

European Centre for Theoretical studies Trento, Italy 10th-15th October

Studies of TMDs at COMPASS

Heiner Wollny CEA-Saclay Irfu/SPhN on behalf of COMPASS

Outline:

- Transversity: single hadrons, hadron pairs, Λ baryons
- TMDs: measured with transversely, longitudinally and unpolarized nucleons

COMPASS Detector (muon setup)

COMPASS Polarized Target

😄 Heiner Wollny (CEA-Saclay Irfu/SPhN)

COMPASS RICH

In leading order three parton distributions are needed to describe the structure of the nucleon:

quark distribution in unpolarized DIS $\ell N \rightarrow \ell' X$

helicity distribution in polarized DIS $\vec{l} \cdot \vec{N} \rightarrow \ell' X$

transversity distribution in polarized SIDIS

- 1. $\ell N^{\uparrow} \rightarrow \ell' h X$ Collins FF
- 2. $\ell N^{\uparrow} \rightarrow \ell' hhX$ Interference FF
- 3. $\ell N^{\uparrow} \rightarrow \ell' \Lambda^{\uparrow} X$ FF of $q^{\uparrow} \rightarrow \Lambda^{\uparrow}$

1. Collins Asymmetry: $\ell N^{\uparrow} \rightarrow \ell' h X$

Measuring transversity with Collins-FF $\Delta_T^0 D_q^h$:

fragmentation of a transversely polarized quark into an unpolarized hadron

 \rightsquigarrow azimuthal asymmetry:

$$N_h \propto 1 \pm A \cdot \sin \phi_{Coll}$$

$$\phi_{Coll} = \phi_h + \phi_S - \pi$$

 ϕ_h : azimuthal angle of hadron ϕ_S : azimuthal angle of spin of initial quark **1. Collins Asymmetry:** $\ell N^{\uparrow} \rightarrow \ell' h X$

Measuring transversity with Collins-FF $\Delta_T^0 D_q^h$:

fragmentation of a transversely polarized quark into an unpolarized hadron

 \rightsquigarrow azimuthal asymmetry:

$$N_h \propto 1 \pm A \cdot \sin \phi_{Coll}$$

$$\phi_{\mathit{Coll}} = \phi_{\mathit{h}} + \phi_{\mathit{S}} - \pi$$

 ϕ_h : azimuthal angle of hadron ϕ_S : azimuthal angle of spin of initial quark

$$\begin{aligned} A_{Coll} &= \frac{A}{f P_T D_{nn}} \propto \sum_q e_q^2 \cdot \Delta_T q \otimes \Delta_T^0 D_q^h \\ f &= \text{target dilution} \\ P_T &= \text{target polarization} \\ D_{nn} &= \frac{1-y}{1-y+\frac{y^2}{2}} = \text{transverse spin transfer} \end{aligned}$$

Collins Asymmetries: ⁶LiD (2003-2004)

all asymmetries are small, compatible with zero

systematical error: $\sigma_{sys} \leq 0.3 \sigma_{stat}$

 \blacktriangleright Large asymmetries for proton $\sim 10\,\%$

- \blacktriangleright Large asymmetries for proton $\sim 10\,\%$
- Small asymmetries for deuteron → cancellation of Δ_T u and Δ_T d

Collins Asymmetries for π^{\pm} and K^{\pm}: NH₃ (2007)

œ Heiner Wollny (CEA-Saclay Irfu/SPhN)

GPD 2010, Trento, 10-15 Oct

COMPASS

Collins Asymmetries for π^{\pm} : NH₃ (2007)

Predictions from fit to COMPASS deuteron, HERMES proton and Belle e^+e^- data

CED Heiner Wollny (CEA-Saclay Irfu/SPhN)

COMPASS

Collins Asymmetries for π^{\pm} : NH₃ (2007)

COMPASS 2007 proton data

COMPAS

Measuring transversity with polarized Dihadron-Interference-FF H_1^{\triangleleft} :

fragmentation of transversely polarized quark into two unpolarized hadrons and rest X

 \rightsquigarrow azimuthal asymmetry:

$$N_{h^+h^-} \propto 1 \pm A \cdot \sin \phi_{RS} \cdot \sin \theta$$

$$\phi_{RS} = \phi_R + \phi_S - \pi$$

Measuring transversity with polarized Dihadron-Interference-FF H_1^{\triangleleft} :

fragmentation of transversely polarized quark into two unpolarized hadrons and rest X

 \rightsquigarrow azimuthal asymmetry:

$$N_{h^+h^-} \propto 1 \pm A \cdot \sin \phi_{RS} \cdot \sin \theta$$

$$\phi_{RS} = \phi_R + \phi_S - \pi$$

Measuring transversity with polarized Dihadron-Interference-FF H_1^{\triangleleft} :

fragmentation of transversely polarized quark into two unpolarized hadrons and rest X

 \rightsquigarrow azimuthal asymmetry:

 $N_{h^+h^-} \propto 1 \pm A \cdot \sin \phi_{RS} \cdot \frac{\sin \theta}{\sin \theta}$

$$\phi_{RS} = \phi_R + \phi_S - \pi$$

For this analysis: $\sin \theta$ can be neglected

Measuring transversity with polarized Dihadron-Interference-FF H_1^{\triangleleft} :

fragmentation of transversely polarized quark into two unpolarized hadrons and rest X

 \rightsquigarrow azimuthal asymmetry:

$$N_{h^+h^-} \propto 1 \pm A \cdot \sin \phi_{RS}$$

$$\phi_{RS} = \phi_R + \phi_S - \pi$$

$$A_{RS} = \frac{A}{f P_T D_{nn}} \propto \sum_q e_q^2 \cdot \Delta_T q \cdot H_1^{\triangleleft}$$

$$f = \text{target dilution}$$

$$P_T = \text{target polarization}$$

$$D_{nn} = \frac{1-y}{1-y+\frac{y^2}{2}} = \text{transverse spin transfer}$$

Dihadron Asymmetries: ⁶LiD (2003-2004)

all asymmetries are small, compatible with zero

COMPASS

entero

COMPASS

Dihadron Asymmetries: NH₃ (2007)

Dihadron Asymmetries: NH₃ (2007)

COMPASS

Dihadron Asymmetry: NH₃ (2007)

COMPASS

Measuring transversity with polarized \wedge -FF $\Delta_T D_a^{\wedge}$:

transversely polarized quark transfers its spin to A-Baryon

Λ-Polarization: $P_{\Lambda} \propto f P_T D_{nn} \sum_q e_q^2 \cdot \Delta_T q \cdot \Delta_T D_q^{\Lambda}$ measured via parity violating decay OMPA

Measuring transversity with polarized \wedge -FF $\Delta_T D_a^{\wedge}$:

transversely polarized quark transfers its spin to A-Baryon

œ Heiner Wollny (CEA-Saclay Irfu/SPhN)

OMPAS

Transverse A-Polarization: NH₃ (2007)

 P_T^{Λ} , $P_T^{\overline{\Lambda}}$ small, compatible with zero \rightsquigarrow small analyzing power of $\Delta_T D_q^{\Lambda}$ P_T^{Λ} , $P_T^{\overline{\Lambda}}$ for deuteron also compatible with zero

GPD 2010, Trento, 10-15 Oct

TMDs

Three parton distribution functions when integrating over k_{\perp}

Eight parton distribution functions when taking into account k_{\perp}

General Expression of polarized SIDIS Cross-Section

$$\frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} \right\}$$

$$= \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} \right\}$$

$$= \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} \right\}$$

$$= \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h F_{UU}^{\sin \phi_h} \right\}$$

$$= \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{UU}^{\sin \phi_h} \right\}$$

$$= \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h F_{UL}^{\sin \phi_h} \right\}$$

$$= \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2\varepsilon(1-\varepsilon)} \cos \phi_h F_{UL}^{\sin \phi_h} \right) + \varepsilon \sin(2\phi_h + \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \right\}$$

$$= \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \cos(\phi_h - \phi_S) F_{UT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{UT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{UT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) F_{UT}^{\cos(2\phi_h - \phi_S)} \right\}$$

$$= \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(2 + \frac{\gamma^2}{2} \cos(\phi_h - \phi_S) F_{UT}^{\cos(2\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{UT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{UT}^{\cos(\phi_h - \phi_S)} \right\}$$

$$= \frac{\alpha^2}{xyQ^2} \frac{\alpha^2}{2(1-\varepsilon)} \left(2 + \frac{\gamma^2}{2} \cos(\phi_h - \phi_S) F_{UT}^{\cos(2\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{UT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{UT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{UT}^{\cos(\phi_h - \phi_S)} \right\}$$

$$= \frac{\alpha^2}{xyQ^2} \frac{\alpha^2}{2(1-\varepsilon)} \left(2 + \frac{\gamma^2}{2} \cos(\phi_h - \phi_S) F_{UT}^{\cos(2\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{UT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{U}$$

19

$$\begin{aligned} \frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ \begin{array}{c} \dots \\ & \\ \end{array} \right. \\ &+ \left| \mathbf{S}_{\perp} \right| \left[\sin(\phi_h - \phi_S) \left(\overline{F_{UT,T}^{\sin(\phi_h - \phi_S)}} + \varepsilon \, F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right. \\ &+ \varepsilon \, \sin(\phi_h + \phi_S) \left[\overline{F_{UT}^{\sin(\phi_h + \phi_S)}} + \varepsilon \, \sin(3\phi_h - \phi_S) \left[\overline{F_{UT}^{\sin(3\phi_h - \phi_S)}} \right] \right. \\ &+ \left. \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_S \overline{F_{UT}^{\sin\phi_S}} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin(2\phi_h - \phi_S) \left[\overline{F_{UT}^{\sin(2\phi_h - \phi_S)}} \right] \right. \\ &+ \left| \mathbf{S}_{\perp} \right| \lambda_e \left[\sqrt{1-\varepsilon^2} \, \cos(\phi_h - \phi_S) \left[\overline{F_{LT}^{\cos(\phi_h - \phi_S)}} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_S \overline{F_{LT}^{\cos\phi_S}} \right] \\ &+ \left. \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos(2\phi_h - \phi_S) \left[\overline{F_{LT}^{\cos(2\phi_h - \phi_S)}} \right] \right\}, \\ & \left. \begin{array}{c} \mathbf{A}. \mathbf{Bacchetta \ et \ al} \\ \mathbf{JHEP \ 0702:093,2007} \\ \mathbf{E}. print number: hep-ph/0611265 \end{array} \right] \end{aligned}$$

$$\begin{aligned} \frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ \cdots \right. \\ &+ |S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right] \left\{ \cos(\phi_h - \phi_S) \left(F_{UT}^{\sin(\phi_h - \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \right) \right\} \\ &+ \varepsilon \sin(\phi_h + \phi_S) \left[F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \right] \\ &+ \sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_S \left[F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \right] \\ &+ |S_{\perp}| \lambda_e \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{LT}^{\cos\phi_S} \right] \\ &+ \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \\ &+ \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \\ \end{bmatrix}$$

$$\begin{aligned} \frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ \cdots \right\} \\ \text{Iwist-2} \\ \text{Iwist-3} \\ + |S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right] \\ + \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} \\ + \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \\ + \sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_S F_{UT}^{\sin(\phi_S)} \\ + \sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_S F_{UT}^{\sin(\phi_S)} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \\ + |S_{\perp}| \lambda_e \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{LT}^{\cos \phi_S} \\ + \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \\ \right\}, \\ \left\{ \begin{array}{c} A. Bacchetta \text{ et al} \\ JHEP \text{ 0702:093,2007} \\ E-print number: hep-ph/0611265 \end{array} \right\} \end{aligned}$$

COMPASS

Sivers Asymmetry

correlation between intrinsic transverse momentum of the quarks and the transverse polarization of the nucleon

Sivers Asymmetry

correlation between intrinsic transverse momentum of the quarks and the transverse polarization of the nucleon

 \rightsquigarrow azimuthal asymmetry:

$$N_h \propto 1 \pm A \cdot \sin(\phi_h - \phi_S)$$

 ϕ_h : azimuthal angle of hadron ϕ_S : azimuthal angle of spin of initial quark
Sivers Asymmetry

correlation between intrinsic transverse momentum of the quarks and the transverse polarization of the nucleon

 \rightsquigarrow azimuthal asymmetry:

$$N_h \propto 1 \pm A \cdot \sin(\phi_h - \phi_S)$$

 ϕ_h : azimuthal angle of hadron ϕ_s : azimuthal angle of spin of initial quark

$$A_{Siv} = rac{A}{f P_T} \propto \sum_q e_q^2 \cdot \Delta_0^T q \otimes D_q^h$$

Sivers Asymmetries: ⁶LiD (2003-2004)

all asymmetries are small, compatible with zero

systematical error: $\sigma_{sys} \leq 0.3 \sigma_{stat}$

Sivers Asymmetries: NH₃ (2007)

for h^+ additional absolute systematical uncertainty of ± 0.01

COMPASS Proton

- positive asymmetry for h^+
 - asymmetry for h^- small, compatible with zero

Sivers Asymmetries: NH₃ (2007)

for h^+ additional absolute systematical uncertainty of ± 0.01

- positive asymmetry for h^+
 - asymmetry for h⁻ small, compatible with zero
 - Small asymmetries for deuteron \rightsquigarrow opposite sign of $\Delta_0^T u$ and $\Delta_0^T d$

Sivers Asymmetries for π^{\pm} and K^{\pm}: NH₃ (2007)

😄 Heiner Wollny (CEA-Saclay Irfu/SPhN)

GPD 2010, Trento, 10-15 Oct

COMPASS

Sivers Asymmetries: NH₃ (2007)

😄 Heiner Wollny (CEA-Saclay Irfu/SPhN)

OMPA

Pretzelosity

 $F_{UT}^{\sin(3\phi_h-\phi_S)}\propto h_{1T}^{\perp,q}\otimes\Delta_T^0 D_q^h,$

Pretzelosity PDF $h_{1T}^{\perp,q}$:

correlation of parton transv. momentum and transv. polarization in a transversely polarized nucleon

Pretzelosity: NH₃ (2007)

 $F_{UT}^{\sin(3\phi_h-\phi_S)} \propto h_{1T}^{\perp,q} \otimes \Delta_T^0 D_q^h$, Pretzelosity PDF $h_{1T}^{\perp,q}$:

correlation of parton transv. momentum and transv. polarization in a transversely polarized nucleon

Pretzelosity: NH₃ (2007) & ⁶LiD (2002-2004)

 $F_{IIT}^{\sin(3\phi_h-\phi_S)}\propto h_{1T}^{\perp,q}\otimes\Delta_T^0 D_a^h,$ Pretzelosity PDF $h_{1T}^{\perp,q}$:

correlation of parton transv. momentum and transv.

polarization in a transversely polarized nucleon

Worm-gear (TL)

 $F_{IT}^{\cos(\phi_h-\phi_S)}\propto g_{1T}^q\otimes D_q^h,$

worm-gear PDF g_{1T}^q :

correlation of parton transv. momentum and long. polarization in a transversely polarized nucleon

Worm-gear (TL): NH₃ (2007)

 $F_{\iota\tau}^{\cos(\phi_h-\phi_S)}\propto g_{1T}^q\otimes D_q^h,$

COMPASS

worm-gear PDF g_{1T}^q :

correlation of parton transv. momentum and long. polarization in a transversely polarized nucleon

 $A_{LT}^{\cos(\phi_h-\phi_s)}$ COMPASS 2007 proton data -positive all hadrons 0.4 negative 0.2 COMPASS -0.2 Proton -0.4 10-2 10⁻¹ 0.2 0.4 0.6 0.8 0.5 1 1.5 P_{hT} (GeV/c) х Z.

Worm-gear (TL): NH₃ (2007) & ⁶LiD (2002-2004)

 $F_{\iota\tau}^{\cos(\phi_h-\phi_S)}\propto g_{\iota\tau}^q\otimes D_a^h,$

worm-gear PDF g_{1T}^q :

COMPASS

correlation of parton transv. momentum and long. polarization in a transversely polarized nucleon

Twist-3 Structure Functions: NH₃ (2007)

 F^{cos φ}_{UU} and F^{cos 2φ}_{UU}: Cahn Effect + Boer-Mulders → PQCD)

 F^{sin φ_h}: beam asymmetry (beam polarization: P_{µ⁺} ≈ -80 %)

$$\frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} \right\}$$

$$\frac{A \cdot Bacchetta \text{ et al}}{J \text{HEP 0702:093,2007}}$$

$$\text{E-print number: hep-ph/0611265}$$
Cahn Effect
kinematical effect due to transv. momentum of partons in the nucleon

F^{cos φ}_{UU} and *F*^{cos 2φ}_{UU}: Cahn Effect + Boer-Mulders → PQCD

 F^{sin φ_h}: beam asymmetry (beam polarization: *P*_{µ⁺} ≈ -80 %)

OMPA

$$\frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} \right\}$$

$$\frac{A.Bacchetta \text{ et al}}{\text{JHEP 0702:093,2007}}$$

$$E-print number: hep-ph/0611265$$
Boer-Mulders h_1^{\perp} : \bigcirc \bigcirc correlation of parton transv. momentum and transv. polarization in an unpolarized nucleon

► $F_{UU}^{\cos \phi}$ and $F_{UU}^{\cos 2\phi}$: Cahn Effect + Boer-Mulders (+pQCD)

• $F_{LU}^{\sin \phi_h}$: beam asymmetry (beam polarization: $P_{\mu^+} \approx -80$ %)

$$\frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} = \frac{\alpha^2}{xy Q^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} \right\}$$

$$+ \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h}$$

$$I = 0.12332,2007$$

$$E =$$

- $F_{UU}^{\cos\phi}$ and $F_{UU}^{\cos 2\phi}$: Cahn Effect + Boer-Mulders $(\pm pQCD)$
- $F_{LU}^{\sin \phi_h}$: beam asymmetry (beam polarization: $P_{\mu^+} \approx -80$ %)
- Target polarization canceled by event weighting
- Detector acceptance corrected by MC simulation

Unpolarized Asymmetries: ⁶LiD (2004 part)

COMPASS

COMPASS

Unpolarized Asymmetries: ⁶LiD (2004 part)

COMPAS:

 $A_{\sin\phi}^{LU}$: twist-3 effect due to beam polarization

- h^+ positive asymmetry
- h⁻ small asymmetry, compatible with zero

Many new results from COMPASS:

- ► Collins asymmetries for π[±] and K[±] for deuteron and proton target → New proton results ready to be used in a global analysis
- Dihadron asymmetries for deuteron and proton target
 Ultimate cross-check for Transversity extraction
- ► Sivers asymmetries for π[±] and K[±] for deuteron and proton target → New proton results ready to be used in a global analysis
- Large azimuthal asymmetries of charged hadrons produced scattering off unpolarized deuterons

Many new results from COMPASS:

- ► Collins asymmetries for π[±] and K[±] for deuteron and proton target → New proton results ready to be used in a global analysis
- Dihadron asymmetries for deuteron and proton target
 Ultimate cross-check for Transversity extraction
- ► Sivers asymmetries for π[±] and K[±] for deuteron and proton target → New proton results ready to be used in a global analysis
- Large azimuthal asymmetries of charged hadrons produced scattering off unpolarized deuterons

COMPASS is a major player in nucleon spin physics

One full year with transverse data taking has nearly finished

COMPASS-II proposal approved by SPSC

...proposal for two years GPD and two years DY...

 $\pi P^{\uparrow}
ightarrow \mu \bar{\mu} X$

Predictions and expected statistical errors (2 GeV/ c^2 < $M_{\mu\mu}$ < 2.5 GeV/ c^2)

Thank You

email: heiner.wollny@cern.ch

Back Up

COMPASS Experiment

Dihadron Interference

Measuring transversity with polarized Dihadron-Interference-FF H_1^{\triangleleft} :

 \rightsquigarrow azimuthal asymmetry:

$$\begin{split} N_{h^+h^-} &\propto 1 \pm A \cdot \sin \phi_{RS} \cdot \sin \theta \\ \phi_{RS} &= \phi_R + \phi_S - \pi \\ A_{RS} &= \frac{A}{f P_T D_{nn}} \propto \sum_q e_q^2 \cdot \Delta_T q \cdot H_1^{\triangleleft} \\ H_1^{\triangleleft} &= H_1^{\triangleleft, sp} + \cos \theta H_1^{\triangleleft, sp} \\ &\sim \text{only sensitive to } H_1^{\triangleleft, sp} \end{split}$$

Definition of R_T and ϕ_R

$$\mathbf{R}_{\mathbf{T}} = \frac{z_2 \mathbf{P}_{1\tau} - z_1 \mathbf{P}_{2\tau}}{z_1 + z_2}$$
$$\cos \phi_R = \frac{\vec{q} \times \vec{\ell}}{|\vec{q} \times \vec{\ell}|} \cdot \frac{\vec{q} \times \vec{R}_T}{|\vec{q} \times \vec{R}_T|},$$
$$\sin \phi_R = \frac{(\vec{\ell} \times \vec{R}_T) \cdot \hat{q}}{|\hat{q} \times \vec{\ell}| |\hat{q} \times \vec{R}_T|}$$

Transverse ∧-Polarization: ⁶LiD (2002-2004)

COMPASS

Twist-3 Structure Functions: ⁶LiD (2002-2004)

GPD 2010, Trento, 10-15 Oct

SIDIS Cross-Section: Longitudinally Polarized Target

$$\begin{aligned} \frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ \cdots \right. \\ &+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right] \\ &+ S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h F_{LL}^{\cos \phi_h} \right] \end{aligned}$$

A.Bacchetta et al

JHEP 0702:093,2007

E-print number: hep-ph/0611265

• $F_{LL} \propto \Delta q \otimes D_q^h$

• $F_{UL}^{\sin \phi_h}$, $F_{UL}^{\sin 2\phi_h}$, $F_{LL}^{\cos \phi_h}$: twist-3, complex parton picture

OMPAS

Longitudinally Polarized Target: ⁶LiD (2002-2004)

😄 Heiner Wollny (CEA-Saclay Irfu/SPhN)

COMPASS
Table of Contents

COMPASS Experiment Detector

Transversity

Collins Asymmetry Dihadron Interference Transverse Lambda-Polarization

TMDs in Single Hadron Cross-Section

SIDIS Cross-Section: Transversely Polarized Target Sivers Asymmetries Pretzelosity and Worm-Gear Twist-3 Structure Functions SIDIS unpolarized target Unpolarized Asymmetries

Summary

Outlook

Back Up

COMPASS Experiment Dihadron Interference Transverse Lambda Polarization Sivers Twist-3 SIDIS Longitudinally Polarized Target

Table of Contents