ready for a GPD fitting procedure?Ready for a GPD fitting procedure?

hypothesis of GPD momentshypothesis of GPD moments
(a set of parameters)

experimental dataexperimental data

DESY, JLAB,COMPASS

GeParDGeParD a N(N)LO routine

for the evaluation of gen. FFasymmetries asymmetries 

cross sectionscross sections

fitting procedurefitting procedure
(MINUIT)

observables observables 
(in terms of gen. FF)

partially YES but it is NOT completed yet:

• reasonable well motivated hypotheses of GPD moments must be implemented

• some technical, however, straightforward work is left 
(like a reevaluation of observables)

[K. Kumerički, D.M., K. Passek-Kumerički, hep-ph/0703179]



Lessons from DVCS fits for H1 and ZEUS dataLessons from DVCS fits for H1 and ZEUS data

DVCS cross section has been measured in the small               region

suppressed contributions  <<0.05>> relative O(ξ)

and it is predicted by

ξ = Q2/(2W 2 +Q2)

dσ

d∆2
(W,∆2,Q2) ≈

4πα2

Q4
W 2ξ2

W 2 +Q2

[
|H|

2
−

∆2

4M2
p

|E|
2 +

∣∣∣H̃
∣∣∣
2
] (
ξ,∆2,Q2

) ∣∣∣
ξ= Q2

2W2+Q2

LO [Belitsky, DM, Kirchner (01), Guzey, Teckentrup (06)]

data are described within questionable t-slope parameters

NLO [Freund, M. McDermott (02)]

results strongly depend on used parton density parameterization

do a simultaneous fit to DIS and DVCSdo a simultaneous fit to DIS and DVCS

40GeV �W � 150GeV, 2GeV2 � Q2 � 80GeV2, |t| � 0.8GeV2



HΣ
j (η,∆

2, µ20) = NΣ
B(1− αΣ(0) + j, 8)

B(2− αΣ(0), 8)

1

1− ∆2

(mΣ
j )

2

1
(
1− ∆2

(MΣ
j )

2

)3 +O(η2)

some simplifications in the ansatz:

� neglecting h dependence

� only designed for small x (no momentum sum rule,                free parameters)

� flavor non-singlet contribution is neglected (< 5% effect)

� fixed numbers of quarks (nf=4)

parameters @ fixed input scale Q2 = 4 GeV2

� 2x normalization N, 2x  intercept α, 2x cut-off mass M0

� little sensitivity of slope α’ (=0.15/GeV2 ) 

� little sensitivity on j-dependence in Mj

AnsatzAnsatz for conformal GPD momentsfor conformal GPD moments

PD momentum fraction PD Mellin moments Regge inspired 

t-dependence
impact form factor

(counting rules, lattice)

NΣ, NG



simultaneous simultaneous 

NNLO fit to NNLO fit to 

DVCS and DISDVCS and DIS

LO & MS NLO fits 

are not optimal

missing parameter

neglecting h is justified

? just luck

CS beyond LO 

yields good fits



Can one do better?Can one do better?
YesYes, introduce a distribution of SO(3) partial waves in conformal GPD moments

toy example: take two partial waves h dependence can be safely neglected

effective relative strength of remaining partial waves

now we get a very good LO fit:

� fixed sG = 0,   M=MG = MΣ

� Χ2/d.o.f. = 0.52,  sΣ = -0.75,  

� other parameters are consistent with previous fits 

NΣ =0.14, αΣ = 1.20, NG=0.8, αG =1.16

� Χ2
t = 2.61,  M2 = 0.86

`negative’ skewness dependence is required at LO

Fj(η,∆
2) =

f j+1j

(1− ∆2

M2(j+1))
p

(
1

j + 1− α(∆2)
d̂j+1 (η) +

s η2

j − 1− α(∆2)
d̂j−1 (η)

)



PartonicPartonic picture:  longitudinal degreespicture:  longitudinal degrees

our fits are compatible with Alekhin’s NLO PDF parameterization:

� central value of our quark densities lies in Alekhin’s error band

� gluons are less constrained by DIS fit
(error bands would overlap)



PartonicPartonic picture:  transversal degreespicture:  transversal degrees

〈/b2〉(x,Q2) =

∫
d/b/b2H(x,/b,Q2)
∫
d/bH(x,/b,Q2)

= 4B(x,Q2)

transversal distribution of partons in the infinite momentum frame:

H(x,/b) =

∫
d2/∆

(2π)2
e−i

�b·�∆H(x, η = 0,∆2 = −/∆2)

the average distance of partons is:



ConclusionsConclusions
� useful to consider GPDs as overlap of wave functions

� a tool to probe the wave functions of nucleon, hadrons, and nuclei

� this point of view allows 

� only “realistic” GPD parameterizations provide insight into the proton

� dual parameterization of GPDs based on t-channel exchanges
formulated in conformal Mellin space

� parameterization of all degrees of freedoms of GPDs

� numeric is fast and reliable [even at NLO for MS scheme] 

� perturbative expansion in DVCS works – except for evolution at small x

� fitting procedure (better than comparing model A, B, ..., with data) can be set up

� a `global’ analysis of GPD related data requires NLO

i. to connect uninegrated parton densities and GPDs

ii. yields the question for the appropriate parameterization of wave functions 

• tomography -- 3D picture           (realistic to do at present/future)

• angular momentum of partons (a very long way)


