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Introduction

Hypothesis of AdS/CFT correspondence:

certain quantum field theories and string theories are two different limits of the same theory:

Hopes connected with this conjecture:

- solve quantum field theory beyond perturbation theory

- solve QCD beyond weak coupling (need to know the dual analogue)

- connnect string theory with the real world



Since we do not know the dual of QCD: begin with N = 4 SYM:

The most symmmetric gauge theory (β-function vanishes).

Differs from QCD (particle content, no running of the coupling constant)

Hope: theory is soluble (integrable), plays role of ’harmonic oscillater in Quantum mechanics.

On both sides expansion in 1/Nc (expansion in toplogy).

This talk: analyse high energy scattering amplitudes

(after the recent successes in anomalous dimensions of gauge invariant operators).

History: Regge limit stimulated string theory (Veneziano amplitudes),



Three lines of investigations:

(a) scattering amplitudes in the planar limit.

Main interest: n point amplitudes in N = 4, guide for multiloop/multileg amplitudes in QCD.

Important starting point: BDS formula. Recent attempts to find corrections.

Is N = 4SYM soluble: integrability?

(b) Gauge invariant scattering amplitudes: Vacuum exchange (Pomeron-Graviton duality)

(c) Modelling the infrared, beyond N = 4 SYM:

(Soft) Pomeron in hadron-hadron scattering is non-pertubative: need methods other the pQCD.

Physical Pomeron is also sensitive to low-energy features of QCD (slope α′: chiral dynamics).

Hard Pomeron: in scattering of small-size projectiles (virtual photon)

Soft Pomeron: in hadron-hadron scattering

Transition in deep inelastic scattering (saturation, unitarization)

Within AdS/CFT : hard Pomeron → unitarization → more sophisticated geometry on the string



Planar scattering amplitudes at high energies

N = 4, MHV amplitudes. Duality:



Gauge theory side: enormous activity, in particular recent progress in two loop calculations.

Most remarkable: Bern-Dixon-Smirnow (BDS) formula for planar n-gluon scattering amplitude:

Remove color factors, factor out tree amplitude, IR singular:
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Present understanding: formula correct for n = 4 and n = 5.

Needs corrections for n ≥ 6.



Dual conformal symmetry:
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Invariance under conformal transformations in dual space xi.

Present believe: in euklidean region (all invariants are negative)
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Remainder function R(n) function (n ≥ 6) depends upon unharmonic cross ratios, e.g. R(6)(u1, u2
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Strong interest: find the remainder function R(n) Holy Grail Function



How much do we know about R(n):

• vanishes for n = 4, 5 (no anharmonic ratios):

consistency test: R(6) should vanish in certain ’collinear’ limits

• we have exact two loop results (Del Duca et al; Goncharov et al)

• new input from strong coupling (see below)



Some help from the Regge limit (JB, Lipatov, Sabio-Vera ):

compare with leading log calculations

• BDS not correct, identify missing piece.

• define “mixed” physical region (some energies positive, others negative

there exists a special Regge-cut piece, visible just in this region.

• remainder function R(6) should correct the BDS formula in this region



More on this “Regge cut contribtion”(first in a 1979 paper):
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Appears in the ’mixed physical region’ (nonplanarity: Mandelstam cut)

and in energy discontinuities.



Important property: integrability

∆T2→4 ∼ s
−E
2

where E is lowest eigenvalue of the color octet BFKL Hamiltonian H
(8)
BFKL.

Generalization to n > 6:
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BKP-octet hamiltonian is integrable (open spin chain)(Lipatov)

Direct evidence for integrability at weak coupling, related to R(n).



On the strong coupling side:

AdS/CFT correspondence:

at strong coupling, the scattering amplitude is given by a minimal area A:

Amp ∼ 〈W 〉 ∼ exp
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Contours (light-like polygon) of the area are determined by kinematics

Euler-Lagrange equations very complicated: solved for n = 4. (Alday,Maldacena):

4-point amplitude is known for all values of λ!

For n ≥ 6: instead of solving Euler-Lagrange equations use auxiliary quantum integrable system: minimal

is related to free energy of this system (Alday,Maldacena,Sever,Vieira; Alday,Gaiotto,Maldacena ).

Concretely: area is obtained from a family of functions (Y functions) which obey set of nonlinea

equations.

Task: solve these equations, as function of the polygon.



The Y equations:
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with m = m(u1, u2, u3), φ = φ(u1, u2, u3), C = C(u1, u2, u3)



What we have done (JB,Kotanski,Schomerus) numerical solution, Regge limit helps

• have computed the remainder function R(6) in the Regge limit (in the physical/euklidean region):

R(6) → const

• performed the analytic continuation into the ’mixed region’:

a new term appears which has Regge behavior

(and can be attributed to an excitation of the TBA system)

Still to do:

• check Steinmann relations

• is exponentiation correct?

Resume:

Evidence that we can construct n-point amplitudes for weak and strong coupling,

but there is still work to be done.



“Phenomenology” in AdS/CFT: Pomeron and DIS

A. Basic message: BFKL in N = 4 SYM is dual to the graviton in AdS5

weak coupling: BFKL strong coupling: graviton



B. In more detail:

correlator of R-currents (global SU(4) symmetry): analogue of γ∗γ∗-scattering in QCD:

< Jµ1
(x1)Jµ2

(x2)Jµ3
(x3)Jµ4

(x4) > ∼< Rµ1
(x1)Rµ2

(x2)Rµ3
(x3)Rµ4

(x4) >

First: weak coupling side the BFKL amplitude
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Connection between small x-limit and short distance limit (DIS):

leading twist anomalous dimension near ω = j − 1 ≈ 0
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Beyond the BFKL: unitarization problem: as old as strong interactions.

Best understood in deep inelastic scattering:

From large x,Q2 to small x,Q2, three regions:

dilute (hard), saturation (dense),

strong interaction (soft Pomeron).

Near the saturation region:

vital role of triple Pomeron

vertex (BK-kernel)

Appealing physical picture



Next: the strong coupling side:

The leading term (in 1/λ) is given by supergravity (Witten diagram): graviton exchange.

Calculation (JB, Kotansk, Schomerus) gives:
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’Impact factors’, integral over fifth coordinate analogous to transverse momentum.



Limit of Q2
A ≫ Q2

B: dominant region close to the boundary (z0 ≪ w0):

’hard physics’ lives close to the boundary, ’soft physics’ close to the center.

Consequence: attempts to get closer to QCD will modify the center (hard wall...)

Further details:

find powers of lnQ2
A/Q

2
B, beginning of OPE expansion?

Dependence upon polarization: similar to QCD.



Cannot see in Witten diagram: reggeization of the graviton. j = 2 → j = 2 − 2√
λ

+ O(λ)

More general (Lipatov et al, Polchinski et al, Brower et al ):

existence of function j(ν, λ)
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Diffusion in ln z (Brower et al.).

Result for γ∗γ∗/R current-R current scattering:

• intercept: function j(ν, λ) interpolates between weak and strong coupling: 1 < j(ν, λ) < 2.

We know the first two corrections for λ → 0, first correction at λ → ∞.

Connection with anomalous dimension.

• impact factor: we know the first term at λ → 0, the first term at λ → ∞.

• need string calculation



What next: unitarization. Eikonalization?

Problem of unitarization worse than BFKL: single graviton ∼ s2, double graviton ∼ s3,...

Need to go beyond planar (large-Nc limit): as first step study six-point function.

On the gauge theory side: pair-of pants topology:



On the string theory side:

To leading order: triple graviton vertex vanishes!



C. A more ambitious approach: a ’soft’ Pomeron in a ’confining‘ theory (Polchinski et al)

Observation: ’soft’ Pomeron comes from larger values of fifth coordinate z0. (smaller r):

Modify the AdS5 ×W : boundary → scale.

Compute glueball, continue in t.

Obtain slope parameter.

Questions:

how to connect this soft ’Pomeron’ with the hard Pomeron (=reggeized graviton)?

Is there ’saturation’?



D. Deep Inelastic scattering (Polchinski et al; Mueller,Hatta,Iancu)

Goal: deep inelastic scattering for all x.

Framework: N = 4 DIS on hot plasma, or DIS on dilaton field

Most striking results:

- no partons at finite x

- saturation line Q2
s ∼ (T/x)2 (multiple graviton exchange).



Conclusions

Exciting investigations:

scattering amplitudes in N = 4 SYM from weak to strong coupling:

• weak coupling: BDS formula, exponentiation, remainder function

strong coupling: Y equations. First attempts to solve.

important role: integrability

• Pomeron-Graviton duality: control the weak coupling limit (NLO)

and the strong coupling limit (LO)

need string calculations

• Steps towards phenomenology
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What about exponentiation?



Strong coupling result ((1 − u3) ∼ 1/s2)
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