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Introduction: phenomenology of exclusive processes within collinear

factorization

Experimental tests are possible in fixed target experiments

e±p, µ±p: HERA (HERMES), JLab, COMPASS...

as well as in colliders, mainly for medium s

e±p colliders: HERA (H1, ZEUS)

e+e− colliders: LEP, Belle, BaBar, BEPC

Collinear factorization has been proven only for specific cases:
e.g.: ρT production cannot directly be factorized (appearance of end point
singularities)
⇒ improvement needed for a consistent approach of exclusive processes
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QCD in the perturbative Regge limit with kT−factorization

At the same time, at large s, the interest for phenomenological tests of
hard Pomeron and related resummed approaches has become pretty wide:

inclusive tests (total cross-section) and semi-inclusive tests (diffraction,
forward jets, ...)

exclusive tests (meson production)

These tests concern all type of collider experiments:
e±p : HERA: (H1, ZEUS)

pp̄ and pp: TEVATRON (CDF, D0); LHC (CMS, ATLAS, ALICE)

e+e−: (LEP, ILC)

These high energy exclusive processes in the perturbative Regge limit may
provide new ideas when dealing with collinear factorization
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Introduction
Exclusive ρ-production

Polarization effects in γ∗ P → ρP at HERA

one can experimentally measure all
spin density matrix elements

at t = tmin one can experimentally distinguish


γ∗L → ρL : dominates (twist 2 dominance)
γ∗T → ρT : sizable (twist 3)

S-channel helicity conservation:

γ∗L → ρL (≡ T00)
γ∗T → ρT ,

Dominate with respect to all other transitions.
Experimentally, γ∗T → ρT is dominated by γ∗T (−) → ρT (−) and
γ∗T (+) → ρT (+) (≡ T11)
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Introduction
Exclusive ρ-production

The processes with vector particle such as rho-meson probe deeper into the fine
features of QCD.
It deserves theoretical developpement to describe HERA data in its special
kinematical range:

large sγ∗P ⇒ small-x effects expected, within kt-factorization

large Q2 ⇒ hard scale ⇒ perturbative approach and collinear factorization
⇒ the ρ can be described through its chiral even Distribution Amplitudes


ρL twist 2
ρT twist 3

The main ingredient is the γ∗ → ρ impact factor
SIMPLEST OBJECT: ONLY 1 SOFT PART

For ρT , special care is needed: a pure 2-body description would violate
gauge invariance.

We show that:
Including in a consistent way all twist 3 contributions, i.e. 2-body and
3-body correlators, gives a gauge invariant impact factor
Our treatment is free of end-point singularities and does not violates the
QCD factorization
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Impact factor for exclusive processes
Theoretical motivations

QCD in perturbative Regge limit

In this limit, the dynamics is dominated by gluons (dominance of spin 1
exchange in t channel)

BFKL (and extensions: NLL, saturations effects, ...) is expected to
dominate with respect to Born order at large relative rapidity.

Born order: BFKL ladder:

PSfrag replacements

gluon
reggeon

effective vertex
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Impact factor for exclusive processes
kT factorization

impact representation

Sudakov decomp.: k = α p1 + β p2 + k⊥ k = Eucl. ↔ k⊥ = Mink.

M = is

Z
d2 k

(2π)2k2 (r − k)2
Φγ∗(q1)→ρ(p

ρ
1
)(k, r − k) Φγ∗(q2)→ρ(p

ρ
2
)(−k,−r + k)

The γ∗L,T (q)g(k1)→ ρL,T g(k2) impact factor is normalized as

Φγ∗→ρ(k2) = eγ∗µ 1

2 s

Z
dκ

2π
Discκ S

γ∗ g→ρ g
µ (k2),

with κ = (q + k)2 = β s − Q2
− k2PSfrag replacements

Φ
q

k r − k

ρ
κ

κ

|
{
z

}

PSfrag replacements
Φq
k

r − k
ρ κ

κ

|
{
z

}
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Impact factor for exclusive processes
Gauge invariance within subleading twists

Gauge invariance

QCD gauge invariance (probes are colorless)
⇒ impact factor should vanish when k→ 0 or r − k → 0

In the following we will restrict ourselve to the case t = tmin, i.e. to r = 0

PSfrag replacements
Φ

q

k1 = k k2

ρ

κ

k1 = κ+Q2+k2

s
p2 + k⊥

k2 = κ+k2

s
p2 + k⊥,

k2
1 = k2

2 = −k2

This kinematics takes into account skewedness effects along p2

t = tmin ⇒ restriction to the transitions


0 → 0 (twist 2)
(+ or -) → (+ or -) (twist 3)

At twist 3 level (for γ∗T → ρT transition), gauge invariance is a non trivial
statement which requires 2 and 3 body correlators
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Collinear factorization
Light-Cone Collinear approach

Ellis+Furmanski+Petronzio 83; Efremov+Teryaev 84; Anikin+Teryaev 03

The impact factor can be written as

Φ =

Z

d4l · · · tr[H(l · · · ) S(l · · · )]

hard part soft part
PSfrag replacements

l
q

Hqq̄ Sqq̄

Hqq̄g
Sqq̄g

ρ
+

PSfrag replacements

l
qHqq̄

Sqq̄
Hqq̄g Sqq̄g

ρ
+ · · ·

At the 2-body level:

Sqq̄(l) =

Z

d4z e−il·z〈ρ(p)|ψ(0) ψ̄(z)|0〉,

H and S are related by
R
d4l and by the summation over spinor indices
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Collinear factorization
Light-Cone Collinear approach: 2 steps of factorization (2-body case)

1 - Momentum factorization (1)

Use Sudakov decomposition in the form (p = p1, n = 2 p2/s⇒ p · n = 1)

lµ = y pµ + l⊥µ + (l · p)nµ, y = l · n

scaling: 1 1/Q 1/Q2

decompose H(k) around the p direction:

H(l) = H(yp) +
∂H(l)

∂lα

˛
˛
˛
˛
l=yp

(l − y p)α + . . . with (l − y p)α ≈ l
⊥
α

In Fourier space, the twist 3 term l⊥α turns into a derivative of the soft
term

⇒ one will deal with
R
d4z e−il·z〈ρ(p)|ψ(0) i

←→
∂α⊥ ψ̄(z)|0〉
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Collinear factorization
Light-Cone Collinear approach: 2 steps of factorization (2-body case)

1 - Momentum factorization (2)

write
d4l −→ d4l δ(y − l · n) dy

R
d4l δ(y − l · n) is then absorbed in the soft term:

(S̃qq̄, ∂⊥S̃qq̄) ≡

Z

d4l δ(y − l · n)

Z

d4z e−il·z〈ρ(p)|ψ(0) (1, i
←→
∂⊥ )ψ̄(z)|0〉

“

δ(y − l · n) =
R

dλ
2π
e−iλ(y−l·n) ⇒

”

=

Z
dλ

2π
e−iλy

Z

d4z δ(4)(z − λn) 〈ρ(p)|ψ(0) (1, i
←→
∂⊥ )ψ̄(z)|0〉

=

Z
dλ

2π
e−iλy〈ρ(p)|ψ(0) (1, i

←→
∂⊥ )ψ̄(λn)|0〉

R
dy performs the longitudinal momentum factorization
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Collinear factorization
Light-Cone Collinear approach: 2 steps of factorization (2-body case)

2 - Spinorial (and color) factorization

Use Fierz decomposition of the Dirac (and color) matrices ψ(0) ψ̄(z) and

ψ(0) i
←→
∂⊥ ψ̄(z):

PSfrag replacements

ρ
k k

l
q

Γ Γ

Hqq̄ S̃qq̄ +

PSfrag replacements

ρ
k k

l
q

Γ Γ

Hqq̄

S̃qq̄
∂⊥Hqq̄ ∂⊥S̃qq̄

Φ has now the simple factorized form:

Φ =

Z

dx
n

tr [Hqq̄(xp) Γ] SΓ
qq̄(x) + tr [∂⊥Hqq̄(xp) Γ] ∂⊥S

Γ
qq̄(x)

o

Γ = γµ and γµ γ5 matrices

SΓ
qq̄(x) =

Z
dλ

2π
e−iλx〈ρ(p)|ψ̄(λn) Γψ(0)|0〉

∂⊥S
Γ
qq̄(x) =

Z
dλ

2π
e−iλx〈ρ(p)|ψ̄(λn) Γ i

←→
∂⊥ ψ(0)|0〉

choose axial gauge condition for gluons, i.e. n ·A = 0 ⇒ no Wilson line
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Collinear factorization
Light-Cone Collinear approach: 2 steps of factorization (3-body case)

Factorization of 3-body contributions

3-body contributions start at genuine twist 3
⇒ no need for Taylor expansion

Momentum factorization goes in the same way as for 2-body case

Spinorial (and color) factorization is similar:
PSfrag replacements

ρ
Hqq̄g S̃qq̄gHqq̄g

S̃qq̄

S̃qq̄g

→

PSfrag replacements

ρ

Hqq̄g

S̃qq̄g

Hqq̄gS̃qq̄
S̃qq̄g

Γ Γ
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Collinear factorization
Parametrization of vacuum–to–rho-meson matrix elements (DAs): 2-body correlators

2-body non-local correlators ρL twist 2

ρT

kinematical twist 3 (WW)
genuine twist 3
genuine + kinematical twist 3vector correlator

〈ρ(p)|ψ̄(z)γµψ(0)|0〉
F
= mρ fρ

h

ϕ1(y) (e∗ · n)pµ + ϕ3(y) e
∗T
µ

i

axial correlator

〈ρ(p)|ψ̄(z)γ5γµψ(0)|0〉
F
= mρ fρ i ϕA(y) εµλβδ e

∗T
λ pβ nδ

vector correlator with transverse derivative

〈ρ(p)|ψ̄(z)γµ i
←→
∂⊥α ψ(0)|0〉

F
= mρ fρ ϕ

T
1 (y) pµe

∗T
α

axial correlator with transverse derivative

〈ρ(p)|ψ̄(z)γ5γµ i
←→
∂⊥α ψ(0)|0〉

F
= mρ fρ i ϕ

T
A(y) pµ εαλβδ e

∗T
λ pβ nδ,

where y (ȳ ≡ 1− y) = momentum fraction along p ≡ p1 of the quark (antiquark) and
F
=
R

1

0
dy exp [i y p · z], with z = λn

⇒ 5 2-body DAs
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Collinear factorization
Parametrization of vacuum–to–rho-meson matrix elements: 3-body correlators

3-body non-local correlators genuine twist 3

vector correlator

〈ρ(p)|ψ̄(z1)γµgA
T
α(z2)ψ(0)|0〉

F2= mρ f
V
3 B(y1, y2) pµ e

∗T
α ,

axial correlator

〈ρ(p)|ψ̄(z1)γ5γµgA
T
α(z2)ψ(0)|0〉

F2= mρ f
A
3 iD(y1, y2) pµ εαλβδ e

∗T
λ pβ nδ,

where y1, ȳ2, y2 − y1 = quark, antiquark, gluon momentum fraction

and
F2=

1
R

0

dy1

1
R

0

dy2 exp [i y1 p · z1 + i(y2 − y1) p · z2] , with z1,2 = λn

⇒ 2 3-body DAs
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Collinear factorization
Symmetry properties

From C-conjugation on the previous correlators, one gets:

2-body correlators:

ϕ1(y) = ϕ1(1 − y)

ϕ3(y) = ϕ3(1 − y)

ϕA(y) = −ϕA(1− y)

ϕT
1 (y) = −ϕT

1 (1− y)

ϕT
A(y) = ϕT

A(1− y)

3-body correlators:

B(y1, y2) = −B(1− y2, 1 − y1)

D(y1, y2) = D(1 − y2, 1 − y1)
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Collinear factorization
Equations of motion

Equations of motion twist 2
kinematical twist 3 (WW)
genuine twist 3
genuine + kinematical twist 3Dirac equation leads to

〈i(
→
/D (0)ψ(0))α ψ̄β(z)〉 = 0 (i

→
Dµ= i

→
∂ µ +Aµ)

Apply the Fierz decomposition to the above 2 and 3-body correlators

− 〈ψ(x) ψ̄(z)〉 =
1

4
〈ψ̄(z)γµψ(x)〉γµ +

1

4
〈ψ̄(z)γ5γµψ(x)〉γµγ5.

⇒ 2 Equations of motion:

ȳ1 ϕ3(y1) + ȳ1 ϕA(y1) + ϕT
1 (y1) + ϕT

A(y1)

+

Z

dy2
h

ζV
3 B(y1, y2) + ζA

3 D(y1, y2)
i

= 0 and (ȳ1 ↔ y1)

In WW approximation: genuine twist 3 = 0 i.e. B = D = 0

8

<

:

ϕT
A(y) = 1

2
[(y − ȳ)ϕWW

A (y)− ϕWW
3 (y)]

ϕT
1 (y) = 1

2
[(y − ȳ)ϕWW

3 (y)− ϕWW
A (y)]
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Collinear factorization
n−independence

A minimal set of DAs

The non-perturbative correlators cannot be obtained from perturbative
QCD (!)

one should reduce them to a minimal set before using any model

this can be achieved by using an additional condition:
independency of the full amplitude with respect to the light-cone direction
n

⇒ we prove that 3 independent Distribution Amplitudes are needed:

φ1(y) ← 2 body twist 2 correlator

B(y1, y2) ← 3 body genuine twist 3 vector correlator

D(y1, y2) ← 3 body genuine twist 3 axial correlator
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Collinear factorization
n−independence

n−independence in practice

PSfrag replacements

k⊥

kz

k0

n′ pn

nµ, with n2 = 0, n · p = 1 is not fixed uniquely

nµ → n
′µ = nµ +

~n2

2
pµ + nµ

T

ρT polarization: e∗Tµ = e∗µ − pµ e
∗ · n

for the full factorized amplitude:

A = H ⊗ S
dA

dnµ
= 0 , where

d

dnµ
=

∂

∂nµ
+ e∗µ

∂

∂(e∗ · n)

rewrite hard terms in one single form, of 2-body type: use Ward identities
Example: hard 3-body −→ hard 2-body

tr
ˆ

H3ρ(y1, y2) p
ρ

/p
˜

B(y1, y2) =
1

y1 − y2

(tr [H2(y1) /p] − tr [H2(y2) /p])B(y1, y2) ,

(y1 − y2)

PSfrag replacements
k⊥
kz
k0

n′

p
n

y1

y2 − y1

1− y2

=

PSfrag replacements
k⊥
kz
k0

n′

p
ny1

y2 − y1
1 − y2

y1

1 − y1

-

PSfrag replacements
k⊥
kz
k0

n′

p
ny1

y2 − y1
1 − y2

y2

1 − y2

thus, symbolically,
dS

dnµ
= 0
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Collinear factorization
n−independence

Constraints from n−independence twist 2
kinematical twist 3 (WW)
genuine twist 3
genuine + kinematical twist 3

vector correlators

d

dy1
ϕT

1 (y1) = −ϕ1(y1) + ϕ3(y1)

−ζV
3

1Z

0

dy2
y2 − y1

(B(y1, y2) +B(y2, y1))

axial correlators

d

dy1
ϕT

A(y1) = ϕA(y1)− ζ
A
3

1Z

0

dy2
y2 − y1

(D(y1, y2) +D(y2, y1))
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Collinear factorization
A set of independent non-perturbative correlators

Solution twist 2
kinematical twist 3 (WW)
genuine twist 3
genuine + kinematical twist 3

the set of 4 equations (2 EOM + 2 n-independence relations) can be
solved analytically

7 −→ 3 independent DAs
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Wandzura-Wilczek

ϕ(y) = ϕWW (y) + ϕgen(y) , ϕ(y) = ϕ3(y), ϕA(y), ϕT
1 (y), ϕT

A(y)

where ϕWW (y) and ϕgen(y) are contributions in the so called
Wandzura-Wilczek approximation and the genuine twist-3 contributions.

WW = vanishing 3-parton distributions B(y1, y2) and D(y1, y2), i.e. which
satisfy the equations

ȳ1 ϕ
WW
3 (y1) + ȳ1 ϕ

WW
A (y1) + ϕT WW

1 (y1) + ϕT WW
A (y1) = 0

y1 ϕ
WW
3 (y1)− y1 ϕ

WW
A (y1)− ϕ

T WW
1 (y1) + ϕT WW

A (y1) = 0 .

d

dy1
ϕT WW

1 (y1) = −ϕ1(y1) + ϕWW
3 (y1) ,

d

dy1
ϕT WW

A (y1) = ϕWW
A (y1) .

Solutions:

ϕ
W W
A (y1) =

1

2

2

6

4

y1
Z

0

dv

v̄
ϕ1(v) −

1
Z

y1

dv

v
ϕ1(v)

3

7

5
, ϕ

W W
3

(y1) =
1

2

2

6

4

y1
Z

0

dv

v̄
ϕ1(v) +

1
Z

y1

dv

v
ϕ1(v)

3

7

5
.

From these expr. the remaining ϕW W T
A and ϕW W T

1
are

ϕ
T W W
A (y1) =

1

2

2

6

4
−ȳ1

y1
Z

0

dv

v̄
ϕ1(v) − y1

1
Z

y1

dv

v
ϕ1(v)

3

7

5
,

ϕ
T W W
1

(y1) =
1

2

2

6

4
−ȳ1

y1
Z

0

dv

v̄
ϕ1(v) + y1

1
Z

y1

dv

v
ϕ1(v)

3

7

5
.
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Genuine twist-3

ȳ1 ϕ
gen
3 (y1) + ȳ1 ϕ

gen
A (y1) + ϕT gen

1 (y1) + ϕT gen
A (y1)

= −

1Z

0

dy2
h

ζV
3 B(y1, y2) + ζA

3 D(y1, y2)
i

y1 ϕ
gen
3 (y1)− y1 ϕ

gen
A (y1)− ϕ

T gen
1 (y1) + ϕT gen

A (y1)

= −

1Z

0

dy2
h

−ζV
3 B(y2, y1) + ζA

3 D(y2, y1)
i

.

d

dy1
ϕT gen

1 (y1) = ϕgen
3 (y1)− ζ

V
3

1Z

0

dy2
y2 − y1

(B(y1, y2) +B(y2, y1)) ,

d

dy1
ϕT gen

A (y1) = ϕgen
A (y1)− ζ

A
3

1Z

0

dy2
y2 − y1

(D(y1, y2) +D(y2, y1)) .
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Solution for genuine twist-3

ϕgen
3 (y) =

−
1

2

1Z

y

du

u

» uZ

0

dy2
d

du
(ζV

3 B − ζ
A
3 D)(y2, u)−

1Z

u

dy2
y2 − u

(ζV
3 B − ζ

A
3 D)(u, y2)

−

uZ

0

dy2
y2 − u

(ζV
3 B − ζ

A
3 D)(y2, u)

–

−
1

2

y1Z

0

du

ū

» 1Z

u

dy2
d

du
(ζV

3 B + ζA
3 D)(u, y2)−

1Z

u

dy2
y2 − u

(ζV
3 B + ζA

3 D)(u, y2)

−

uZ

0

dy2
y2 − u

(ζV
3 B + ζA

3 D)(y2, u)

–

.

Finally, the solution for ϕT gen
1

ϕT gen
1 (y) =

yZ

0

duϕgen
3 (u)− ζV

3

yZ

0

dy1

1Z

y

dy2
B(y1, y2)

y2 − y1
.
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Computation and results
Computation of the hard part

2-body diagrams

without derivative

twist 2 (γ∗L → ρL)

twist 3 (γ∗T → ρT )

practical trick for computing ∂⊥H : use the Ward identityPSfrag replacements

∂
pµ

=
ppp γµ

where

PSfrag replacements

∂
pµ=

pγµ
= 1

m−/p−iε

PSfrag replacements

∂
pµ=p
γµ

PSfrag replacements

∂
pµ=p
γµ

PSfrag replacements

∂
pµ=p
γµ

PSfrag replacements

∂
pµ=p
γµ
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Computation and results
Computation of the hard part

3-body diagrams

“abelian” type

“non-abelian” type
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Computation and results
Recall: γ∗

L → ρL impact factor

γ∗L → ρL impact factor

Φγ∗

L→ρL(k2) =
2 e g2 fρ

Q

δab

2Nc

Z

dy ϕ1(y)
k2

y ȳ Q2 + k2

pure twist 2 scaling (from ρ-factorization point of view)
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Computation and results
Results: γ∗

T → ρT impact factor

γ∗T → ρT impact factor:

Spin Non-Flip/Flip separation appears

Φγ∗

T→ρT (k2) = Φ
γ∗

T→ρT

n.f. (k2)Tn.f. + Φ
γ∗

T→ρT

f. (k2)Tf.

where

Tn.f. = −(eγ · e
∗) and Tf. =

(eγ · k)(e
∗k)

k2 +
(eγ · e

∗)

2

non-flip transitions


+→ +
− → −

flip transitions


+→ −
−→ +
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Computation and results
Results: γ∗

T → ρT impact factor

pure twist 3 scaling (from ρ-factorization point of view)
Φ

γ∗
T

→ρT
n.f.

(k
2
)

= −
e g2mρfρ

2
√

2 Q2

δab

2 Nc

8

<

:

−2

Z

dy1

“

k2 + 2 Q2 y1 (1 − y1)
”

k2

y1 (1− y1)
`

k2 + Q2 y1 (1− y1)
´

2

h

(2y1 − 1) ϕ
T
1

(y1) + ϕ
T
A(y1)

i

+2

Z

dy1 dy2

h

ζ
V
3

B (y1, y2)−ζ
A
3

D (y1, y2)
i y1 (1− y1) k2

k2 + Q2 y1 (1− y1)

"

(2−Nc/CF )Q2

k2 (y1 − y2 + 1) + Q2 y1 (1− y2)

−
Nc

CF

Q2

y2k2 + Q2 y1 (y2 − y1)

#

− 2

Z

dy1 dy2

h

ζ
V
3

B (y1, y2) + ζ
A
3

D (y1, y2)
i

»

2 + Nc/CF

1 − y1

+
y1 Q2

k2 + Q2y1 (1− y1)

 

(2− Nc/CF ) y1 k2

k2 (y1 − y2 + 1) + Q2y1 (1 − y2)
− 2

!

+
Nc

CF

(y1 − y2) (1 − y2)

1 − y1

Q2

k2 (1− y1) + Q2 (y2 − y1) (1 − y2)

#)

and

Φ
γ∗

T →ρT
f.

(k
2
) = −

e g2mρfρ

2
√

2 Q2

δab

2 Nc

(

4

Z

dy1

k2 Q2

`

k2 + Q2 y1 (1 − y1)
´

2

h

ϕ
T
A(y1)− (2y1 − 1) ϕ

T
1

(y1)
i

− 4

Z

dy1 dy2

y1 k2

k2 + Q2 y1 (1 − y1)

h

ζ
A
3

D (y1, y2) (−y1 + y2 − 1) + ζ
V
3

B (y1, y2) (y1 + y2 − 1)
i

×
"

(2 −Nc/CF )Q2

k2 (y1 − y2 + 1) + Q2 y1 (1 − y2)
−

Nc

CF

Q2

y2 k2 + Q2y1 (y2 − y1)

#)
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Computation and results
Results: γ∗

T → ρT impact factor

WW limit

WW limit: keep only twist 2 + kinematical twist 3 terms (i.e B = D = 0)

The only remaining contributions come from the two-body correlators

non-flip transition

Φ
γ∗

T
→ρT

n.f.
(k

2
) =

− e mρfρ

2
√

2 Q2

δab

2 Nc

1
Z

0

dy

(

(y − ȳ)ϕT
1

W W (y) + 2 y ȳ ϕ3
W W (y) + ϕT

A
W W (y)

y ȳ

−
2 k2

“

k2 + 2 Q2 y ȳ
”“

(y − ȳ) ϕT
1

W W (y) + ϕT
A

W W (y)
”

y ȳ
`

k2 + Q2 y (1 − y)
´

2

9

=

;

which simplifies, using equation of motion:
Z

dy [(y − ȳ)ϕT
1

WW (y) + 2 y ȳ ϕ3
WW (y) + ϕT

A
WW (y)] = 0

Φ
γ∗

T
→ρT

n.f.
(k

2
) =

e mρfρ√
2 Q2

δab

2 Nc

1
Z

0

dy
2 k2

“

k2 + 2 Q2 y ȳ
”

y ȳ
`

k2 + Q2 y ȳ
´

2

h

(2 y − 1) ϕ
T
1

W W
(y) + ϕ

T
A

W W
(y)
i

.

flip transition:

Φ
γ∗

T
→ρT

f.
(k

2
) = −

e mρfρ√
2 Q2

δab

2 Nc

1
Z

0

2 k2 Q2

`

k2 + Q2 y ȳ
´

2

h

(1 − 2 y)ϕ
T
1

W W
(y) + ϕ

T
A

W W
(y)
i

.
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Computation and results

The obtained results are gauge invariant

Φγ∗

T→ρT → 0 when k → 0

γ∗T → ρT impact factor is gauge-invariant only provided the 2 and 3-body
contributions have been taken into account in a consistant way

Our results are free of end-point singularities, in both WW approximation
and full twist-3 order calculation
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Computations and results

Comparison with a fully covariant approach by Ball+Braun et al:
The dictionnary between the two approaches within a full twist 3
treatment is now established:

B(y1, y2) = −
V (y1, 1− y2, y2 − y1)

y2 − y1
,

D(y1, y2) = −
A(y1, 1− y2, y2 − y1)

y2 − y1

ϕ1(y) = φ‖(y)

ϕ3(y) = g(v)(y) ,

ϕA(y) = −
1

4

∂g(a)(y)

∂y

We performed calculations of the same impact factor within the covariant
approach by Ball+Braun et al:

calculations proceed in quite different way : eg. no ϕT
1,A−DAs but

Wilson line effects are important !!

We got a full agreement between two approaches
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Conclusions

We have performed a full up to twist 3 computation of the γ∗ → ρ impact
factor, in the t = tmin limit.

Our impact factor respects gauge invariance. This is achieved ONLY after
including 2 and 3 body correlators.

It is free of end-point singularities
(this should be contrasted with standard collinear treatment, at moderate
s, where kT -factorization is NOT applicable: see Mankiewicz-Piller).

We relied on the Light-Cone Collinear approach
(Ellis + Furmanski + Petronzio; Efremov + Teryaev; Anikin + Teryaev),

which is non-covariant, but very efficient for practical computations.

Agreement with the covariant approach by Ball et al

This Light-Cone Collinear approach is systematic, and can be extended to
any process, including higher twist effects (but does not preclude potential
end-point singularities)
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Phenomenological prospects:

We have all ingredients necessary to estimate:

• σL

σT

• elements of the density matrix

• how important are q̄ q g contributions compared to q̄ q ones

• generalizations for t 6= 0
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