COMPASS-II: a Facility to study QCD

COMMON MUON and PROTON APPARATUS for STRUCTURE and SPECTROSCOPY

Long Term Plans for at least 5 years (starting in 2012)

- ✓ Primakoff with π , K beam → Test of Chiral Perturb. Theory 2012
- ✓ DVCS & DVMP with µ beams → Transv. Spatial Distrib. with GPDs 2013
- ✓ SIDIS (with GPD prog.) → Strange PDF and Transv. Mom. Dep. PD.
- ✓ Drell-Yan with π beams → Transverse Momentum Dependent PDFs 2014

O. Denisov (INFN Torino) - DY, J. Friedrich (TU Munich) - Primakoff, N. d'Hose (CEA Saclay) - GPD for the COMPASS Collaboration

 SPS proton beam:
 2.6 10^{13} /spill of 9.6s each 48s, 400 GeV/c

 Secondary hadron beams (π , K, ...):
 6.10⁸ /srill, 50-200 GeV/c

 Tertiary muon beam (80% pol):
 4.61

 -> Luminosity ~ 10^{32} cm⁻² s⁻¹ GPD
 M long LH target

 ~1.2 10^{32} cm⁻² s⁻¹
 GPD

50550

COMPAS

high energy beams, broad kinematic range, large angular acceptance

QCD at low energy:

Primakoff experiments with π , K or inverse Compton Scattering on π , K

The chiral perturbation theory (ChPT) predicts the low-energy behavior of the cross section with s varying from threshold (m_{π}^2) to a few m_{π}^2

$$\frac{d\sigma_{\pi\gamma}}{d\Omega_{\rm cm}} = \left[\frac{d\sigma_{\pi\gamma}}{d\Omega_{\rm cm}}\right]_{\rm point-like} + C.\frac{(s-m_{\pi}^2)}{s^2} \cdot \mathcal{P}(\alpha_{\pi},\beta_{\pi})$$

Deviation due to π polarisabilities

the point-like cross section is measured with the muon beam

Pion Polarisabilities and Chiral predictions

The pion: fundamental role for QCD at low-energy Goldstone boson (spontaneous breaking of chiral symmetry) lightest quark-gluon bound state system

 \rightarrow understanding its internal structure is a fundamental challenge

The polarisabilities give the deformation of the pion shape by an EM field

Experiments: α_{π} - β_{π} from 4 to 14 .10⁻⁴ fm³

Pion Polarisabilities measurement

Summary for Primakoff @ COMPASS

α_{π} , β_{π} , α_2 - β_2 polarisabilities measured for the first time in $\gamma + \pi \rightarrow \pi + \gamma$

in 120 days 90 days for π beam 30 days for μ beam	$\alpha_{\pi} - \beta_{\pi}$ in 10 ⁻⁴ fm ³	$\alpha_{\pi} + \beta_{\pi}$ in 10 ⁻⁴ fm ³	<mark>α₂ - β₂</mark> in 10 ⁻⁴ fm ⁵
2-loop ChPT prediction	$\textbf{5.70} \pm \textbf{1.0}$	$\textbf{0.16} \pm \textbf{0.10}$	16
experimental accuracy	±0.66	±0.025	±1.94

 \rightarrow clear sensitivity to ChPT parameters in COMPASS kinematics

in parallel: chiral anomaly F_3 in $\gamma + \pi \rightarrow \pi + \pi^0$

+ similar reactions induced by kaons

QCD at high energy: Deep Inelastic Scattering

While unpolarised light quark PDF well constrained, strange quark distributions are not so well known

Semi-Inclusive Deep Inelastic Scattering

8

Semi-Inclusive DIS measurements *during GPD program* with a pure proton target with RICH detector and Calorimeters

Charge separation and identification K⁺, K⁻, K⁰, π^+ , π^- , π^0 , Λ ...

Major progress as compared to previous experiments to improve Unpolarised PDF

Final goal: extensive measurements (x,z,...) to provide input to NLO global analysis for PDF and FF

Projection of errors for s(x)

Short term goal: LO analysis from COMPASS data alone integrated over z

Projection for 1 week with 2.5m LH_2 target \rightarrow high statistics

Semi-Inclusive Deep Inelastic Scattering

Asymmetries in the azimuthal angle ϕ_h of the outgoing hadron around the virtual photon can reveal quark transverse spin and quark transverse momentum (k_T) effects beyond the collinear approximation

At leading twist, not only $f_1(x, k_T)$, $g_{1L}(x, k_T)$, $h_1(x, k_T)$ but also 5 other Transverse Momentum Dependent PDF (TMD (x, k_T)) which do not survive after integration on k_T

2 examples of TMDs

the quark transverse spin (unpol N)

major topic for 2010

 \vec{P}_h

The Sivers function

correlates the quark k_{T} and the nucleon spin (transv. Pol. N)

Semi-Inclusive Deep Inelastic Scattering

Semi-Inclusive DIS measurements *during GPD program* with a pure proton target with RICH detector and Calorimeters

Unpol. cross section:

measurement of A^{cos} ^(h) and A^{cos} ² ^(h) + knowledge of Collins FF

Boer-Mulders TMD determination

Projection of errors for $A^{\cos\phi_h}$ and $A^{\cos 2\phi_h}$

+ flavor separation using RICH particle identification

12

After SIDIS, Drell-Yan to study TMDs

Drell - Yan $\pi^{-}p^{\uparrow} \rightarrow \mu^{+}\mu^{-}X$

with intense pion beam (up to $10^9 \pi/\text{spill}$) with the transversely polarised NH₃target with the COMPASS spectrometer equipped with an absorber

Cross sections:

In SIDIS: convolution of a TMD with a fragmentation function In DY: convolution of 2 TMDs $\sigma^{DY} \propto f_{\overline{u}|\pi^-} \otimes f'_{u|p}$

\rightarrow complementary information and universality test

Why DY is very favourable at COMPASS?

 σ^{DY} dominated by the annihilation of a valence anti-quark from the pion and a valence quark from the polarised proton

This will be the only such experimental measurement for at least 5-10 years

function for u quark

0.05

0.045

0.04 0.035

0.03 0.025

0.02

0.015 0.01

0.005

in the valence guark region for p and π where SSA are expected to be larger

The Drell-Yan process in π -p

$$d\sigma^{DY} \propto (1 + \int d^{2}k_{1T} d^{2}k_{2T} \mathcal{W}(k_{1T}, k_{2T}) \overline{h_{1}^{\perp}}(x_{1}, k_{1T}^{2}) \otimes h_{1}^{\perp}(x_{2}, k_{2T}^{2}) \cos 2\phi) \\ + (S_{T}) (\int d^{2}k_{1T} d^{2}k_{2T} \mathcal{X}(k_{1T}, k_{2T}) \overline{f_{1}}(x_{1}, k_{1T}^{2}) \otimes f_{1T}^{\perp}(x_{2}, k_{2T}^{2}) \sin \phi_{S} \\ + \int d^{2}k_{1T} d^{2}k_{2T} \mathcal{Y}(k_{1T}, k_{2T}) \overline{h_{1}^{\perp}}(x_{1}, k_{1T}^{2}) \otimes h_{1T}^{\perp}(x_{2}, k_{2T}^{2}) \sin(2\phi + \phi_{S}) \\ + \int d^{2}k_{1T} d^{2}k_{2T} \mathcal{Z}(k_{1T}, k_{2T}) \overline{h_{1}^{\perp}}(x_{1}, k_{1T}^{2}) \otimes h_{1}(x_{2}, k_{2T}^{2}) \sin(2\phi - \phi_{S})) \\ \Rightarrow \text{Access to TMDs for incoming pion \otimes target nucleon}$$

Access to TMDs for incoming pion & target nucleon TMD as Transversity, Sivers, Boer-Mulders, pretzelosity

Collins-Soper frame (of virtual photon) θ, ϕ lepton plane wrt hadron plane target rest frame ϕ_{s} target transverse spin vector /virtual photon

Experimental check of the change of sign of ¹⁶ TMDs confronting Drell-Yan and SIDIS results

The T-odd character of the Boer-Mulders and Sivers function implies that these functions are process dependent

In order not to be forced to vanish by time-reversal invariance the SSA requires an interaction phase generated by a rescattering of the struck parton in the field of the hadron remnant

COMPASS + HERMES have already measured non zero Sivers SSA in SIDIS

DY and COMPASS set-up

Key elements for a small cross section investigation at high luminosity

- 1. Absorber (lesson from 2007-8 tests) to reduce secondary particle flux
- 2. COMPASS Polarised Target
- 3. Tracking system and beam telescope
- 4. Muon trigger (LAS of particular importance 60% of the DY acceptance)
- 5. RICH1, Calorimetry also important to reduce the background

2009 with an absorber up to 1.5 $10^8 \pi$ /spill (without radioprotection pb)

3 domains of study 1- safe domain for Drell-Yan $4 < M_{u+u-} < 9 \text{ GeV}$ 2-reasonable domain for Drell-Yan $2 < M_{u+u-} < 2.5 GeV$ Large Combinatorial Background S/B ~ 1 Open charm decays (from D^0) smaller than 15% of signal 3- domain for J/ψ mechanism $2.9 < M_{u+u-} < 3.2 \text{ GeV}$ if q-qbar dominates over q-q fusion Drell-Yan can be considered

Results from test measurements in 2009

<Pt> = 1 GeV/c → COMPASS sensitive to TMDs

Predictions for Drell-Yan at COMPASS

Predictions for Drell-Yan at COMPASS

Statistical accuracy from 0.01 to 0.02 in two years

Predictions for Drell-Yan at COMPASS

Statistical accuracy 1÷2% in two years

First ever polarised Drell-Yan experiment sensitive to TMDs

Pure valence u dominance because of the π^- beam

Key measurements:

- \checkmark TMDs universality SIDIS $\leftarrow \rightarrow$ DY
- ✓ change of sign check from SIDIS to DY for Sivers and Boer-Mulders
- \checkmark study of J/ψ production mechanism

After a series of beam tests, the feasibility is proven

In a phase 2 (future addendum), measurement with anti-proton beams will be envisaged

from inclusive reactions

to exclusive reactions

Observation of the Nucleon Structure in 1 dimension

in 1+2 dimensions

Exploring the 3-dimensional phase-space structure of the nucleon

From Wigner phase-space-distributions (Ji, PRL 2003, Belitsky, Ji, Yuan PRD 2004) We can build « mother-distributions » (Meissner, Metz, Schlegel, JHEP 0908:056 2009)

$$\mathcal{W}(x,b_{\perp},k_{\perp})$$

and derive

GPD: Generalised Parton Distribution (position in the transverse plane)
 TMD: Transverse Momentum Distribution (momentum in the transv. plane)

Generalized Partons Distributions (H,E,...)

- Allow for a unified description of form factors and parton distributions
- Allow for transverse imaging (nucleon tomography) and give access to the quark angular momentum (through E)

Longitudinal momentum fraction x

Tomographic parton images of the nucleon

What makes COMPASS unique for GPDs?

26

Experimental requirements for DVCS $\mu p \rightarrow \mu' p \gamma$

Contributions of DVCS and BH at E_{μ} =160 GeV

Deeply Virtual Compton Scattering

$$d\sigma_{(\mu p \to \mu p \gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol} + e_{\mu} a^{BH} Re A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$$

<u>Phase 1</u>: DVCS experiment to study the transverse imaging with $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam + unpolarized 2.5m long LH2 (proton) target

$$S_{CS,U} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + K.s_1^{Int} \sin \phi$$
Using $S_{CS,U}$ and integration over ϕ
and BH subtraction
$$\int d\sigma^{DVCS} / dt \sim exp(-B|t|)$$

DVCS: Transverse imaging at COMPASS do_{DVCS}/dt ~ exp(-B|t|)

2 years of data 160 GeV muon beam 2.5m LH_2 target $\varepsilon_{global} = 10\%$

without any model we can extract $B(x_B)$ $B(x_B) = \frac{1}{2} < r_{\perp}^2 (x_B) >$

 \mathbf{r}_{\perp} is the transverse size of the nucleon

DVCS: Transverse imaging at COMPASS do_{DVCS}/dt ~ exp(-B|t|)

without any model we can extract $B(x_B)$ $B(x_B) = \frac{1}{2} < r_{\perp}^2 (x_B) >$

 \mathbf{r}_{\perp} is the transverse size of the nucleon

DVCS: Transverse imaging at COMPASS do_{DVCS}/dt ~ exp(-B|t|)

ansatz at small x_B inspired by Regge Phenomenology:

$$B(x_B) = b_0 + 2 \alpha' \ln(x_0/x_B)$$

a' slope of Regge traject

with the projected uncertainties we can determine :

- B with an accuracy of 0.1 GeV⁻²
- α' with an accuracy ≥ 2.5 σ if α' ≥ 0.26 with ECAL1+2 if α' ≥ 0.125 with ECAL0+1+2

Deeply Virtual Compton Scattering

$$d\sigma_{(\mu p \to \mu p \gamma)} = d\sigma^{BH} + d\sigma^{DVCs}_{unpol} + P_{\mu} d\sigma^{DVCs}_{pol} + e_{\mu} a^{BH} Re A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$$

$$hase 1: DVCS experiment to constrain GPD H$$
with $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam + unpolarized 2.5m long LH2 (proton) target
$$D_{cs,\nu} = d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) \propto \begin{bmatrix} c_{0}^{Int} + c_{1}^{Int} \cos\phi & and c_{0,1}^{Int} \sim Re(F_{1}H) \\ d\sigma^{BH} + c_{0}^{DVCS} + K s_{1}^{Int} \sin\phi & and s_{1}^{Int} \sim Im(F_{1}H) \end{bmatrix}$$

 $\xi \sim x_{\rm B} / (2 - x_{\rm B})$

Ρ

> Im $\mathcal{H}(\xi,t) = \mathbf{H}(x=\xi,\xi,t)$ > Re $\mathcal{H}(\xi,t) = \mathcal{P} \int dx \mathbf{H}(x,\xi,t) / (x-\xi)$

Beam Charge and Spin Difference (using $D_{c_{s,v}}$)

Systematic error bands assuming a 3% charge-dependent effect between μ + and μ - (control with inclusive evts, BH...)

2008-9 tests: observation of BH and DVCS events³²

During the hadron program with 1m long recoil proton detector (RPD) and 40cm long LH2 target and the 2 existing ECAL1 and ECAL2

2008: observation of exclusive single photon production, $\varepsilon_{qlobal} = 0.13 + - 0.05 \rightarrow \text{confirmed } \varepsilon_{qlobal} = 0.1 \text{ as assumed for simulations}$

2009: observation of BH and DVCS events

Summary for GPD @ COMPASS

GPDs investigated with Hard Exclusive Photon and Meson Production

- the t-slope of the DVCS cross section LH₂ target + RPD.....phase 1
 Transverse distribution of partons
- the Beam Charge and Spin Sum and Difference and Asymm......phase 1
 Re T^{DVCS} and Im T^{DVCS} for GPD H determination
- the Transverse Target Spin Asymm......polarised NH₃ target + RPD.....phase 2
 → GPD E and angular momentum of partons (future addendum)

NEW HARDWARE:

- Recoil Proton Detector and Liquid Hydrogen Target
- Complete angular hermiticity for ECAL1-2 + a new ECAL0

Conclusions

- A new proposal COMPASS-II has been submitted. The main topics are:
 - GPD with DVCS and DVMP
 - TMD with DY and SIDIS
 - precise unpolarised PDF measurements
 - Chiral perturbation theory soft QCD
 - Hadron Spectroscopy (talk by B. Ketzer)

For the next 10 years, before ENC, EIC, eRHIC, or LHeC, COMPASS@CERN can be a major player in QCD physics using its unique high energy hadron and polarised muon beams

Promising discussions with potential new collaborators: Bonn, Argonne and Illinois