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Ideally: obtain a quantum 
phase-space distribution 

(like the Wigner function)

exploring the 3-dimensional phase-space 
structure of the nucleon    

〈Ô(x, p)〉 =
∫

dx dpW (x, p) O(x, p)

in 1-dimensional QM:
∫

dp W (x, p) = |ψ(x)|2
∫

dx W (x, p) = |φ(p)|2

k⊥b

sq

S
  spin-k┴ correlations?

orbiting quarks?

intrinsic motion



phase-space parton distribution,  W (k, b)

∫
d2k⊥H(k,∆) = H(x, ξ,∆T )

TMD

q(x,k⊥)

∆ = 0

FT, ∆ ↔ b

Wigner 
functionGTMD or GPCF

W (k, b)H(k,∆)

(Belitsky, Ji, Yuan)

FT, ∆T ↔ bT

∫
d3b

q(x, bT )

∫
d2k⊥

ξ = 0

H(x, 0,∆T )

∫
d2k⊥ dbL

(M. Burkardt)

(S. Meissner, Metz, Schlegel)



the leading-twist correlator, with intrinsic 
k┴, contains eight independent functions   
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1
2

[
f1/n+ + f⊥1T

εµνρσγµnν
+kρ
⊥Sσ

T

M
+

(
SL g1L +

k⊥ · ST

M
g⊥1T

)
γ5/n+

+ h1T iσµνγ5nµ
+Sν

T +
(

SL h⊥1L +
k⊥ · ST

M
h⊥1T

)
iσµνγ5nµ

+kν
⊥

M

+ h⊥1
σµνkµ

⊥nν
+

M

]

 with partonic interpretation
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X

q(x) = fq
1 (x) =

∫
d2k⊥ fq

1 (x, k2
⊥)fq

1 (x, k2
⊥)

X

sq

several spin-k┴ correlations in TMDs

“Sivers effect” “Boer-Mulders effect”
S · (p× k⊥) sq · (p× k⊥) (p · S)(p · sq) · · ·



The nucleon at twist-2    
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talks by Chen, Schnell and Schlegel



X

similar spin-p┴ correlations in fragmentation process 
(case of final spinless hadron) 

H⊥q
1 (x,p2

⊥)

X
Dq

1(x,p2
⊥)

“Collins effect”sq · (pq × p⊥)



factorization holds at large Q2, and PT ≈ k⊥ ≈ ΛQCD

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz)

dσ!p→!hX =
∑

q

fq(x,k⊥;Q2)⊗ dσ̂!q→!q(y, k⊥;Q2)⊗Dh
q (z,p⊥;Q2)

PT ! Q2Two scales:

TMDs in SIDIS 

λq λ′
q

p, Sp, S

Q2Q2

h h

d6σ ≡ d6σ!p↑→!hX

dxB dQ2 dzh d2P T dφS



P T ! p⊥ + zh k⊥ΛQCD ! k⊥ ! PT " Q

elementary interaction: γ∗ q → q′

P T

k⊥

p⊥

γ∗
q

q′

h

! p→ ! hX

SIDIS

q

q′



dσ

dφ
= FUU + cos(2φ) F cos(2φ)

UU
+

1
Q

cos φ F cos φ
UU

+ λ
1
Q

sinφ F sin φ
LU

+ SL

{
sin(2φ) F sin(2φ)

UL
+

1
Q

sinφ F sin φ
UL

+ λ
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FLL +

1
Q

cos φ F cos φ
LL

]}

+ ST
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sin(φ− φS)F sin(φ−φS)

UT
+ sin(φ + φS) F sin(φ+φS)

UT
+ sin(3φ− φS) F sin(3φ−φS)

UT

+
1
Q

[
sin(2φ− φS) F sin(2φ−φS)

UT
+ sinφS F sin φS

UT

]

+ λ
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LT
+

1
Q
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)]}

many spin asymmetries
dσ(S) != dσ(−S)

F (...)
SBST

contain the TMDs

lepton plane
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where we have j(x) =
∫

d2pT j(x,p2
T ) for j = fa

1 , ea, gT , hL while ga
1(x) =

∫

d2pT ga
1L(x,p2

T )
and ha

1(x) =
∫

d2pT {ha
1T (x,p2

T ) + p2
T /(2M2

N)h⊥a
1T (x,p2

T )}.
The fragmentation of unpolarized hadrons is described in terms of two fragmentation func-

tions, Da
1 and H⊥a

1 , at leading-twist. In SIDIS (with polarized beams and/or targets, where
necessary) it is possible to access information on the leading twist TMDs by measuring the
angular distributions of produced hadrons. Some data on such processes are available [27–45].

The fragmentation functions and TMDs in SIDIS and other processes were subject to nu-
merous studies in the literature [46–73]. This is true especially for the prominent transversity
distribution ha

1 or the ’naively time-reversal-odd’ functions like the Sivers function f⊥a
1T , the

Boer-Mulders function h⊥a
1 and the Collins fragmentation function H⊥a

1 . Among the so far less
considered functions are h⊥a

1L and the ’pretzelosity’ distribution h⊥a
1T .

The purpose of this lecture (based on the works [67,68]) is fourfold. First, we discuss whether
some of the unknown TMDs could be approximated in terms of (possibly better) known ones.
Second, we review what is known about h⊥a

1T . Third, we mention the models these TMDs were
calculated. Fourth, we present estimates for SSAs in which these functions enter, and discuss
the prospects to measure these SSAs in experiments at Jefferson Lab and COMPASS.
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Fig. 1. Kinematics of SIDIS, lN → l′hX, and the
definitions of azimuthal angles in the lab frame.

The process of SIDIS is sketched in Fig. 1.
We denote the momenta of the target, in-
coming and outgoing lepton by P , l and l′

and introduce s = (P + l)2, q = l − l′ with

Q2 = −q2. Then y = Pq
Pl , x = Q2

2Pq , z = PPh

Pq ,

and cos θγ = 1− 2M2

N
x(1−y)
sy where θγ denotes

the angle between target polarization vector
and momentum q of the virtual photon γ∗,
see Fig. 1, and MN is the nucleon mass. The
component of the momentum of the produced
hadron transverse with respect to γ∗ is de-
noted by Ph⊥ and Ph⊥ = |Ph⊥|.

The cross section differential in the azimuthal angle φ of the produced hadron has schemat-
ically the following general decomposition [7,74] (the dots indicate power suppressed terms):

dσ

dφ
= FUU + cos(2φ)F cos(2φ)

UU + SL sin(2φ)F sin(2φ)
UL +λ

[

SLFLL+ ST cos(φ − φS)F cos(φ−φS)
LT

]

+ST

[

sin(φ−φS)F sin(φ−φS)
UT + sin(φ+φS)F sin(φ+φS)

UT + sin(3φ−φS)F sin(3φ−φS)
UT

]

+ . . . (3)

In Fweight
XY the index X = U(L) denotes the unpolarized (longitudinally polarized, helicity λ)

beam. Y = U(L, T ) denotes the unpolarized target (longitudinally, transversely with respect to
the virtual photon polarized target). The superscript reminds on the kind of angular distribution
of the produced hadrons with no index indicating an isotropic φ-distribution.

Each structure function arises from a different TMD. The chirally even f ’s and g’s enter the
observables in connection with the unpolarized fragmentation function Da

1 , the chirally odd h’s
in connection with the chirally odd Collins fragmentation function H⊥a

1

FUU ∝
∑

a

e2
a fa
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1 , F cos(φ−φS)
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∑

a

e2
a g⊥a
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1 , (4)
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a
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a
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∑

a
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1 ⊗ H⊥a
1 , F sin(φ+φS)

UT ∝
∑

a

e2
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1 , (6)
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1 . (7)

Cahn kinematical 
effects  
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Spin dependent TMDs 
Sivers function

fq/p,S(x, bT ) =
∫

d2∆T

(2π)2
e−ibT ·∆T

×
[
Hq(x, 0,−∆2

T ) + iS · (p̂× ∆̂T ) Eq(x, 0,−∆2
T )

]

in configuration space

fq/p,S(x,k⊥) = fq/p(x, k⊥) +
1
2
∆Nfq/p↑(x, k⊥) S · (p̂× k̂⊥)

= fq/p(x, k⊥)− k⊥
M

f⊥q
1T (x, k⊥) S · (p̂× k̂⊥)

in momentum space



AN =
dσ↑ − dσ↓

dσ↑ + dσ↓

AN ∝ S · (p× P T ) ∝ PT sin(φπ − φS)

 probing polarized nucleons: 
transverse single spin 
asymmetries in SIDIS 

z

y

xΦS
Φπ

X

p

S

PT

γ∗p→ h X

γ*

Large Q2: the virtual photon explores the nucleon structure.          
In collinear configurations there cannot be (at LO) any PT 

Sivers SSA in SIDIS 



dσ↑, ↓ =
∑

q

fq/p↑,↓(x,k⊥;Q2)⊗ dσ̂(y, k⊥;Q2)⊗Dh/q(z, p⊥;Q2)

∼ F sin(φ−φS)
UT sin(φ− φS)

sin(ϕ− φS)
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F sin(φ−φS)
UTSivers effect in SIDIS - f⊥q

1T (x,k2
⊥)

2〈sin(φ− φS)〉 = Asin(φ−φS)
UT

≡ 2

∫
dφdφS [dσ↑ − dσ↓] sin(φ− φS)

∫
dφdφS [dσ↑ + dσ↓]

measured 
quantity
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〈k2
⊥〉 = 0.25 (GeV/c)2 〈k2

⊥〉 = 0.20 (GeV/c)2

Sivers parameterization

(from fitting        data in unpolarized cross section)cos φ

∆Nfq/p↑(x, k⊥) = 2Nq(x) h(k⊥) fq/p(x, k⊥)

Nq(x) = Nq xαq (1− x)βq
(αq + βq)(αq+βq)

α
αq
q β

βq
q

h(k⊥) =
√

2e
k⊥
M1

e−k2
⊥/M2

1

Dh
q (z, p⊥) = Dh

q (z)
1

π〈p2
⊥〉 e−p2

⊥/〈p2
⊥〉

fq/p(x, k⊥) = fq(x)
1

π〈k2
⊥〉 e−k2

⊥/〈k2
⊥〉

|Nq| ≤ 1



Sivers functions: 
old fit - old data

M.A., M. Boglione, U. D’Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, C. Türk 
EPJA 39, 89 (2009)



extracted Sivers 
functions, old fit

11 parameters

∆Nfu/p↑ > 0

∆Nfd/p↑ < 0

∆Nfs̄/p↑ > 0

Nu Nd Ns

Nū Nd̄ Ns̄

αu αd αsea

β M1(GeV/c)

M.A., M. Boglione, U. D’Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, C. Türk

  (from HERMES old proton and 
COMPASS deuteron data) 
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Brodsky, Hwang, Schmidt: final state interactions

+ –diquark diquark

q q

recent quark-diquark model of all twist-2 TMDs: Bacchetta, 
Conti, Radici,  arXiv:0807.0323 (PRD 78, 074010, 2008); 

Bacchetta, Radici, Conti, Guagnelli, arXiv:1003.1328

very recent quark bag model of all twist-2 and twist-3 TMDs: 
Avakian, Efremov, Schweitzer, Yuan,  arXiv:1001.5467

(supports Gaussian k⊥ dependence of TMDs in valence x-region)

Quark models for Sivers function



(a) (b)

y1, !1⊥

y2, !2⊥ x2, k2⊥
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yn, !n⊥ xn, kn⊥

FIG. 1: Light-front time-order perturbation Feynman diagrams for the phase contribution from

one-gluon exchange between two constituent quarks.

where
∑

k− represents the sum of all partons energy k−
i , d[i]

′ represents the integral of

(yi, !i⊥). The interaction kernel K can be calculated from the light-front time-order pertur-

bation theory [2]. The wave functions ψn and ψ′
n may differ. From the above expression,

we find that the phase of ψn may come from the wave function in the right hand side ψ′
n

or the interaction kernel K. In the following, we assume that the wave function ψ′
n is real,

for example, from model calculation such as constituent quark model [18]. We will focus on

the contribution from the interaction kernel. We will calculate, in particular, the one-gluon

exchange contribution to the interaction kernel.

At the lowest order of the light-front time-order perturbation theory, we have one gluon

exchange contribution to the interaction kernel. This can be expressed as a sum of all

diagrams with gluon connection between all possible pair of constituents in the light-front

wave function. For example, the contribution from the gluon exchange between the ith and

jth quark can be written as,

K[k; !]ij =
ūλi

(xi, ki⊥)√
xi

γµ
uλ′

i
(yi; !i⊥)
√
yi

dµν
ūλj

(xj, kj⊥)
√
xj

γν
uλ′

j
(yj; !j⊥)
√
yi

×











1

P− − q− − k−
i − !−j −

∑

α$={i,j}
k−
α + iε

θ(q+)

q+

+
1

P− − q′− − k−
j − !−i −

∑

α$={i,j}
k−
α + iε

θ(q′+)

q′+











, (3)

where λ represents the helicity for the associated quarks, q+ = k+
j − !+j and q′+ = k+

i − !+i ,

and the color factors are implicit in the above equation. Similar expression shall hold for the

5

Brodsky, Pasquini, Xiao, Yuan, arXiv:1001.1163 
Pasquini, Yuan, arXiv:1001.5398 

Sivers function from light-front wave function

[fq⊥
1T ]SIDIS = −[fq⊥

1T ]DY

in all models one has: 

see also Hwang, arXiv:1003.0867 - incorporation of final state 
interactions into the light-cone wave function



∑

a

∫
dx d2k⊥ k⊥ fa/p↑(x,k⊥) ≡

∑

a

〈ka
⊥〉 = 0

S

number density of partons 
with longitudinal momentum 
fraction x and transverse 

momentum k┴, inside a proton 
with spin S 

M. Burkardt, PR D69, 091501 (2004) 

What could we learn from the Sivers distribution?

same naive sum rule as expected for free 
partons (no final state interactions)



Total amount of intrinsic momentum carried by 
partons of flavour a

〈ka
⊥〉 =

[
π

2

∫ 1

0
dx

∫ ∞

0
dk⊥ k2

⊥∆Nfa/p↑(x, k⊥)
]

(S × P̂ )

= mp

∫ 1

0
dx∆Nf (1)

q/p↑(x) (S × P̂ ) ≡ 〈ka
⊥〉 (S × P̂ )

Burkardt sum rule almost saturated by u and d quarks 
alone; little residual contribution from gluons

〈ku
⊥〉 + 〈kd

⊥〉 = −17+37
−55 (MeV/c)

〈kū
⊥〉 + 〈kd̄

⊥〉 + 〈ks
⊥〉 + 〈ks̄

⊥〉 = −14+43
−66 (MeV/c)

[
〈ku
⊥〉 = 96+60

−28 〈kd
⊥〉 = −113+45

−51

]

−10 ≤ 〈kg
⊥〉 ≤ 48 (MeV/c)

〈ku
⊥〉

〈kd
⊥〉



Three dimentional picture of the proton

The proton moves along −Z direction (into the screen) and ST is along
Y .
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Sivers u and d quark densities in transverse 
momentum space 

proton moving into the screen, polarization along y-axis
blue: less quarks  red: more quarks   x = 0.2   k in GeV/c

0.0-0.5 -0.5 0.00.5 0.5kx

courtesy of  A. Prokudin

〈ku
⊥〉 = 96+60

−28 〈kd
⊥〉 = −113+45

−51 (MeV/c)



∫ 1

0
dx d2k⊥ ∆Nfq/p↑(x, k⊥) = C κq

A
sin(φπ+−φS)
UT

A
sin(φπ−−φS)
UT

∼ κu

κd

Sivers function and proton anomalous magnetic moment
M. Burkardt, S. Brodsky, Z. Lu, I. Schmidt

Both the Sivers function and the proton anomalous magnetic 
moment are related to correlations of proton wave functions 

with opposite helicities 

in qualitative agreement with large z data:

Sivers function and orbital angular momentum

S · LqSivers mechanism originates from              then it is related to 
the quark orbital angular momentum 

D. Sivers



Sivers effect now observed by two experiments  
(+ hints from Jlab-HallA), but needs further 
measurements (small and large x regions need 

exploration, measure Sivers asymmetry for jet 
production)

            
and if (Sivers)SIDIS      - (Sivers)D-Y?

AN in AB → CX, which Sivers function? other 
mechanisms? Collins effect?                          

!=



d∆σ̂ = dσ̂!q↑→!q↑ − dσ̂!q↑→!q↓

Asin(φ+φS)
UT ≡ 2

∫
dφdφS [dσ↑ − dσ↓] sin(φ + φS)

∫
dφdφS [dσ↑ + dσ↓]

Collins effect in SIDIS couples to transversity

F sin(φ+φS)
UTCollins effect in SIDIS - 

Dh/q,sq
(z,p⊥) = Dh/p(z, p⊥) +

1
2
∆NDh/q↑(z, p⊥) sq · (p̂q × p̂⊥)

dσ↑ − dσ↓ =
∑

q

h1q(x, k⊥)⊗ d∆σ̂(y, k⊥)⊗∆NDh/q↑(z,p⊥)

q

q’
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BELLE @ KEK
Collins function from e+e– processes  

q̄

q
e+e−

Sq

Sq̄

θ

e+ 

ϕ1

ϕ2−π e- 

e+ 

thrust-axis

dσe+e−→q↑q̄↑

d cos θ
=

3πα2

4s
e2
q cos2 θ

dσe+e−→q↓q̄↑

d cos θ
=

3πα2

4s
e2
q

A12(z1, z2, θ, ϕ1 + ϕ2) ≡
1

〈dσ〉
dσe+e−→h1h2X

dz1 dz2 d cos θ d(ϕ1 + ϕ2)

= 1 +
1
4

sin2 θ

1 + cos2 θ
cos(ϕ1 + ϕ2)×

∑
q e2

q ∆NDh1/q↑(z1) ∆NDh2/q̄↑(z2)∑
q e2

qDh1/q(z1)Dh2/q̄(z2)



Transversity and Collins parameterization

|N | ≤ 1

3

! q → ! q elementary scattering amplitudes, and in the
Collins fragmentation function; φS and ϕ identify the di-
rections of the proton spin S and of the quark intrinsic
transverse momentum k⊥, see Fig. 1; φh

q is the azimuthal
angle of the final hadron h, as defined in the fragmenting
quark helicity frame. Neglecting O(k2

⊥/Q2) terms, one
finds

cosφh
q =

PT

p⊥
cos(φh − ϕ) − z

k⊥
p⊥

,

sinφh
q =

PT

p⊥
sin(φh − ϕ) . (9)

A full study of Eq. (2), taking into account intrinsic mo-
tions with all contributions at all orders, following the
general approach of Ref. [16], will be presented in a forth-
coming paper [15]. Here, in agreement with all papers on
the Collins effect in SIDIS so far appeared in the litera-
ture, we work at O(k⊥/Q) and use Eqs. (4) and (9).

fq/p(x, k⊥) is the unpolarized transverse momentum
dependent (TMD) distribution function of a quark q in-
side the parent proton p, while Dh/q(z, p⊥) is the unpo-
larized TMD fragmentation function of quark q into the
final hadron h. We assume the k⊥ and p⊥ dependences
of these functions to be factorized in a Gaussian form,
suitable to describe non-perturbative effects at small PT

values and simple enough to allow analytical integration
over the intrinsic transverse momenta:

fq/p(x, k⊥) = fq/p(x)
e−k2

⊥/〈k2
⊥〉

π〈k2
⊥〉

, (10)

Dh/q(z, p⊥) = Dh/q(z)
e−p2

⊥/〈p2
⊥〉

π〈p2
⊥〉

, (11)

where fq/p(x) and Dh/q(z) are the usual integrated par-
ton distribution and fragmentation functions, available in
the literature; in particular we refer to Refs. [17, 18] and
[19]. The QCD induced Q2 dependence of these functions
is also taken into account, although we do not indicate
it explicitly. Finally, the average values of k2

⊥ and p2
⊥

are taken from Ref. [11], where they were obtained by
fitting the azimuthal dependence of SIDIS unpolarized
cross section:

〈k2
⊥〉 = 0.25 GeV2 , 〈p2

⊥〉 = 0.20 GeV2 . (12)

Notice that such values are assumed to be constant and
flavor independent.

The transversity distributions and the Collins func-
tions are unknown. We choose the following simple pa-
rameterization

∆T q(x, k⊥) =
1

2
N T

q (x)
[

fq/p(x) + ∆q(x)
] e−k2

⊥/〈k2
⊥〉

T

π〈k2
⊥〉T

,

(13)

∆NDh/q↑(z, p⊥) = 2NC
q (z) Dh/q(z) h(p⊥)

e−p2
⊥/〈p2

⊥〉

π〈p2
⊥〉

,

(14)
with

N T
q (x) = NT

q xα(1 − x)β (α + β)(α+β)

ααββ
, (15)

NC
q (z) = NC

q zγ(1 − z)δ (γ + δ)(γ+δ)

γγδδ
, (16)

h(p⊥) =
√

2e
p⊥
M

e−p2
⊥/M2

, (17)

and |NT
q |, |NC

q | ≤ 1. In general 〈k2
⊥〉T

'= 〈k2
⊥〉, but from

our fits we learn that present experimental data are in-
sensitive to such a difference, therefore we simply assume
〈k2

⊥〉T
= 〈k2

⊥〉. Also, in this first simultaneous extraction
of the transversity and Collins functions, we let the co-
efficients NT

q and NC
q to be flavor dependent (q = u, d),

while all the exponents α, β, γ, δ and the dimensional pa-
rameter M are taken to be flavor independent.

Notice that our parameterizations are devised in such
a way that the transversity distribution function auto-
matically obeys the Soffer bound [20]

|∆T q(x)| ≤ 1

2

[

fq/p(x) + ∆q(x)
]

, (18)

and the Collins function satisfies the positivity bound

|∆NDh/q↑(z, p⊥)| ≤ 2Dh/q(z, p⊥) , (19)

since N T
q (x), NC

q (z) and h(p⊥) are normalized to be
smaller than 1 in size for any value of x, z and p⊥ re-
spectively.

By insertion of the above expressions into Eq. (4), we
obtain, in agreement with Refs. [21, 22],

Asin(φS+φh)
UT

=

PT

M

1 − y

sxy2

√
2e

〈p2
⊥〉2C

〈p2
⊥〉

e−P 2
T /〈P 2

T 〉
C

〈P 2
T 〉2C

∑

q

e2
q N T

q (x)
[

fq/p(x) + ∆q(x)
]

NC
q (z)Dh/q(z)

e−P 2
T /〈P 2

T 〉

〈P 2
T 〉

[1 + (1 − y)2]

sxy2

∑

q

e2
q fq/p(x) Dh/q(z)

, (20)

3

! q → ! q elementary scattering amplitudes, and in the
Collins fragmentation function; φS and ϕ identify the di-
rections of the proton spin S and of the quark intrinsic
transverse momentum k⊥, see Fig. 1; φh

q is the azimuthal
angle of the final hadron h, as defined in the fragmenting
quark helicity frame. Neglecting O(k2

⊥/Q2) terms, one
finds

cosφh
q =

PT
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,

sinφh
q =

PT
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sin(φh − ϕ) . (9)

A full study of Eq. (2), taking into account intrinsic mo-
tions with all contributions at all orders, following the
general approach of Ref. [16], will be presented in a forth-
coming paper [15]. Here, in agreement with all papers on
the Collins effect in SIDIS so far appeared in the litera-
ture, we work at O(k⊥/Q) and use Eqs. (4) and (9).

fq/p(x, k⊥) is the unpolarized transverse momentum
dependent (TMD) distribution function of a quark q in-
side the parent proton p, while Dh/q(z, p⊥) is the unpo-
larized TMD fragmentation function of quark q into the
final hadron h. We assume the k⊥ and p⊥ dependences
of these functions to be factorized in a Gaussian form,
suitable to describe non-perturbative effects at small PT

values and simple enough to allow analytical integration
over the intrinsic transverse momenta:
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, (11)

where fq/p(x) and Dh/q(z) are the usual integrated par-
ton distribution and fragmentation functions, available in
the literature; in particular we refer to Refs. [17, 18] and
[19]. The QCD induced Q2 dependence of these functions
is also taken into account, although we do not indicate
it explicitly. Finally, the average values of k2

⊥ and p2
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are taken from Ref. [11], where they were obtained by
fitting the azimuthal dependence of SIDIS unpolarized
cross section:

〈k2
⊥〉 = 0.25 GeV2 , 〈p2

⊥〉 = 0.20 GeV2 . (12)

Notice that such values are assumed to be constant and
flavor independent.

The transversity distributions and the Collins func-
tions are unknown. We choose the following simple pa-
rameterization

∆T q(x, k⊥) =
1
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q (x)
[
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⊥〉, but from

our fits we learn that present experimental data are in-
sensitive to such a difference, therefore we simply assume
〈k2
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= 〈k2

⊥〉. Also, in this first simultaneous extraction
of the transversity and Collins functions, we let the co-
efficients NT

q and NC
q to be flavor dependent (q = u, d),

while all the exponents α, β, γ, δ and the dimensional pa-
rameter M are taken to be flavor independent.

Notice that our parameterizations are devised in such
a way that the transversity distribution function auto-
matically obeys the Soffer bound [20]

|∆T q(x)| ≤ 1
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[

fq/p(x) + ∆q(x)
]

, (18)

and the Collins function satisfies the positivity bound

|∆NDh/q↑(z, p⊥)| ≤ 2Dh/q(z, p⊥) , (19)

since N T
q (x), NC

q (z) and h(p⊥) are normalized to be
smaller than 1 in size for any value of x, z and p⊥ re-
spectively.

By insertion of the above expressions into Eq. (4), we
obtain, in agreement with Refs. [21, 22],
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! q → ! q elementary scattering amplitudes, and in the
Collins fragmentation function; φS and ϕ identify the di-
rections of the proton spin S and of the quark intrinsic
transverse momentum k⊥, see Fig. 1; φh

q is the azimuthal
angle of the final hadron h, as defined in the fragmenting
quark helicity frame. Neglecting O(k2

⊥/Q2) terms, one
finds
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q =
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q =
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A full study of Eq. (2), taking into account intrinsic mo-
tions with all contributions at all orders, following the
general approach of Ref. [16], will be presented in a forth-
coming paper [15]. Here, in agreement with all papers on
the Collins effect in SIDIS so far appeared in the litera-
ture, we work at O(k⊥/Q) and use Eqs. (4) and (9).

fq/p(x, k⊥) is the unpolarized transverse momentum
dependent (TMD) distribution function of a quark q in-
side the parent proton p, while Dh/q(z, p⊥) is the unpo-
larized TMD fragmentation function of quark q into the
final hadron h. We assume the k⊥ and p⊥ dependences
of these functions to be factorized in a Gaussian form,
suitable to describe non-perturbative effects at small PT

values and simple enough to allow analytical integration
over the intrinsic transverse momenta:

fq/p(x, k⊥) = fq/p(x)
e−k2

⊥/〈k2
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π〈k2
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, (11)

where fq/p(x) and Dh/q(z) are the usual integrated par-
ton distribution and fragmentation functions, available in
the literature; in particular we refer to Refs. [17, 18] and
[19]. The QCD induced Q2 dependence of these functions
is also taken into account, although we do not indicate
it explicitly. Finally, the average values of k2

⊥ and p2
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are taken from Ref. [11], where they were obtained by
fitting the azimuthal dependence of SIDIS unpolarized
cross section:

〈k2
⊥〉 = 0.25 GeV2 , 〈p2

⊥〉 = 0.20 GeV2 . (12)

Notice that such values are assumed to be constant and
flavor independent.

The transversity distributions and the Collins func-
tions are unknown. We choose the following simple pa-
rameterization
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1
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⊥〉. Also, in this first simultaneous extraction
of the transversity and Collins functions, we let the co-
efficients NT

q and NC
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rameter M are taken to be flavor independent.

Notice that our parameterizations are devised in such
a way that the transversity distribution function auto-
matically obeys the Soffer bound [20]

|∆T q(x)| ≤ 1

2

[

fq/p(x) + ∆q(x)
]

, (18)

and the Collins function satisfies the positivity bound

|∆NDh/q↑(z, p⊥)| ≤ 2Dh/q(z, p⊥) , (19)

since N T
q (x), NC

q (z) and h(p⊥) are normalized to be
smaller than 1 in size for any value of x, z and p⊥ re-
spectively.

By insertion of the above expressions into Eq. (4), we
obtain, in agreement with Refs. [21, 22],

Asin(φS+φh)
UT

=

PT

M

1 − y

sxy2

√
2e

〈p2
⊥〉2C

〈p2
⊥〉

e−P 2
T /〈P 2

T 〉
C

〈P 2
T 〉2C

∑

q

e2
q N T

q (x)
[

fq/p(x) + ∆q(x)
]

NC
q (z)Dh/q(z)

e−P 2
T /〈P 2

T 〉

〈P 2
T 〉

[1 + (1 − y)2]

sxy2

∑

q

e2
q fq/p(x) Dh/q(z)

, (20)

3

! q → ! q elementary scattering amplitudes, and in the
Collins fragmentation function; φS and ϕ identify the di-
rections of the proton spin S and of the quark intrinsic
transverse momentum k⊥, see Fig. 1; φh

q is the azimuthal
angle of the final hadron h, as defined in the fragmenting
quark helicity frame. Neglecting O(k2

⊥/Q2) terms, one
finds

cosφh
q =

PT

p⊥
cos(φh − ϕ) − z

k⊥
p⊥

,

sinφh
q =

PT

p⊥
sin(φh − ϕ) . (9)

A full study of Eq. (2), taking into account intrinsic mo-
tions with all contributions at all orders, following the
general approach of Ref. [16], will be presented in a forth-
coming paper [15]. Here, in agreement with all papers on
the Collins effect in SIDIS so far appeared in the litera-
ture, we work at O(k⊥/Q) and use Eqs. (4) and (9).

fq/p(x, k⊥) is the unpolarized transverse momentum
dependent (TMD) distribution function of a quark q in-
side the parent proton p, while Dh/q(z, p⊥) is the unpo-
larized TMD fragmentation function of quark q into the
final hadron h. We assume the k⊥ and p⊥ dependences
of these functions to be factorized in a Gaussian form,
suitable to describe non-perturbative effects at small PT

values and simple enough to allow analytical integration
over the intrinsic transverse momenta:

fq/p(x, k⊥) = fq/p(x)
e−k2

⊥/〈k2
⊥〉

π〈k2
⊥〉

, (10)

Dh/q(z, p⊥) = Dh/q(z)
e−p2

⊥/〈p2
⊥〉

π〈p2
⊥〉

, (11)

where fq/p(x) and Dh/q(z) are the usual integrated par-
ton distribution and fragmentation functions, available in
the literature; in particular we refer to Refs. [17, 18] and
[19]. The QCD induced Q2 dependence of these functions
is also taken into account, although we do not indicate
it explicitly. Finally, the average values of k2

⊥ and p2
⊥

are taken from Ref. [11], where they were obtained by
fitting the azimuthal dependence of SIDIS unpolarized
cross section:

〈k2
⊥〉 = 0.25 GeV2 , 〈p2

⊥〉 = 0.20 GeV2 . (12)

Notice that such values are assumed to be constant and
flavor independent.

The transversity distributions and the Collins func-
tions are unknown. We choose the following simple pa-
rameterization

∆T q(x, k⊥) =
1

2
N T

q (x)
[

fq/p(x) + ∆q(x)
] e−k2

⊥/〈k2
⊥〉

T

π〈k2
⊥〉T

,

(13)

∆NDh/q↑(z, p⊥) = 2NC
q (z) Dh/q(z) h(p⊥)

e−p2
⊥/〈p2

⊥〉

π〈p2
⊥〉

,

(14)
with

N T
q (x) = NT

q xα(1 − x)β (α + β)(α+β)

ααββ
, (15)

NC
q (z) = NC

q zγ(1 − z)δ (γ + δ)(γ+δ)

γγδδ
, (16)

h(p⊥) =
√

2e
p⊥
M

e−p2
⊥/M2

, (17)
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⊥〉, but from

our fits we learn that present experimental data are in-
sensitive to such a difference, therefore we simply assume
〈k2

⊥〉T
= 〈k2

⊥〉. Also, in this first simultaneous extraction
of the transversity and Collins functions, we let the co-
efficients NT

q and NC
q to be flavor dependent (q = u, d),

while all the exponents α, β, γ, δ and the dimensional pa-
rameter M are taken to be flavor independent.

Notice that our parameterizations are devised in such
a way that the transversity distribution function auto-
matically obeys the Soffer bound [20]

|∆T q(x)| ≤ 1

2

[

fq/p(x) + ∆q(x)
]

, (18)

and the Collins function satisfies the positivity bound

|∆NDh/q↑(z, p⊥)| ≤ 2Dh/q(z, p⊥) , (19)

since N T
q (x), NC

q (z) and h(p⊥) are normalized to be
smaller than 1 in size for any value of x, z and p⊥ re-
spectively.

By insertion of the above expressions into Eq. (4), we
obtain, in agreement with Refs. [21, 22],
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Figure 5. The transversity distribution functions
for u and d flavours as determined by our global
fit; we also show the Soffer bound (highest or low-
est lines) [?] and the (wider) bands of our previ-
ous extraction [?].

transverse single spin asymmetry Asin(φS+φh)
UT has

been recently measured by the COMPASS exper-
iment operating with a polarized hydrogen target
(rather than a deuterium one). In Fig. 9 we show
our predictions against these preliminary data.
The agreement is encouraging.

In Fig. 10 we present our estimates for JLab
operating with a proton target at 12 GeV. Notice
that JLab results will give important information
on the large x region, which is left basically un-
constrained by the present SIDIS data from HER-
MES and COMPASS. In this region our estimates
must be taken with some care. We recall that the
large x behaviour of our parametrization is con-
trolled by the same β parameter for ∆T u and
∆T d (since present data do not cover the large
x region). The same is true for the Collins frag-
mentation functions, whose large z behaviour is
driven by the same parameter δ for favored and
unfavored Collins FF. On the other hand for the
small to medium x region, well constrained by
SIDIS measurements, data support the choice of
a universal behaviour xα for ∆T u and ∆T d. The
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dσD−Y =
∑

a

fq(x1,k⊥1;Q2)⊗ fq̄(x2,k⊥2;Q2) dσ̂qq̄→!+!−

Drell-Yan processes - TMDs              

factorization holds, two scales, M2, and qT << M

p p

Q2 = M2

qT

qL

l+

l–

direct product of TMDs  
no fragmentation process



11

l′µCM =
1

2

















(

1 − sinα sin θCS cosφCS

)

q0,CM − cosα cos θCS qL,CM

qT − (cosα)−1 sin θCS cosφCS q

− sin θCS sinφCS q
(

1 − sinα sin θCS cosφCS

)

qL,CM − cosα cos θCS q0,CM

















. (54)

By means of these momenta one can carry out the contraction of the leptonic and the hadronic tensor in the
cm-frame. This is particularly convenient in connection with the parton model calculation in Section VI.

We close this section with a brief discussion on the hadron spin vectors. In the cm-frame one can write

Sµ
a,CM =

(

SaL,CM
|$Pa,CM |

Ma
, |$SaT,CM | cosφa,CM , |$SaT,CM | sinφa,CM , SaL,CM

P 0
a,CM

Ma

)

, (55)

Sµ
b,CM =

(

SbL,CM
|$Pb,CM |

Mb
, |$SbT,CM | cosφb,CM , |$SbT,CM | sinφb,CM , −SbL,CM

P 0
b,CM

Mb

)

, (56)

with the longitudinal components SaL,CM , SbL,CM , and the transverse components $SaT,CM , $SbT,CM . The condi-

tion S2
a = −1 implies (SaL,CM)2 +($SaT,CM )2 = 1 (and analogously for the hadron Hb). One can also write down,

e.g., Sµ
a in the CS-frame in terms of longitudinal and transverse components.4 Mainly for the following reason

we prefer, however, to work with components of the spin vectors in the cm-frame. If one has a pure transverse
polarization in the cm-frame (in the xz-plane), this implies also a longitudinal polarization component in the CS-
frame. Therefore, longitudinal and transverse polarization components can get mixed up when switching between
both frames. Since an experimental setup and also the parton model approximation have a closer connection to
the cm-frame than to the CS-frame it is preferable to work with cm-frame components of the hadron spin vectors.

V. ANGULAR DISTRIBUTION OF THE CROSS SECTION

By means of the general form of the hadronic tensor as derived in Section III one can now write down the full
angular distribution of the DY cross section. Since the hadronic tensor is frame-independent this can be done,
in principle, for any reference frame. We focus here on a dilepton rest frame because in that case the angular
distribution takes the most compact and transparent form. Expressing the orientation of the leptons through the
CS-angles θCS and φCS (see Eqs. (51), (52), and (53), (54)) and contracting the leptonic tensor in (5) with the
hadronic tensor one finds the following general form of the cross section in Eq. (10):

dσ

d4q dΩ
=

α2
em

F q2
×

{(

(1 + cos2 θ)F 1
UU + (1 − cos2 θ)F 2

UU + sin 2θ cosφF cos φ
UU + sin2 θ cos 2φF cos 2φ

UU

)

+ SaL

(

sin 2θ sinφF sin φ
LU + sin2 θ sin 2φF sin 2φ

LU

)

+ SbL

(

sin 2θ sinφF sin φ
UL + sin2 θ sin 2φF sin 2φ

UL

)

+ |$SaT |
[

sinφa

(

(1 + cos2 θ)F 1
TU + (1 − cos2 θ)F 2

TU + sin 2θ cosφF cos φ
TU + sin2 θ cos 2φF cos 2φ

TU

)

+ cosφa

(

sin 2θ sinφF sin φ
TU + sin2 θ sin 2φF sin 2φ

TU

)]

+ |$SbT |
[

sinφb

(

(1 + cos2 θ)F 1
UT + (1 − cos2 θ)F 2

UT + sin 2θ cosφF cos φ
UT + sin2 θ cos 2φF cos 2φ

UT

)

+ cosφb

(

sin 2θ sinφF sin φ
UT + sin2 θ sin 2φF sin 2φ

UT

)]

+ SaL SbL

(

(1 + cos2 θ)F 1
LL + (1 − cos2 θ)F 2

LL + sin 2θ cosφF cos φ
LL + sin2 θ cos 2φF cos 2φ

LL

)

4 The resulting expression looks a bit more complicated because !Pa,CS is not pointing in the z-direction.
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+ SaL |!SbT |
[

cosφb

(

(1 + cos2 θ)F 1
LT + (1 − cos2 θ)F 2

LT + sin 2θ cosφF cos φ
LT + sin2 θ cos 2φF cos 2φ

LT

)

+ sinφb

(

sin 2θ sinφF sin φ
LT + sin2 θ sin 2φF sin 2φ

LT

)]

+ |!SaT |SbL

[

cosφa

(

(1 + cos2 θ)F 1
TL + (1 − cos2 θ)F 2

TL + sin 2θ cosφF cos φ
TL + sin2 θ cos 2φF cos 2φ

TL

)

+ sinφa

(

sin 2θ sinφF sin φ
TL + sin2 θ sin 2φF sin 2φ

TL

)]

+ |!SaT | |!SbT |
[

cos(φa + φb)
(

(1 + cos2 θ)F 1
TT + (1 − cos2 θ)F 2

TT + sin 2θ cosφF cos φ
TT + sin2 θ cos 2φF cos 2φ

TT

)

+ cos(φa − φb)
(

(1 + cos2 θ) F̄ 1
TT + (1 − cos2 θ) F̄ 2

TT + sin 2θ cosφ F̄ cos φ
TT + sin2 θ cos 2φ F̄ cos 2φ

TT

)

+ sin(φa + φb)
(

sin 2θ sinφF sin φ
TT + sin2 θ sin 2φF sin 2φ

TT

)

+ sin(φa − φb)
(

sin 2θ sinφ F̄ sin φ
TT + sin2 θ sin 2φ F̄ sin 2φ

TT

)]}

. (57)

In Eq. (57) 48 structure functions show up which exactly matches with the number of the Vi defined in Section III.
The structure functions again depend on the three variables Pa ·q, Pb ·q, and q2, i.e., F 1

UU = F 1
UU (Pa ·q, Pb ·q, q2)

and so on. We refrain from giving the explicit relations between the structure functions in (57) and the Vi because
these lengthy formulae are not needed for the following discussion. In order to shorten the notation in (57) we left
out indices for the angles which characterize the lepton momenta and the transverse spin vectors of the hadrons.
There is yet another reason for omitting those indices: the form of the angular distribution in (57) holds for
any dilepton rest frame and not just the CS frame. The numerical values of the structure functions of course
change when going from one frame to another. Furthermore, note that the components of the spin vectors can be
understood in different frames like the rest frame of one of the hadrons, the cm-frame, or a dilepton rest frame.

In particular for the angular distribution of the unpolarized cross section different notations can be found in
the literature (see, e.g., [35] and references therein). Here we just quote the frequently used formula

dN

dΩ
≡

dσ

d4q dΩ

/

dσ

d4q
=

3

4π

1

λ + 3

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

. (58)

One readily finds

λ =
F 1

UU − F 2
UU

F 1
UU + F 2

UU

, µ =
F cos φ

UU

F 1
UU + F 2

UU

, ν =
2 F cos 2φ

UU

F 1
UU + F 2

UU

. (59)

The socalled Lam-Tung relation [33, 34, 37]

λ + 2ν = 1 , (60)

which in terms of the structure functions defined in (57) reads

F 2
UU = 2 F cos 2φ

UU , (61)

has attracted considerable attention in the past. This relation is exact if one computes the DY process to
O(αs) in the standard collinear perturbative QCD framework. Even at O(α2

s) the numerical violation of (60) is
small [38]. On the other hand data for π− N → µ− µ+ X taken at CERN [39, 40] and at Fermilab [41] are in
disagreement with the Lam-Tung relation. In particular, an unexpectedly large cos 2φ modulation of the cross
section was observed, and in the meantime different explanations for this phenomenon have been put forward in
the literature [42, 43, 44, 45, 46, 47, 48]. In Ref. [31] it was pointed out that intrinsic transverse motion of initial
state partons might be responsible for the observed violation of the Lam-Tung relation. In the following section
we will briefly return to this point in connection with the parton model calculation. It is also worthwhile to
mention that more recent Fermilab data on proton-deuteron Drell-Yan do agree with the Lam-Tung relation [49].

The hadronic tensor given in Section III also allows one to find the angular distribution of the cross section for
the specific kinematical point qT = 0. Altogether, in that case one has nine independent angular dependences
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+ SaL |!SbT |
[

cosφb

(

(1 + cos2 θ)F 1
LT + (1 − cos2 θ)F 2

LT + sin 2θ cosφF cos φ
LT + sin2 θ cos 2φF cos 2φ

LT

)

+ sinφb

(

sin 2θ sinφF sin φ
LT + sin2 θ sin 2φF sin 2φ

LT

)]

+ |!SaT |SbL

[

cosφa

(

(1 + cos2 θ)F 1
TL + (1 − cos2 θ)F 2

TL + sin 2θ cosφF cos φ
TL + sin2 θ cos 2φF cos 2φ

TL

)

+ sinφa

(

sin 2θ sinφF sin φ
TL + sin2 θ sin 2φF sin 2φ

TL

)]

+ |!SaT | |!SbT |
[

cos(φa + φb)
(

(1 + cos2 θ)F 1
TT + (1 − cos2 θ)F 2

TT + sin 2θ cosφF cos φ
TT + sin2 θ cos 2φF cos 2φ

TT

)

+ cos(φa − φb)
(

(1 + cos2 θ) F̄ 1
TT + (1 − cos2 θ) F̄ 2

TT + sin 2θ cosφ F̄ cos φ
TT + sin2 θ cos 2φ F̄ cos 2φ

TT

)

+ sin(φa + φb)
(

sin 2θ sinφF sin φ
TT + sin2 θ sin 2φF sin 2φ

TT

)

+ sin(φa − φb)
(

sin 2θ sinφ F̄ sin φ
TT + sin2 θ sin 2φ F̄ sin 2φ

TT

)]}

. (57)

In Eq. (57) 48 structure functions show up which exactly matches with the number of the Vi defined in Section III.
The structure functions again depend on the three variables Pa ·q, Pb ·q, and q2, i.e., F 1

UU = F 1
UU (Pa ·q, Pb ·q, q2)

and so on. We refrain from giving the explicit relations between the structure functions in (57) and the Vi because
these lengthy formulae are not needed for the following discussion. In order to shorten the notation in (57) we left
out indices for the angles which characterize the lepton momenta and the transverse spin vectors of the hadrons.
There is yet another reason for omitting those indices: the form of the angular distribution in (57) holds for
any dilepton rest frame and not just the CS frame. The numerical values of the structure functions of course
change when going from one frame to another. Furthermore, note that the components of the spin vectors can be
understood in different frames like the rest frame of one of the hadrons, the cm-frame, or a dilepton rest frame.

In particular for the angular distribution of the unpolarized cross section different notations can be found in
the literature (see, e.g., [35] and references therein). Here we just quote the frequently used formula

dN

dΩ
≡

dσ

d4q dΩ

/

dσ

d4q
=

3

4π

1

λ + 3

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

. (58)

One readily finds

λ =
F 1

UU − F 2
UU

F 1
UU + F 2

UU

, µ =
F cos φ

UU

F 1
UU + F 2

UU

, ν =
2 F cos 2φ

UU

F 1
UU + F 2

UU

. (59)

The socalled Lam-Tung relation [33, 34, 37]

λ + 2ν = 1 , (60)

which in terms of the structure functions defined in (57) reads

F 2
UU = 2 F cos 2φ

UU , (61)

has attracted considerable attention in the past. This relation is exact if one computes the DY process to
O(αs) in the standard collinear perturbative QCD framework. Even at O(α2

s) the numerical violation of (60) is
small [38]. On the other hand data for π− N → µ− µ+ X taken at CERN [39, 40] and at Fermilab [41] are in
disagreement with the Lam-Tung relation. In particular, an unexpectedly large cos 2φ modulation of the cross
section was observed, and in the meantime different explanations for this phenomenon have been put forward in
the literature [42, 43, 44, 45, 46, 47, 48]. In Ref. [31] it was pointed out that intrinsic transverse motion of initial
state partons might be responsible for the observed violation of the Lam-Tung relation. In the following section
we will briefly return to this point in connection with the parton model calculation. It is also worthwhile to
mention that more recent Fermilab data on proton-deuteron Drell-Yan do agree with the Lam-Tung relation [49].

The hadronic tensor given in Section III also allows one to find the angular distribution of the cross section for
the specific kinematical point qT = 0. Altogether, in that case one has nine independent angular dependences
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S. Arnold, A. Metz and M. Schlegel, arXiv:0809.2262 [hep-ph] 
cross-section: most general pp leading-twist expression 



Case of one polarized nucleon only
dσ

d4q dΩ
=

α2

Φ q2

{
(1 + cos2 θ) F 1

U + (1− cos2 θ) F 2
U + sin 2θ cos φ F cos φ

U + sin2 θ cos 2φ F cos 2φ
U

+ SL

(
sin 2θ sin φ F sin φ

L + sin2 θ sin 2φ F sin 2φ
L

)

+ ST

[(
F sin φS

T + cos2θ F̃ sin φS

T

)
sinφS + sin 2θ

(
sin(φ + φS) F sin(φ+φS)

T

+ sin(φ− φS) F sin(φ−φS)
T

)

+ sin2 θ
(
sin(2φ + φS) F sin(2φ+φS)

T + sin(2φ− φS) F sin(2φ−φS)
T

)]}

Collins-Soper 
frame 
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λ = 1 µ = ν = 0

1
σ

dσ

dΩ
=

3
4π

1
λ + 3

(
1 + λ cos2 θ + µ sin 2θ cos φ +

ν

2
sin2 θ cos 2φ

)

Unpolarized cross section already very interesting

Collins-Soper frame 

naive collinear parton model:
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q = u, ū, d, d̄, s, s̄

dσ↑ − dσ↓ ∝
∑

q

∆Nfq/p↑(x1,k⊥)⊗ fq̄/p(x2)⊗ dσ̂

Sivers effect in D-Y processes 

By looking at the d4σ/d4q cross section one can 
single out the Sivers effect in D-Y processes     

A
sin(φS−φγ)
N ≡

2
∫ 2π
0 dφγ [dσ↑ − dσ↓] sin(φS − φγ)

∫ 2π
0 dφγ [dσ↑ + dσ↓]

p p
qT

qL

(p-p c.m. frame) 
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Predictions for AN 
Sivers functions as extracted  from SIDIS data, with opposite sign 

M.A., M. Boglione, U. D’Alesio, S. Melis, F. Murgia, A. Prokudin, e-Print: arXiv:0901.3078 
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AN ≡ dσ↑ − dσ↑

dσ↑ + dσ↑

SSA in hadronic processes: TMDs, higher-twist correlations?

M.A., M. Boglione, U. D’Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ...

a b

c
X

X

σ̂

dσ↑ =
∑

a,b,c=q,q̄,g

fa/p↑(xa,k⊥a)⊗ fb/p(xb,k⊥b)⊗ dσ̂ab→cd(k⊥a,k⊥b)⊗Dπ/c(z,p⊥π)

single spin effects in TMDs

Generalization of collinear scheme 
(assuming factorization)



patterns of polarization signs. The unfilled 9 bunches are
sequential and correspond to the abort gap needed to eject
the stored beams. Pb was measured every 3 h during RHIC
stores by a polarimeter that detected recoil carbon ions
produced in elastic scattering of protons from carbon rib-
bon targets inserted into the beams. The effective AN of this
polarimeter was determined from p" þ p" elastic scattering
from a polarized gas jet target [24] thereby determining
Pb ¼ 55:0# 2:6% (56:0# 2:6%) for the Blue (Yellow)
beam in the 2006 run [25].

The FPD comprises four modules, each containing a
matrix of lead glass (PbGl) cells of dimension 3:8 cm$
3:8 cm$ 18 radiation lengths. Pairs of modules were
positioned symmetrically left (L) and right (R) of the
beam line in both directions, at a distance of %750 cm
from the interaction point [21]. The modules facing the
Yellow (Blue) beam are square matrices of 7$ 7 (6$ 6)
PbGl cells. Data from all FPD cells were encoded for each
bunch crossing, but only recorded when the summed en-
ergy from any module crossed a preset threshold.

Neutral pions are reconstructed via the decay !0 ! "".
The offline event analysis included conversion of the data
to energy for each cell, formation of clusters and recon-
struction of photons using a fit with the function that
parametrizes the average transverse profile of electromag-
netic showers. Collision events were identified by requiring
a coincidence between the east and west STAR beam-beam
counters, as used for cross section measurements [26].
Events were selected when two reconstructed photons
were contained in a fiducial volume, whose boundary
excludes a region of width 1=2 cell at the module edges.
Detector calibration was determined from the !0 peak
position in diphoton invariant mass (M"") distributions.

The estimated calibration accuracy is 2%. The analysis was
validated by checking against full PYTHIA/GEANT simula-
tions [27]. The reconstructed !0 energy resolution is given
by #E!=E! & 0:16=

ffiffiffiffiffiffiffi
E!

p
.

Because of the limited acceptance there is a strong
correlation between xF and pT for reconstructed !0

(Fig. 1). Spin effects in the xF-pT plane are studied by
positioning the calorimeters at different transverse dis-
tances from the beam, maintaining L=R symmetry for pairs
of modules. Figure 1 shows loci from h$i ¼ 3:3, 3.7, and
4.0. There is overlap between the loci, providing cross-
checks between the measurements. Because the measure-
ments were made at a colliding beam facility, both xF > 0
and xF < 0 results are obtained concurrently.
Events with 0:08<M"" < 0:19 GeV=c2 were counted

separately by spin state from one or the other beam, with
no condition on the spin state of the second beam, in the xF
bins shown in Fig. 1. For each run i, AN;i for each bin was
then determined by forming a cross ratio

AN;i ¼
1

Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p ' ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p ; (1)

whereNLðRÞ"ð#Þ;i is the number of events in the L (R) module
when the beam polarization was up (down). Equation (1)
cancels spin dependent luminosity differences through
second order. Statistical errors were approximated by
!AN;i ¼ ½Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";i þ NL#;i þ NR";i þ NR#;i

p +'1, valid for
small asymmetries. All measurements of Pb for a store
were averaged and applied to get AN;i for each bin. The
run-averaged AN #!AN values are shown in Fig. 2.

FIG. 1 (color online). Correlation between pion longitudinal
momentum scaled by

ffiffiffi
s

p
=2 (xF) and transverse momentum (pT)

for all events. Bins in xF used in Figs. 2 and 4 are indicated by
the vertical lines. There is a strong correlation between xF and
pT at a single pseudorapidity (h$i).

FIG. 2 (color online). Analyzing powers in xF bins (see Fig. 1)
at two different h$i. Statistical errors are indicated for each
point. Systematic errors are given by the shaded band, excluding
normalization uncertainty. The calculations are described in the
text. The inset shows examples of the spin-sorted invariant mass
distributions. The vertical lines mark the !0 mass.
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Systematic errors potentially arise from several sources.
The bunch counter, used for the spin directions, identifies
events in the abort gaps arising from single-beam back-
grounds. They account for <5! 10"4 of the observed
yield. Systematic effects from gain variations with time
are controlled by polarization reversals of the stored beam
bunches, as demonstrated by examples of spin-sorted M!!

for L;R modules in the inset of Fig. 2. Distributions of the
significance, Si ¼ ðAN;i " ANÞ=!AN;i, are well described
by zero mean value Gaussian distributions with " equal to
unity, as expected if the uncertainties are dominated by
statistics, except near the trigger threshold where larger "
is observed. Systematic errors are estimated from "!
!AN and differences in AN associated with #0 identifica-
tion, with the largest value chosen. The upper limit on a
correlated systematic error, common to all points, arising
from instrumental effects is $AN & 4! 10"4.

The same pair of modules concurrently measure AN

values consistent with zero for xF < 0 and AN that in-
creases with xF for xF > 0, depending on which beam
spin is chosen. Null results at xF < 0 are natural since a
possible gluon Sivers function is probed where the unpo-
larized gluon distribution is large. For xF > 0, a calculation
[13,28] using quark Sivers functions fit [29] to SIDIS data
[7] best describes our results at h%i ¼ 3:3. Twist-3 calcu-
lations [16] that fit p" þ p ! #þ X data at

ffiffiffi
s

p ¼ 20 GeV
[4] and preliminary RHIC results from the 2003 and 2005
runs at

ffiffiffi
s

p ¼ 200 GeV [21,22] best describe the data at
h%i ¼ 3:7. Both calculations are in fair agreement with the
variation of AN with xF. Neither calculation describes data
at both h%i.

Events from modules at different h%i that overlap in the
xF-pT plane (Fig. 1) provide consistent results. Hence, it is
possible to further bin the results not only by xF but also by
pT . For this analysis, pT is determined from the measured
energy, the fitted position of the #0 within an FPD module,
and the measured position of the module relative to the
beam pipe and to the collision vertex. The z component of
the event vertex uses a coarse time difference between the
east and west beam-beam counters, and is determined to
(20 cm resulting in !pT=pT ¼ 0:04, where !pT is the
uncertainty in pT . One method of determining the pT

dependence (Fig. 3) was to select events with jxFj> 0:4.
AN is consistent with zero for xF <"0:4. For xF > 0:4,
there is a hint of an initial decrease of AN with pT , although
the statistical errors are large, since h%i ¼ 4:0 data were
only obtained in the 2003 and 2005 runs with limited
integrated luminosity and polarization. For pT >
1:7 GeV=c, AN tends to increase with pT for xF > 0:4.
This is contrary to the theoretical expectation that AN

decreases with pT .
The results in Fig. 3 may still reflect small correlations

between xF and pT for each point, rather than the depen-
dence of AN on pT at fixed xF. To eliminate this correla-
tion, event selection from Fig. 1 was made in bins of xF,

followed by bins in pT . The resulting variation of AN with
pT is shown in Fig. 4, compared to calculations [13] using
a Sivers function fit to p" þ p ! #þ X data [4] and twist-
3 calculations [16]. For each point, the variation of hxFi is
smaller than 0.01. There is a clear tendency for AN to
increase with pT , and no significant evidence over the
measured range for AN to decrease with increasing pT , as
expected by the calculations. This discrepancy may arise
from unexpected TMD fragmentation contributions, xF; pT

dependence of the requisite color-charge interactions, evo-
lution of the Sivers functions, or from process dependence
not accounted for by the theory.
In summary, we have measured the xF and pT depen-

dence of the analyzing power for forward #0 production in
p" þ p collisions at

ffiffiffi
s

p ¼ 200 GeV in kinematics (0:3<
xF < 0:6 and 1:2< pT < 4:0 GeV=c) that straddle the
region where cross sections are found in agreement with
pQCD calculations. The xF dependence of the #0 AN is in

FIG. 3 (color online). Analyzing powers versus #0 transverse
momentum (pT) for events with scaled #0 longitudinal momen-
tum jxFj> 0:4. Errors are as described for Fig. 2.

FIG. 4 (color online). Analyzing powers versus #0 transverse
momentum (pT) in fixed xF bins (see Fig. 1). Errors are as
described for Fig. 2. The calculations are described in the text.
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large SSAs 
observed 

photon decays improves for larger xF in the η mass region and is significant for xF above
about 0.4. In Figure 1, the three pairs of mass plots correspond to a further selection
of events with photon pair energies in the indicated ranges. The mass regions that will
be associated with π0 and η mesons are indicated with the vertical bands. It is for the
events in these two mass bands that the single spin asymmetry is calculated as a function
of xF using the cross ratio method[7]. These asymmetries are shown in Figure 2.
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Fig. 1. Two photon mass distributions are shown in 3 en-
ergy ranges with π0 and η mass bands indicated. Note the
log scale on the upper plots and that the linear scale on the
lower plots emphasizes the η peak.
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Fig. 2. The dependence of AN on xF is
plotted for the π0 and η mass bands de-
fined by mπ0 = 0.135 ± 0.05 GeV for π0

and mη = 0.55 ± 0.07 GeV for η.

3. Results and Summary

Like the E704 measurement, the asymmetry AN for the η meson mass region is larger
than that for the π0 region. The weighted average of this asymmetry over Feynman xF

in the range 0.55 < xF < .75 is 〈AN 〉η = 0.361 ± 0.064. In comparison, for the π0 mass
region the corresponding asymmetry is 〈AN 〉π0 = 0.078 ± 0.018. The errors here are
statistical, with preliminary estimates of systematic errors much smaller. This difference
in AN between the η mass region and the π0 region is more than four standard deviations.
In the η region, we further note the trend to higher asymmetry at larger xF , raising the
question as to whether the asymmetry is approaching a maximal value of 1 in the high
xF end of this range. This result is consistent with the E704 measurement but is more
significant with largest AN at higher xF than previously measured.
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contributions to A_N of SIDIS extracted Sivers, Collins 
and transversity distributions 
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a combination of Sivers and Collins effect might explain data



Conclusions
Both Collins and Sivers effects have been 

experimentally observed 
First extractions of Sivers functions, from SIDIS data, 

mainly for u and d quarks; role of valence quarks not 
clear yet. Gluon Sivers function?  

 Role of Sivers function in other processes? Crucial 
test of sign change in Drell-Yan  

First extractions of Collins functions (and 
transversity distributions) for u and d 

quarks. SIDIS and Belle data 

The 3-dimensional exploration of the nucleon 
structure has just begun ....

Many open theoretical issues: Q2 evolution of 
TMDs, factorization, universality, ...


