Measurements of the photon-meson transition form factors at BABAR

Vladimir Druzhinin BINP, Novosibirsk, Russia

What is the $\gamma^*\gamma \rightarrow P$ form factor?

The amplitude of the $\gamma * \gamma \rightarrow P$ transition

$$\boldsymbol{A} = \boldsymbol{e}^{2} \boldsymbol{\varepsilon}_{\mu\nu\alpha\beta} \boldsymbol{e}_{1}^{\mu} \boldsymbol{e}_{2}^{\nu} \boldsymbol{q}_{1}^{\alpha} \boldsymbol{q}_{2}^{\beta} \boldsymbol{F}(\boldsymbol{q}_{1}^{2}, \boldsymbol{q}_{2}^{2}),$$

where P is a pseudoscalar meson, contains one unknown function, depending on the photon virtualities.

The form factor is usually measured as a function of $Q^2 = |q_1|^2$. The second photon is real or almost real $(q_2^2 \approx 0)$.

The form factor is known only for the two extreme cases. For π^0

$$\lim_{Q^2 \to 0} F(Q^2) = \sqrt{2} / (4\pi^2 f_{\pi}),$$

 $\lim_{Q^2\to\infty} Q^2 F(Q^2) = \sqrt{2}f_{\pi}.$

from the axial anomaly in the chiral limit, prediction for $\Gamma(\pi^0 \rightarrow \gamma \gamma)$

from perturbative QCD

 $f_{\pi} \approx 0.131$ GeV is the pion decay constant

Why is the form factor interesting?

 $F(Q^2) = \int T(x,Q^2) \varphi(x,Q^2) dx$

Hard scattering
amplitude forNonperturbative
meson distribution $\gamma^*\gamma \rightarrow q\bar{q}$ transition
which is calculable
in pQCDamplitude (DA)
describing
transition P $\rightarrow q\bar{q}$

x is the fraction of the meson momentum carried by one of the quarks

✓ The meson DA $\varphi(x,Q^2)$ plays an important role in theoretical descriptions of many QCD processes ($\gamma^* \rightarrow \pi^+\pi^-, \gamma\gamma \rightarrow \pi\pi, \chi_{c,0,1} \rightarrow \pi^+\pi^-, B \rightarrow \pi I\nu, B \rightarrow \pi\pi...$)

✓ Its shape (x dependence) is unknown, but its evolution with Q^2 is predicted by pQCD

✓ The models for DA shape can be tested using data on the form factor Q² dependence

Calculation of the $\gamma * \gamma \rightarrow \pi^0$ form factor

The leading contribution:

$$Q^{2}F(Q^{2}) = \frac{\sqrt{2}f_{\pi}}{3}\int_{0}^{1}\frac{dx}{x}\varphi_{\pi}(x,Q^{2}) + O(\alpha_{s}) + O(\Lambda_{QCD}^{2}/Q^{2})$$

 $\varphi_{ASY} = 6x(1-x)$ G.P.Lepage and S.J.Brodsky, Phys.Lett. B87, 359 (1979)

A.P.Bakulev, S.V.Mikhailov and N.G.Stefanis, Phys.Rev. D 67, 074012 (2003): light-cone sum rule method at NLO.

 NLO and power corrections are large: 30, 20,10 % at 4,10,50 GeV².
 Power corrections are 7% at 10 GeV² (twist-4 + due to hadronic component of a quasi-real photon).

What is the model uncertainty of the power corrections?

Calculation of the $\gamma^*\gamma \rightarrow \pi^0$ form factor

The QCD evolution of the DA is very slow. The Q² needed to decrease the a₂ coefficient found at 1 GeV² by a factor of 3 is about 70000 GeV²

How can the form factor be measured?

> Two-photon production of the meson

- $-S+M^2 < q_1^2 < 0, q_2^2 \approx 0, Q^2 \equiv -q_1^2$
- $d\sigma/dQ^2$ falls as $1/Q^6$
- At $\sqrt{s}=10.6$ GeV for $e^+e^- \rightarrow e^+e^- \pi^0$ $d\sigma/dQ^2(10 \text{ GeV}^2) \approx 10 \text{ fb/GeV}^2$
- > Annihilation process $e^+e^- \rightarrow P\gamma$
 - $Q^2 = S > M^2$
 - σ ∝ 1/S²
 - $\sigma(e^+e^- \rightarrow \eta\gamma) \approx 5$ fb at $\sqrt{s}=10.6$ GeV
- > Dalitz decay P $\rightarrow \gamma e^+e^-$
 - $0 < Q^2 < M^2$
 - $M^2 d\Gamma/dQ^2 \approx (2\alpha/\pi)\Gamma(P \rightarrow \gamma\gamma)$ at $Q^2/M^2 \approx 1/4$

Available statistics

- ✓ The cross section studied is < 10 fb (10^{-38} cm²)
- ✓ B-factory at SLAC and BABAR detector
 - peak luminosity is about 10³⁴ cm⁻²sec⁻¹
 - integrated luminosity collected during 8-year data taking period is about 450 fb⁻¹
- ✓ Expected number of events for the $\gamma^*\gamma \rightarrow \pi^0$ form factor measurement is L× σ × ϵ = 450×10×0.15≈700/GeV² at Q²=10 GeV²
- \checkmark dN/dQ² falls with Q² increase as Q^-6
- ✓ Previous CLEO measurement of the $\gamma^*\gamma \rightarrow \pi^0$, η , η' transition form factors (J.Gronberg *et al.*, Phys.Rev. D57, 33 (1998)) was based on 3 fb⁻¹

BABAR detector

Two-photon reaction $e^+ e^- \rightarrow e^+ e^- P$

 Electrons are scattered predominantly at small angles.

- Single-tag mode:
 - •one of electrons is detected • Q^2 =- q_1^2 =2EE[/](1-cos θ),
 - $q_2^2 \approx 0$ • F(Q²,0)

✓ electron is detected and identified

✓ meson P are detected and fully reconstructed

✓ electron + meson system has low p

✓ missing mass in an event is close to zero

Specific features of $e^+ e^- \rightarrow e^+ e^- \pi^0$

- Low final particle multiplicity and only one charged particle (electron).
 - Such events are usually removed at the trigger and filter stages
 - Special trigger line should be designed to select
 - $e^+ e^- \rightarrow e^+ e^- \pi^0$ events
- Large QED background
 - $e^+ e^- \rightarrow e^+ e^- \gamma \gamma$ in which one of the photons is emitted along the beam axis, and one of the electrons is soft
 - Virtual Compton scattering (VCS): $e^+ e^- \rightarrow e^+ e^- \gamma$ with one of the final electrons going along the collision axis
 - The photon from QED process together with a soft photon, for example, from beam background, may give the invariant mass close to the π^0 mass.

Trigger selection for $e^+e^- \rightarrow e^+e^-\pi^0$

• The $e^+e^- \rightarrow e^+e^-\pi^0$ events do not pass the standard BABAR trigger and background filters.

- Fortunately, a special trigger line was designed to select VCS events (electron+photon with zero recoil mass) for detector calibration.
- Two photons from the π^0 decay are close and usually form single cluster (with two bumps) in the detector calorimeter.

The VCS trigger treats this cluster as a photon.

➡The e⁺e⁻ → e⁺e⁻π⁰ events are efficiently selected by the VCS trigger.

Selection criteria

✓ VCS trigger ✓ Identified electron, $E_e > 2 \text{ GeV}$ $\checkmark \pi^0$ formed from two photons, E_{π} > 1.5 GeV \checkmark cuts to remove QED background (|cos θ_{π} | <0.8, $|\cos \theta_{\rm h}| < 0.8$, no extra tracks along π^0 direction, ...) \checkmark Momentum of $e\pi^0$ system is directed along beam axis: $|\cos \theta_{e\pi}| > 0.99$. This cut limits the q² range for untagged electron ($|q^2| < 0.2 \text{ GeV}^2$). Events/0.005 2000 $-0.025 < r = \frac{\sqrt{s} - E_{e\pi}^{CM} - p_{e\pi}^{CM}}{\sqrt{s}} < 0.05$ 1500

This cut improves Q² resolution removing events with ISR photons.

Detection efficiency from MC

Due to asymmetry of e⁺e⁻ collision the Q² region below 7 GeV² is measured only with positron tag
We measure the cross section from Q² > 4 GeV² to avoid possible systematic error due to data-MC difference near the edges of the detector

• The average π^0 energy grows with Q². This leads to decrease of the detection efficiency for Q² > 10 GeV²

Two-photon mass spectrum

B.Aubert et al., Phys. Rev. D80, 052002 (2009)

The two-photon invariant mass spectrum for data events with $Q^2 = 4-40 \text{ GeV}^2$ fitted with a sum of signal (obtained using MC simulation) and background (a second order polynomial) distributions.

 $N_{\pi}\approx 14000\pm 140$

Two-photon mass spectrum

0

0.1

0.15

0.2

 $M_{\gamma\gamma} (GeV/c^2)$

Peaking background

The main source of the peaking background is $e^+e^- \rightarrow e^+e^- \pi^0\pi^0$.

It is seen as π^0 peak in the twophoton invariant mass spectrum for events with two extra photons.

To estimate and subtract background we select a clear sample of $2\pi^0$ events with special criteria.

The $2\pi^0$ background is found to be about 10% at Q² < 10 GeV² and 6-7% at higher Q².

Efficiency corrections

The transition form factor is determined from the ratio of Q² distributions for data and simulation events. The data distribution must be corrected to account for data-MC simulation difference in detector response:

$$N_i^{corr} = N_i / \prod_i (1 + \delta_i)$$

We study the data-MC difference in:

- π^0 reconstruction efficiency
- PID efficiency
- trigger inefficiency
- effect of selection cuts on r and cos $\theta_{\text{e}\pi}$

The corrections are determined using specially selected samples of $e^+e^- \rightarrow \omega\gamma \rightarrow \pi^+\pi^-\pi^0\gamma$ and VCS events.

Total correction for data-MC difference

Total systematic error independent on Q² is 2.5% and includes

- 1% π^0 losses,
- 2% trigger efficiency,
- 1% cos $\theta_{e\pi}$ cut.

 $e^+e^- \rightarrow e^+e^-\pi^0$, cross section

B.Aubert et al., Phys. Rev. D80, 052002 (2009)

Systematic uncertainty independent on Q² is 3%.

$e^+e^- \rightarrow e^+e^-\pi^0$, form factor

B.Aubert et al., Phys. Rev. D80, 052002 (2009)

✓ In Q² range 4-9 GeV² our results are in a reasonable agreement with CLEO data but have significantly better accuracy.

At Q²>10 GeV² the measured form factor exceeds the asymptotic limit $\sqrt{2}f_{\pi}=0.185$ GeV. Most models for the pion distribution amplitude give form factors approaching the limit from below. Our data in the range 4-40 GeV² are well described by the formula

$$Q^2|F(Q^2)| = A\left(\frac{Q^2}{10 \text{ GeV}^2}\right)^{\beta}$$

Systematic uncertainty independent on Q² is 2.3%.

with A=0.182±0.002 GeV and β =0.25±0.02, i.e. F~1/Q^{3/2}.

$e^+e^- \rightarrow e^+e^-\pi^0$, after publication

S.V.Mikhailov, N.G.Stefanis, Nucl. Phys. B821, 291(2009); arXiv:0909.5128; arXiv:0910.3498.

The NNLO pQCD corrections was partly taken into account. They was estimated to be about 5% at Q²~10 GeV².

The BABAR data contradict the QCD factorization for any pion DA with the end points (x=0,1) behavior \sim x(1-x).

$e^+e^- \rightarrow e^+e^-\pi^0$, after publication

A.E.Dorokhov, arXiv:0905.4577, 1003.4693. A.V. Radyuskin, arXiv:0906.0323. M.V.Polyakov, arXiv:0906.0538 ... A flat pion distribution amplitude $\varphi_{\pi}(x) \approx 1$ is used to reproduce Q^2 dependence of BABAR data.

To avoid divergence the infrared regulator m² can be introduced

$$Q^{2}F_{\pi\gamma}(Q^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} dx \, \frac{\phi_{\pi}(x,Q)}{x + m^{2}/Q^{2}}$$

The result has a logarithmic rise with the Q² increase

$$\boldsymbol{Q}^{2}\boldsymbol{F}(\boldsymbol{Q}^{2}) = \frac{\sqrt{2}\boldsymbol{f}_{\pi}}{3}\ln\left(1 + \frac{\boldsymbol{Q}^{2}}{\boldsymbol{m}^{2}}\right)$$

with $m^2 \approx 0.6 \text{ GeV}^2$.

$e^+e^- \rightarrow e^+e^- \pi^0$, after publication

V.L.Chernyak, arXiv:0912.0623

The twist-4 power correction, $\Delta F/F(Q^2) \sim -(0.6 \text{ GeV}^2)/Q^2$, is only part of the total power correction. Taking, for example, $\Delta F/F(Q^2) = -1.5/Q^2 - (1.2/Q^2)^2$ for CZ DA leads to good data description.

$e^+e^- \rightarrow e^+e^- \eta^{(\prime)}$, event selection

This work is not yet published.

Mass spectra for η and η[/] events

V.Druzhinin - GPD 2010

Two-photon background

- In contrast to previous CLEO analysis we observe the background from the two photon process $e^+e^- \rightarrow e^+e^-\eta\pi^0$.
- It is seen as a π^0 peak in the twophoton invariant mass spectrum for events with 2 extra photons.
- For the η^\prime sample the two-photon background does not exceed 1.6%.
- For the η sample the background is estimated to be about 10%.

η and η' form factors

The systematic uncertainties independent of Q² are 2.9% for the η form factor and 3.5% for the η' form factor.

η and η' form factors

- CLEO (Phys. Rev. D79, 111101, 2009) and BABAR (Phys. Rev. D74, 012002, 2006) data on the time-like transition form factors are added.
- They are extracted from the $e^+e^- \rightarrow \eta^{(\prime)}\gamma$ cross section measurements at $Q^2=14.2 \text{ GeV}^2$ (CLEO) and 112 GeV² (BABAR).
- At large Q² the time- and space-like values are expected to be close.
- This is confirmed by the CLEO result.
- The BABAR time-like data allow to extend the Q^2 region up to 112 GeV²

Discussion: η and η' form factors

- •The BABAR data are fit with Q²F(Q²)=b+a ln Q² (GeV²) with $\chi^2/n=6.7/10$ for η and 14.6/10 for η' •The fitted rise (a \approx 0.2 GeV²) is about 3 times weaker than that for π^0 .
- The fit by a constant for Q²>15 GeV² also gives reasonable quality: $\chi^2/n=5.6/5$ for η and 2.6/5 for η' .

η - η [/] mixing in the quark flavor basis

$$|n\rangle = \frac{1}{\sqrt{2}}(|\bar{u}u\rangle + |\bar{d}d\rangle), \ |s\rangle = |\bar{s}s\rangle, \qquad \mathbf{\varphi} \approx \mathbf{41}^{\circ}$$
$$|\eta\rangle = \cos\phi |n\rangle - \sin\phi |s\rangle, \ |\eta'\rangle = \sin\phi |n\rangle + \cos\phi |s\rangle.$$

The form factors for the $|n\rangle$ and $|s\rangle$ states are introduced $F_{\eta} = \cos \phi F_n - \sin \phi F_s, \quad F_{\eta'} = \sin \phi F_n + \cos \phi F_s,$

with asymptotic limits
$$Q^2 F_s(Q^2) = \frac{2}{3}f_s, \quad Q^2 F_n(Q^2) = \frac{5\sqrt{2}}{3}f_n,$$

where decay constants is expected to be $f_n = f_{\pi}$, $f_s = 1.34f_{\pi}$

One can expect that the DA for the $|n\rangle$ state is close to the π^0 DA. Under this assumption the only difference between the $|n\rangle$ and π^0 DAs is a factor of 3/5 coming from the quark charges.

Form factor for |n> and |s> state

pQCD prediction for the asymptotic DA. • Is DA for $|s\rangle$ narrower than the asymptotic DA? • The result for $|s\rangle$ strongly depends on mixing parameters, for example, on a possible two-gluon contents in η' .

0

10

10

 $Q^2 (GeV^2)$

Concluding remarks

- After the CLEO publication on the photon-meson transition form factors in 1998 it was generally accepted that the pion DA is close to asymptotic form in near-end-point regions. Many theoretical works (predictions) using such nearasymptotic DAs were published.
- The BABAR measurement indicates that the pion DA is significantly wider than the asymptotic form. If the experiment is correct, many theoretical predictions should be revised.
- The next measurement of the pion-photon transition form factor confirming or refuting BABAR result will be performed at Super-B factories in 5-10 years.
- Therefore, study of other reactions sensitive to the DA shape and careful theoretical analysis of already measured reactions should be performed.

Concluding remarks

The processes with pseudoscalars, which have already been measured and which theoretical description should be updated:

- ► The $\gamma^*\gamma \rightarrow \eta^{(\prime)}$ transition form factors. There are new BABAR data.
- The pion and kaon electromagnetic form factors. There are recent CLEO time-like measurements at Q²=14 GeV²
- Belle measurements of the $\gamma\gamma \rightarrow \pi\pi$, KK, $\eta\pi$ cross sections for W $\gamma\gamma$ up to 4.1 GeV
- ▶ $\chi_{c,0}, \chi_{c,2} \rightarrow \pi\pi$, KK, ηη, ...(BELLE,CLEO,BES)

▶ ...

Concluding remarks

The processes sensitive to the pseudoscalar DA shape which can be measured using B-factory data

- γγ→ηη,η/η/,ηη/
- **•** single tag studies of $\gamma\gamma$ reactions: $\pi^+\pi^-$, $\eta\pi$, ...
- update of the $e^+e^- \rightarrow \eta^{(\prime)}\gamma$ cross section measurements
- ▶ kaon electromagnetic form factor at 112 GeV²
 ▶ e⁺e⁻→VP

$e^+e^- \rightarrow VP$ cross sections

$$F(\gamma^* \to VP) \sim \int_{\delta}^{1} \frac{\varphi_P(x)}{x^2} dx$$
 with $\delta = \frac{m_0^2}{s}$,

for
$$\varphi_P(x) \sim x(1-x)$$
: $\sigma(e^+e^- \rightarrow VP) \sim \frac{\ln^2(s/s_0)}{s^4}$,

for flat $\varphi_P(x)$: $\sigma(e^+e^- \to VP) \sim \frac{1}{s^2}$

V.L.Chernyak, arXiv:0912.0623

The $\gamma^* \rightarrow$ VP form factors are highly sensitive to the end-point behavior of the pseudoscalar DA.

□ The e⁺e⁻→VP cross sections have been measured by CLEO for V= ρ,ω,ϕ , and P= π,η,η' at s=14 GeV².

The BABAR and Belle have performed measurements for $\phi \eta^{(\prime)}$, $\rho \eta^{(\prime)}$ at 112 GeV². The cross section s dependencies reasonably agree with the QCD predictions for conventional DA's.

- □ The cross sections for all other VP combinations definitely can be measured at BABAR and Belle.
- □ The expected cross section for the $\omega\pi$ final state at 112 GeV² is about 4 fb for a conventional DA and 200 fb for flat DA.

Summary

- ✓ The $\gamma^*\gamma \rightarrow \pi^0$, η , η' transition form factors have been measured for Q² range from 4 to 40 GeV².
- ✓ The unexpected Q² dependence of the $\gamma^*\gamma \rightarrow \pi^0$ form factor is observed.
- ✓ The measured Q² dependencies for the $\gamma\gamma^* \rightarrow \eta$ and $\gamma\gamma^* \rightarrow \eta'$ transition form factors strongly differ from that for $\gamma\gamma^* \rightarrow \pi^0$.
- $\checkmark~$ The $\eta^\prime~$ data are in good agreement with the result of QCD calculation with a conventional DA.
- ✓ For η the agreement is worse. A mild logarithmic rise of $Q^2F(Q^2)$ is not excluded.
- There are many processes sensitive to the DA shape measured and not measured yet. The theoretical input is required to stimulate experimentalists.

$e^+e^- \rightarrow e^+e^-\eta_c$, form factor

J.P.Lees et al., Phys. Rev. D 81 052010 (2010)

Systematic uncertainty independent of Q^2 is 4.3%.

The form factor is normalized to F(0) obtained from no-tag data

The form factor data are fit with the monopole function

 $F(Q^2) = F(0)/(1+Q^2/\Lambda)$

The result $\Lambda = 8.5 \pm 0.6 \pm 0.7$ GeV² does not contradict to the vector dominance model with $\Lambda = m^2_{1/w} = 9.6 \text{ GeV}^2$. pQCD: Due to relatively large c-quark mass, the η_c form factor is rather insensitive to the shape of the η_c distribution amplitude. Λ is expected to be about 10 GeV² (T. Feldmann, P.Kroll, Phys. Lett. B 413, 410 (1997)). Lattice QCD: Λ =8.4±0.4 GeV² (J.J.Dudek, R.G.Edwards, Phys. Rev. Lett. 97, 172001 (2006)).

