Meson-pair Production in Two-Photon Collisions at Belle

Hard Photon and Meson Production *GPD2010*

Oct.10-15, 2010, ECT*, Trento

Two-Photon Collisions and QCD/Hadron Physics

Hadron production from collisions of virtual or quasi-real photons

- Perturbative/Non-perturbative QCD
- Hadron/Photon form factors
- Resonances

Wide energy region and various physics aspects can be studied simultaneously.

Incident photon -- dominated by quasi-real photon $\mathbf{Q}^2 \equiv |\mathbf{q}^2| \leq 0.001 \text{GeV}^2$

No-Tag:

with p_t -balance requirement, $|\Sigma p_t^*(hadrons)| < 0.05 - 0.3 \text{ GeV/c}$ $Q^2 << W^2 \quad (W \equiv W_{\gamma\gamma}), \quad Q^2 << E_{QCD}^2$

S.Uehara, KEK, GPD2010, Trento, Oct., 2010 2

Meson-pair production and QCD

M.Diehl, P.Kroll, and C. Vogt, PLB 532, 99 (2002) M.Diehl, P.Kroll, PLB 683, 165 (2010)

S.Uehara, KEK, GPD2010, Trento, Oct., 2010

KEKB Accelerator and Belle Detector

Integrated luminosities and beam energies

0000

" $\gamma\gamma \rightarrow$ meson pair" measurements from Belle

				Physics covered		
Process	Reference	Int.Lum. (fb ⁻¹)	γγ c.m. Energy (GeV)	Light Mesons	QCD	Char- monia
$\pi^+\pi^-$	PLB 615, 39 (2005) PRD 75, 051101(R) (2007) J. Phys. Soc. Jpn. 76, 074102 (2007)	87.7 85.9 85.9	2.4 - 4.1 0.8 - 1.5 0.8 - 1.5	$\sqrt{1}$	\checkmark	\checkmark
K^+K^-	EPJC 32, 323 (2003) PLB 615, 39 (2005)	67 87.7	1.4 - 2.4 2.4 - 4.1	\checkmark	\checkmark	\checkmark
$\pi^0\pi^0$	PRD 78, 052004 (2008) PRD 79, 052009 (2009)	95 223	0.6 - 4.0 0.6 - 4.0	$\sqrt[n]{}$	\checkmark	\checkmark
$K^0_{\ S}K^0_{\ S}$	PLB 651, 15 (2007)	397.1	2.4 - 4.0		\checkmark	\checkmark
$\eta\pi^0$	PRD 80, 032001 (2009)	223	0.84 - 4.0	\checkmark	\checkmark	
໗໗	ArXiv:1007.3779[hep-ex](2010)	393	1.1 – 4.0	\checkmark	\checkmark	\checkmark

We, in principle, measure differential cross section $d\sigma/d|\cos\theta^*|$ for these reaction processes.

S.Uehara, KEK, GPD2010, Trento, Oct., 2010

Experimental Analysis; $\gamma\gamma \rightarrow \eta\eta$

 $\eta(548 \text{MeV}) \rightarrow \gamma \gamma$ (Only 4 photons are visible in this process)

Triggered by ECL triggers $\sqrt{s} = 9.4 - 11.0 \text{ GeV}$ $\int \text{Ldt}=393 \text{ fb}^{-1}$

W: $\gamma\gamma$ energy in its c.m.s., θ^* : scattering angle of the meson in the $\gamma\gamma$ c.m.s. 1.096GeV (mass threshold) < W < 3.8 GeV $|\cos \theta^*| < 0.9$ or <1.0

Signal candidates and backgrounds

Differential and integrated cross sections

Angular dependences in $\gamma\gamma \rightarrow MM'$

General tendency in meson pair production processes

Predictions for High Energy

pQCD: ~1/sin⁴θ* for a charged-meson pair (no definite prediction for a neutral-meson pair) Handbag: ~1/sin⁴θ* dep., for BOTH charged and neutral
S.Uehara, KEK, GPD2010, Trento, Oct., 2010 $\gamma\gamma \rightarrow \pi^+\pi^-$ and $\gamma\gamma \rightarrow K^+K^-$

Cross sections integrated over angle

0000

A Those for $\eta \pi^0$ and $\eta \eta$ are shown in other slides

W-dependences at high energies

Assume or expect $\sigma(W) \sim W^{-n}$

W-dependence: Summary

Process	n	W range (GeV)	$ \cos \theta^* $ range
$\eta\eta$	$7.8\pm0.6\pm0.4$	2.4 - 3.3	< 0.8
$\eta \pi^0$	$10.5\pm1.2\pm0.5$	3.1 - 4.1	< 0.8
$\pi^0\pi^0$	$8.0\pm0.5\pm0.4$	3.1 - 4.1 ($3.3 - 3.6$ excluded)	< 0.8
$K_{S}^{0}K_{S}^{0}$	$10.5\pm0.6\pm0.5$	2.4 - 4.0 ($3.3 - 3.6$ excluded)	< 0.6
$\pi^+\pi^-$	$7.9\pm0.4\pm1.5$	3.0 - 4.1	< 0.6
K^+K^-	$7.3\pm0.3\pm1.5$	3.0 - 4.1	< 0.6

pQCD, in the enough high energies **Baryon-pair result** Dimensional counting rule predicts -n = 6 $\gamma\gamma \rightarrow pp$ Handbag model introduces annihilation form factor, $n=15.1 \pm \frac{0.8}{11}$ @ 2.5 – 2.9 GeV $n=12.4 \pm 2.4 (a) 3.2 - 4.0 \text{ GeV}$ $n = 6 - R(s) \sim 1/s$ Dimensional counting rule: Slightly steeper than n = 6PLB 621, 41 (2005) Power corrections ? (mainly for \overline{ss} component) (by DK) Effects from resonance tail around 2.3GeV?

S.Uehara, KEK, GPD2010, Trento, Oct., 2010

16

n = 10

Cross-section ratios: K vs π or Charged vs Neutral

Summary on the QCD part

Angular dependence of the differential cross sections

Steeply increasing to forward angle in all the processes, Consistent with $\sim 1/\sin^4\theta^*$ except the $\eta\eta$ process. (W region depends on process)

W-dependence

Slope parameter depends on process: n = 7 - 11

No clear explanation for the differences

Cross-section Ratio

Not completely reproduced by either pQCD or handbag predictions Partially explained by these models

More detailed comparisons/considerations are necessary.

Take kinematical regions into account Non-valence quark components

Resonance production

Resonance production and quantum numbers

Resonance formation or **partial-waves**

Strict constraints for quantum numbers

Pseudoscalar-pair production: J^P=(even)⁺ only
Γγγ, two-photon partial decay width of the resonance, from the cross-section measurement, important information for the **meson's internal structure**Decay properties
Searches/Discoveries of new resonances, including "XYZ"

S.Uehara, KEK, GPD2010, Trento, Oct., 2010 21

Two-photon decay width of $f_0(980)$ and $a_0(980)$

Summary of resonances seen in $\gamma\gamma \rightarrow MM'$

 $\begin{aligned} f_0(980) &\to \pi^+\pi^-, \pi^0\pi^0 & a_0(980) \to \eta\pi^0 \\ \text{The } 1^3\text{P}_2 \text{ tensor-meson triplet } f_2(1270), f'_2(1525), a_2(1320) \\ f_0(Y) &\to \pi^+\pi^-, \pi^0\pi^0, \eta\eta & \text{unidentified in } 1.2 - 1.5 \text{ GeV} \\ a_0(Y) &\to \eta\pi^0 & \text{unidentified in } 1.2 - 1.5 \text{ GeV} \\ f_2(X) &\to \pi^0\pi^0, \eta\eta & \text{unidentified in } 1.7 - 2.0 \text{ GeV} \\ \text{Signatures of } a_2(1700)?, f_4, a_4, \text{ and/or others? seen} \end{aligned}$

in 1.7 - 2.3 GeV in $\pi^0 \pi^0$, $\eta \pi^0$, $\eta \eta$ and K⁺K⁻

 $\chi_{c0}, \chi_{c2} \to \pi^+ \pi^-, K^+ K^-, \pi^0 \pi^0, K^0_{S} K^0_{S}, \eta\eta$

$\gamma\gamma \rightarrow Z(3930) \rightarrow D\overline{D}$ discovered /confirmed

Many meson-pair production processes from two-photon collisions are studied at Belle.

- Cross sections in the 2 4 GeV region are compared with predictions based on QCD, systematically.
- Any comprehensive reproducibility by theoretical models is not obtained, yet.

Further comparison with theories is now possible.

• Belle discovers/confirms several interesting meson states produced in two-photon fusion:

 $\Gamma\gamma\gamma$ for $f_0(980)$ and $a_0(980)$ are measured

New charmonium-like states are found

 $Z(3930) = \chi_{c2}(2P)$, X(3915)=Y(3940)?, X(4350)

Two-Photon Collisions and QCD/Hadron Physics

Hadron production from collision of virtual or quasi-real photons Perturbative/Non-perturbative QCD Hadron/Photon form factors

Wide energy region --- Various physics aspects can be studied simultaneously.

BaBar at PEP-II

 $e^+e^- \rightarrow Y(4S)$ and nearby continuum: E_{cms} ~ 10.6 GeV 530 fb⁻¹ in total **ElectroMagnetic** Calorimeter 1.5 T solenoid e⁺(3.1 GeV) Čerenkov Detector (DIRC) e⁻ (9 GeV) Drift CHamber Silicon Vertex Tracker Instrumented Flux Return

0000

No-tag yy measurements at B-factories

Production from two quasi-real photon (Dominated by $\mathbf{Q}^2 \equiv |\mathbf{q}^2| < 0.001 \, \text{GeV}^2$) p_t - balance requirement, $|\Sigma \mathbf{p}^*_t \text{ (hadrons)}| < 0.05 \sim 0.3 \, \text{GeV/c}$

Exclusive processes $W \equiv W_{\gamma\gamma} \sim 0.6 - 4.5 \text{ GeV}$ $\gamma\gamma$ c.m. energy = invariant mass of the hadron system

Translate the cross section $\sigma_{ee} \rightarrow \sigma_{\gamma\gamma}$ with Equivalent Photon Approximation

 $\sigma_{\gamma\gamma} = (d\sigma_{ee}/dW)/L_{\gamma\gamma}(W)$

Two-photon luminosity function calculated by QED

S.Uehara, KEK, GPD2010, Trento, Oct., 2010 3

" $\gamma\gamma \rightarrow$ meson pair" measurements from Belle

- π⁺π⁻: PLB 615, 39 (2005) 87.7fb⁻¹, 2.4 4.1GeV, QCD, Charmonia
 PRD 75, 051101(R) (2007) 85.9fb⁻¹, 0.8 1.5 GeV, light-quark resonance
 J. Phys. Soc. Jpn. 76, 074102 (2007) 85.9fb⁻¹, 0.8 1.5 GeV,
- K+K-: EPJC 32, 323 (2003) 67fb⁻¹, 1.4 2.4 GeV, light-quark resonances PLB 615, 39 (2005) 87.7fb⁻¹, 2.4 - 4.1GeV, QCD, Charmonia
- $\pi^{0}\pi^{0}: \text{PRD 78, 052004 (2008) 95fb}^{-1}, 0.6 4.0 \text{ GeV}, \text{ light-quark resonances} \\ \text{PRD 79, 052009 (2009) 223 fb}^{-1}, 0.6 4.0 \text{ GeV}, \text{ light-quark resonances}, \\ \text{QCD, Charmonia} \\ \text{K}^{0}{}_{S}\text{K}^{0}{}_{S}: \text{PLB 651, 15 (2007) 397.6fb}^{-1}, 2.4 4.0 \text{GeV}, \text{QCD, Charmonia} \\ \end{array}$
- $\eta \pi^0$: PRD 80, 032001 (2009) 223 fb⁻¹, 0.84 4.0 GeV, light-quark resonances, QCD
- **ηη:** ArXiv:1007.3779[hep-ex](2010) 393 fb⁻¹, 1.1- 4.0 GeV, light-quark resonances, QCD, Charmonia

We, in principle, measure differential cross section $d\sigma/d|\cos\theta^*|$ for these reaction processes.

S.Uehara, KEK, GPD2010, Trento, Oct., 2010 3

Experimental Analysis; $\gamma\gamma \rightarrow \eta\eta$

 $\eta(548 \text{MeV}) \rightarrow \gamma \gamma$ (Only 4 photons are visible in this process)

Triggered by ECL triggers ($\Sigma E > 1.1 \text{ GeV or } \ge 4 \text{ clusters}$) $\sqrt{s} = 9.4 - 11.0 \text{ GeV}$ $\int \text{Ldt} = 393 \text{ fb}^{-1}$

Selection of \eta\eta signal events -Just 4 γ 's with E γ >100 MeV, No π^0 candidate

0.08

S.Uehara, KEK, GPD2010, Trento, Oct., 2010

Baryon pair: $\gamma\gamma$ PLB 621, 41 (2005) Baryon production mechanism Couple with a single quark?.. or a diquark? Angular and W dependences, Cross-section size 100 $2.5 < W_{\gamma\gamma} < 3.0 \text{ GeV}$ $3 < W_{\gamma\gamma} < 4 \text{ GeV}$ Fit (b) 90 $[d\sigma/d|cos\theta^{*}|]/[d\sigma(|cos\theta^{*}|<0.3)/d|cos\theta^{*}|]$ Belle OPAL (2.55-2.95 GeV) da/dlcos0 1]/[da(lcos0 1<0.3)/dlcos0 1] η • Belle △ L3 (3.0-4.5 GeV) 80 J/w CLEO △ L3 diquark (complete) diquark (complete) 70 background ---- diquark (only HCAs) Events / 20 MeV diquark (only HCAs) ---- three-quark three-quark ····· handbag · · handbag 50 4030 20 10 0.3 0.10.20.4 0.50.62.85 2.9 2.95 3 3.05 3.1 3.15 3.2 3.25 0.10.20.30.40.50.6lcost lcos0^{*}l W_{vv} (GeV) η_c :observation in this proces

Model predictions are normalized for $|\cos\theta^*| < 0.3$. Agreement is not very good in W>3 GeV Subtract charm

Subtract charmonium contributions

S.Uehara, KEK, GPD2010, Trento, Oct., 2010 31

Cross sections; W dependence

 $W_{\gamma\gamma}^{-n} \text{ dependence} \\ n=15.1 \pm_{1.1}^{0.8} \text{ (a) } 2.5 - 2.9 \text{ GeV} \\ n=12.4 \pm_{2.3}^{2.4} \text{ (a) } 3.2 - 4.0 \text{ GeV} \\ \text{Might agree with a} \\ \text{QCD prediction } n=10 \\ \text{at some energy above } 3.1 \text{ GeV} \end{cases}$

Slope – steeper than meson pairs

35