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Introduction

Introduction: phenomenology of exclusive processes within

@ Experimental tests are possible in fixed target experiments
o e*p, upFp: HERA (HERMES), JLab, COMPASS...
as well as in colliders, mainly for medium s
o e®p colliders: HERA (H1, ZEUS)

o ete™ colliders: LEP, Belle, BaBar, BEPC

@ Collinear factorization has been proven only for specific cases:

e.g.: pr production cannot directly be factorized (appearance of end point
singularities)

= improvement needed for a consistent approach of exclusive processes
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Introduction

QCD in the perturbative Regge limit with

)

@ At the same time, at large s, the interest for phenomenological tests of
o inclusive tests (total cross-section) and semi-inclusive tests (diffraction,

hard Pomeron and related resummed approaches has become pretty wide
forward jets,

o exclusive tests (meson production)

@ These tests concern all type of collider experiments:
o e*p: HERA: (H1, ZEUS)

o pp and pp: TEVATRON (CDF, DO); LHC (CMS, ATLAS, ALICE)
@ eTe™: (LEP, ILC)

@ These high energy exclusive processes in the perturbative Regge limit may
provide new ideas when dealing with collinear factorization
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Introduction

Introduction

Exclusive p-production

Polarization effects in v* P — p P at HERA

@ one can experimentally measure all
spin density matrix elements

@ at t = tmin one can experimentally distinguish
YL — PL dominates
YT = pr

(twist 2 dominance)
sizable (twist 3)

@ S-channel helicity conservation:

{ L = pr (= Too)

Yr — P,
Dominate with respect to all other transitions.

Experimentally, v7- — pr is dominated by v, — pr(-) and
’Y%(Jr) — pr(+) (ET11)
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Introduction

Introduction

Exclusive p-production

features of QCD.

kinematical range:

The processes with vector particle such as rho-meson probe deeper into the fine
It deserves theoretical developpement to describe HERA data in its special

@ large s~ p = small-x effects expected, within k¢-factorization

@ large Q% = hard scale = perturbative approach and collinear factorization
= the p can be described through its chiral even Distribution Amplitudes

pr  twist 2
pT

twist 3
The main ingredient is the v* — p impact factor

gauge invariance.

SIMPLEST OBJECT: ONLY 1 SOFT PART
@ For pr, special care is needed: a pure 2-body description would violate
@ We show that:

@ Including in a consistent way all twist 3 contributions, i.e. 2-body and
QCD factorization

3-body correlators, gives a gauge invariant impact factor

@ Our treatment is free of end-point singularities and does not violates the

m]
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Impact factor for exclusive processes

Impact factor for exclusive processes
Theoretical motivations

QCD in perturbative Regge limit

@ In this limit, the dynamics is dominated by gluons (dominance of spin 1
exchange in ¢ channel)

@ BFKL (and extensions: NLL, saturations effects,

...) is expected to
dominate with respect to Born order at large relative rapidity.

Born order:

BFKL ladder:

_

effective vertex
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Impact factor for exclusive processes

Impact factor for exclusive processes
k1 factorization

impact representation
Sudakov decomp.: k =a p1 + 8 p2+ k1
M =is /
(2m)

k,r—k) @ﬁ»*mz)ﬁp(p@(_k’ —r+k)
The 77 1(q)g(k1) — pr,r g(ke) impact factor is normalized as

d*k
QEQ

v (I)","*<(11)4’/7(]7¢)(k
(r — k)?

k = Eucl. < k| = Mink.

¥ 2 * 1 dl"f, . * 0 2
o7 ”(E):ew“ﬂ EDISCHS}Z I7PI(E"),
with k = (g + k)2 = Bs — Q2 — k2
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Impact factor for exclusive processes

Impact factor for exclusive processes

Gauge invariance within subleading twists

Gauge invariance
@ QCD gauge invariance (probes are colorless)

= impact factor should vanish when &k — O orr —k — 0
@ In the following we will restrict ourselve to the case t = tmin, i.e. tor =0

k1=

2,2
V~+Q5 +k pa+ k1

2
ko = py + ko,

K = k3 = —k°
This kinematics takes into account skewedness effects along p2
t = tmin = restriction to the transitions
0 — 0 (twist 2)
(+or-) — (4+or-) (twist3)

9 At twist 3 level (for v; — pr transition), gauge invariance is a non trivial
statement which requires 2 and 3 body correlators
o

=
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Collinear factorization
Light-Cone Collinear approach

Collinear factorization

Ellis+Furmanski+Petronzio 83; Efremov+Teryaev 84; Anikin+Teryaev 03
@ The impact factor can be written as

= /d4 cte[H(I---) S(---)]

hard part

soft part

@ At the 2-body level

/ d*z ™" (p(p) [(0) B(2)]0)

@ H and S are related by [ d*l and by the summation over spinor indices
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Collinear factorization
Collinear factorization
Light-Cone Collinear approach:

(2-body case)

1 - Momentum factorization (1)

@ Use Sudakov decomposition in the form (p = p1, n =2p2/s =p-n=1)

b= ype + L+ P, y=ln
scaling: 1 1/Q 1/Q?
@ decompose H (k) around the p direction:

H)y=Hpy) + 20

(l=yp)at... with (I—yp)ar~It
I=yp
term

@ In Fourier space, the twist 3 term [ turns into a derivative of the soft

= one will deal with [ d*z e~ (p(p)[:(0) i . P(2)|0)
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Collinear factorization
Light-Cone Collinear approach:

Collinear factorization

(2-body case)

@ write

1 - Momentum factorization (2)

Al — d*1 6(y—1-n) dy
o [d*16(y —1-n) is then absorbed in the soft term:

(Sqéa alqu)

(8 =1-m) = [ g2emromtm =)

@ 67i>\y
2

/ 160y —1-n) / iz e (p(p)(0) (1, i 01 )d(2)[0)

[ @269 = ow) (wlw() (1,1 060
= [ E e MmO i 050w

o [ dy performs the longitudinal momentum factorization

A
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Collinear factorization

Collinear factorization
Light-Cone Collinear approach: (2-body case)

2 - Spinorial (and color) factorization

@ Use Fierz decomposition of the Dirac (and color) matrices (0) ¢(z) and

W(0)i du B(=):

@ ® has now the simple factorized form:
@ [ do {tr(Hig(ep) 1) Sii(0) + (01 Huglo ) T) 0. o)}

T' = y* and ~* +® matrices

Shue) = [ 52 o) 9 0m) T (0)[0)
i) = [ R e pp)i(n) i 5L H(0))0)

@ choose axial gauge condition for gluons, ie.n-A=0= no VV”SOD |ine_ Do
[m] [ = = = Q
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Collinear factorization

Collinear factorization

Light-Cone Collinear approach: (3-body case)

Factorization of 3-body contributions

3-body contributions start at genuine twist 3
= no need for Taylor expansion

@ Momentum factorization goes in the same way as for 2-body case

@ Spinorial (and color) factorization is similar:
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Collinear factorization

Collinear factorization

Parametrization of vacuum—to—rho-meson matrix elements (DAs): 2-body correlators

2-body non-local correlators

L twist 2

kinematical twist 3 (WW)
pr memuine tuist
@ vector correlator

(pPID()7(0)[0) Zm, £y [01(9) ("

*T
nmu+wxweu]
@ axial correlator

<p(p)|1l_)(2)’75’y#¢( )|0> myp fpi0a(y)eurss eA Pppns
@ vector correlator with transverse derivative

- R

(P P(2) i 0 (0)[0) Z iy £ 01 (y) prel

@ axial correlator with transverse derivative
(D) (2)v57u i 0 (0)[0) Z 1y f5 i 9] () Prucargs €37 poms,

where y (§ = 1 — y) = momentum fraction along p = p; of the quark (antiquark) and

= jgl dyexp[iyp- 2], with z = An

= 5 2-body DAs

A
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Collinear factorization

Collinear factorization

Parametrization of vacuum—to—rho-meson matrix elements: 3-body correlators

3-body non-local correlators
@ vector correlator

genuine twist 3

_ - X
(p(P) |9 (21)Vug AL (22)¥(0)[0) = m,, £3 B(y1,y2) pues’
@ axial correlator

)

(p(D)(21) 15719 AL (22)1(0)|0)

and =

A . *T
f5 i D(y1,y2) Pu€arss €x D3 N5,

where y1, 2, y2 — y1 = quark, antiquark, gluon momentum fraction

1 1
Jdyr [dy2 expliyip-z1 +i(y2 —y1)p- 2z2], with 212 = An
0 0
= 2 3-body DAs

APXN G4
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Collinear factorization

Collinear factorization

Symmetry properties

From C-conjugation on the previous correlators, one gets:

@ 2-body correlators:

p1y) = pi(l—y)
ws(y) =  w3(l—vy)
waly) = —pa(l—vy)
eily) = —pi(l-y)
©ay) ea(l—y)
@ 3-body correlators:
B(y1,y2) = —B(l—y2,1—11)
D(y1,y2) = D1 —y2,1—11)

=] F = E E DAl
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Collinear factorization

Collinear factorization

Equations of motion

Equations of motion twist 2
kinematical twist 3 (WW)
genuine twist 3

@ Dirac equation Ieads to genuine + kinematical twist 3

—

(P (0)0(0)ap(z)) =0 (i Dy=1 8, +A,)
@ Apply the Fierz decomposition to the above 2 and 3-body correlators
~ (@) FE) = PR+ FE 38 @) .
@ = 2 Equations of motion:
g1 es(y1) + G palyn) +#1 (11) + ©a(y)
+/dyz [Csv B(y1, y2) + ¢ D(y1, yz)] =0 and (51 < wy)
@ In WW approximation: genuine twist 3 =0i.e. B=D =0

[y —7) " (1) — o8 ()]

‘(n
=N
—

<
=

I
N[

el (y) =3l e (W) — e ()]
=] F

A
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Collinear factorization

Collinear factorization

n—independence

A minimal set of DAs

@ The non-perturbative correlators cannot be obtained from perturbative
QCD ()
9 one should reduce them to a minimal set before using any model

@ this can be achieved by using an additional condition:

independency of the full amplitude with respect to the light-cone direction
n

= we prove that 3 independent Distribution Amplitudes are needed:

01(y) «— 2 body twist 2 correlator
B(y1, y2) <« 3 body genuine twist 3 vector correlator

D(y1, y2) <« 3 body genuine twist 3 axial correlator
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Collinear factorization

Collinear factorization
n—independence

n—independence in practice

@ n*, withn? =0, n-p=1is not fixed uniquely

n P
, ﬁQ k»
nt P =k Dt gt k)
@ pr polarization: e;T =e€, —pue-n
@ for the full factorized amplitude:
dA 1o} 0
=H — =0 h —_ = 2
A @S dnt ’ where dn#*  On# + Cu a(e* - n)
9 rewrite hard terms in one single form, of 2-body type: use Ward identities
Example: hard 3-body — hard 2-body
tr [Hsp(y1,y2) p° B] B(y1, y2) = —— " (tr [H2(y1) p] — tr [H2(y2) $1) B(y1, y2) ,
(91 — v2) zl _ o 72
¥ — 1
T—ys 1T—y1
@ thus, symbolically,

APXN G4
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Collinear factorization

Collinear factorization

n—independence

Constraints from n—independence  twist 2

kinematical twist 3 (WW)
genuine twist 3

genuine + kinematical twist 3

@ vector correlators

d
d—ylsolT(yl) =—o1(y1) + ps(y1)
1

d

&Y [ 22— (B(y1,y2) + Blyz, 1))
Y2 — Y1

0

@ axial correlators

1
diyllw%yu = pa(m) —cg‘/

d
—%2_ (D(y1,y2) + D(yz, 1))
Y2 — Y1
0

APXN G4
20/35



Collinear factorization

Collinear factorization

A set of independent non-perturbative correlators

Solution twist 2

kinematical twist 3 (WW)
genuine twist 3

genuine + kinematical twist 3

@ the set of 4 equations (2 EOM + 2 n-independence relations) can be
solved analytically

@ 7 — 3 independent DAs

APXN G4
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Collinear factorization
Wandzura-Wilczek

o) ="V W) + " (W),  ey) = es(y), vay), ¢i (), Paly)

where """ () and ©9°"(y) are contributions in the so called
Wandzura-Wilczek approximation and the genuine twist-3 contributions.

WW = vanishing 3-parton distributions B(y1,y2) and D(y1,y2), i-e. which
satisfy the equations

gy ) +mex V) el V) +eh V) =0
yies () =y V() — et V) +eh M () = 0.

d d
—o1 W) = —e1m) +ex V), —ea V() =ex V().
dy1 dy

Solutions:

Y1

Y1 1
PN ) = 5 /?m(v)/?m(v)} LAY = {/ o) +/—«o1 v>}
0

From these expr. the remaining LPZVW T and goWW T are

Y1 1
; [yl/ Lo -un [ ”i}”w(v)} ,
0 Y1
Y1 d 1 d
[_yl [ Fewsn | -70“”@}
0

Y1

ea "Wy =

TWW(y )_
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Collinear factorization
Genuine twist-3

g195" (y1) + 1 0% (1) +

y

dy> [Cgv B(y1, y2) + ¢35 Dy, ya)]

T gen
1

(1) + 04 %" (1)

Y1 93" (1) — v %" (1) — @1 U () + 04 " ()
1
= —/dy2 [—Cgv B(y2, 1) + ¢35 D(y2, yl)]
0

d

1
en en d
ST ) = )~ & [ (Blorge) + Blmn)
Y1 Y2 Y1
0
1
d T gen __ . _ge
s A () =

A (y) — C?/

d
—%2_ (D(y1,y2) + D(y2, 1))
Y2 — Y1

0

=
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Solution for genuine twist-3

Collinear factorization

1

Y1
1

/u{/ldyg (@ B+ D), 12) /1

2

u

_/ dy2 (V
Y2 —u
0

“— (G B+ G D) (u, 12)
& B+ D), ).
Finally, the solution for o] 9"
Y
90{ Qen(y) /du (pgen (u) _ CV

0

Yy 1
B(ys,
) /dyl/dyg (Y1, y2)
0

Y2 —y1
Yy

m]
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Computation and results
Computation of the hard part

Computation and results

2-body diagrams
@ without derivative

o

Bl o

twist 2 (yf — pL)
% 3 twist 3 (yp — pr)
@ practical trick for computing 9, H : use the Ward identity
% = 4 where ——= miiiie
p p oAt P p

APXN G4
25/35



Computation and results
Computation of the hard part

Computation and results

3-body diagrams
@ “abelian” type

o on abella 1 type

WO
R
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Computation and results
Recall:

~vi — pr impact factor

ab
o _‘PL(EQ) 2€g fp 6 /dyﬁl

pure twist 2 scaling (from p-factorization point of view)

Computation and results

’Q2+k2

APXN G4
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Computation and results
Results:

Computation and results

4 — pr impact factor:

Spin Non-Flip/Flip separation appears

orrer (E2) = ‘I)Z.Tf._»pT (E2) Tn.s. + <I>;'T_”’T (EQ) Ty
where
Tny =—(ey-¢*) and Tj = (e - k)2(e k) N (ey - €")
k 2
. .- 4+ — 4+ ) - .
non-flip transitions { o flip transitions { S

APXN G4
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Computation and results

Computation and results

Results:

pure twist 3 scaling (from p-factorization point of view)

T .
2V302 ZN. (s (1t (=) [(2y1 = 1) ¢y (y1) +¢A(y1)]

yi(1—y1) k> { (2= Ne/Crp)Q?
E24+Q%2y1 (1—w1) [k2(y1 —y2+ 1)+ Q%y1 (1 —y2)

_egzmpfp sab {_2/ " (k2+2Q2y1 (1*91))52

+2/dy1 dya [C;,/B(yhyz)*C;D(yl-,yz)]

Ne Q?

T Cr v2k? + Q2 yy (va *yl):| _2-/dy1 dyz [Ca“/B(yl"W)ﬁ_C‘;’qD(th)} {%
y1 Q2 ( (2= Nc/CF) y1 K> _2>
k2 +Q2%y1 (1 —y1) \k2(y1 —y2+ 1) +Q%y1 (1 —y2)
G Ne (11 —v2) A —w2) Q? ]}
Crp 11—y k2 (1—y1) + Q2% (y2 —y1) (1 — y2)

and

_eg2mpfp sab

T T (%) = 9 Telp 4/dy1 1*Q° [soT(yl) —(2y1 — 1) vT(yl)]
I3 k 2V2Q? 2N, E+Qy (1—yn)? 74 '

k2
—4./dy1 dy2m [C?D (y1,y2) (y1 +y2 — 1) + C;,/B (y1,v2) (y1 +y2 — 1)]
o [ (2 - N/Cp)Q? Ne Q7 ]}
E2(y1 —y2+1)+Q%2y1 (1 —y2) Cp y2k?+ Q%y1 (y2 —v1)

] = =
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Computation and results

Computation and results

Results:

WW limit
@ WW limit: keep only twist 2 + kinematical twist 3 terms (i.e B = D = 0)

@ The only remaining contributions come from the two-body correlators

@ non-flip transition

q)u T2y = —em,f, §°° /dy =9l W) +2y568 Y () + 05V ()
- = 22 Q2 2N ) Yy
282 (K% +2Q

2 yy) ((y — P / WW () Q WW(U)) }

v (k2 +Q2y (1 —y))?

which simplifies, using equation of motion:

/dy[(y Dot ) +2yged (W) +ed ()] =0

1 2 (12 2, =
q>w}ﬂ0T(k2)7 empfp 50 /d 2k (E t2Q yy)

n.f.

e an | gzt (B e )]
e k
@ flip transition:
1
S f sab 2@2 Q2 S
q>f.T 0T(52) _ 76\/772_1,;; — / (k2+Q2y ) [(1 —24)p AT‘L w (1/)+¢§Vi 1% (y)} .
e (&

[} = =
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Computation and results

Computation and results

@ The obtained results are gauge invariant

PTPT (0 when k — 0

@ yp — pr impact factor is gauge-invariant only provided the 2 and 3-body
contributions have been taken into account in a consistant way

@ Our results are free of end-point singularities, in both WW approximation
and full twist-3 order calculation
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Computation and results

Computations and results

@ Comparison with a fully covariant approach by Ball4-Braun et al:
The dictionnary between the two approaches within a full twist 3
treatment is now established:

V(yi, 1 —y2, y2 —y1)

B(y1> yZ) = — 7
Y2 — Y1
Ay, 1— _
D(y1, y2) = — (1, Y2, Y2 — Y1)
Y2 —
eily) = A)
waly) = 9"),
1 8g(a) Yy
paly) = _ZTy()

@ We performed calculations of the same impact factor within the covariant
approach by Ball+Braun et al:

calculations proceed in quite different way : eg. no npfA—DAs but
Wilson line effects are important !!

We got a full agreement between two approaches

[} = =
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Conclusions

Conclusions

@ We have performed a full up to twist 3 computation of the v* — p impact
factor, in the t = t,in, limit.

@ Our impact factor respects gauge invariance. This is achieved ONLY after
including 2 and 3 body correlators.

@ It is free of end-point singularities
(this should be contrasted with standard collinear treatment, at moderate
s, where kr-factorization is NOT applicable: see Mankiewicz-Piller).

@ We relied on the Light-Cone Collinear approach
(Ellis + Furmanski + Petronzio; Efremov + Teryaev; Anikin + Teryaev),
which is non-covariant, but very efficient for practical computations.

Agreement with the covariant approach by Ball et al

@ This Light-Cone Collinear approach is systematic, and can be extended to
any process, including higher twist effects (but does not preclude potential
end-point singularities)

=] F = E E DAl
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Conclusions

Phenomenological prospects:

@ We have all ingredients necessary to estimate:

e clements of the density matrix

e how important are § g g contributions compared to ¢ g ones

e generalizations for t # 0
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