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• Transverse structure spin Effects in TSSAs

• Gauge links-Color Gauge Inv.-“T-odd” TMDs

• T-odd PDFs via FSIs ... Summing gauge link
“QCD calc “  FSIs Gauge Links-Color Gauge Inv. “T-odd” TMDs 

• Generalizing the Generalized Parton Model 
(GPM)--effects of FSI and ISI on color structure

• Connection to twist three & Gluonic Poles

• Universality and gluonic poles in fragmentation
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Transverse SPIN Observables SSA (TSSA) p↑ p → πX
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• Single Spin Asymmetry AN = σ↑(xF ,p⊥)−σ↑(xF ,−p⊥)
σ↑(xF ,p⊥)+σ↑(xF ,−p⊥)

≡ ∆σ

• Rotational invariance σ↓(xF , p⊥) = σ↑(xF ,−p⊥)
⇒ Left-Right Asymmetry

# Parity Conserving interactions: SSAs “Transverse” Scattering plane
=⇒ ∆σ ∼ iST · (P × P π

T )

• Correlation in Transverse Momentum PT & Transverse SPIN ST
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Transverse SPIN Observables SSA  (TSSA) P ↑P → π X



Elastic scattering of 2 quarks of different flavor
6 independent helicity Amps

e.g. Goldstein & Owens NPB 76

Transverse Polarization in Inclusive Reactions P ↑P → π X

Interference of helicity flip and non-flip amps
1) requires breaking of chiral symmetry mq /E
2) phases require higher order corrections

quark-quark scattering

M++,++ ≡ Φ1 M−−,++ ≡ Φ2 M+−,+− ≡ Φ3

M−+,+− ≡ Φ4 M−+,++ ≡ Φ5 M++,+− ≡ Φ6

AN =
σ̂↑ − σ̂↓

σ̂↑ + σ̂↓
∼ Im [Φ6(Φ1 + Φ3)∗ − Φ5(Φ2 − Φ4)∗]

D

f

M∗

f

M

Transv. polarization cross section 
“interference” of helicity flip and 
non-flip  amps. 

Mλ′
q1

,λ′
q2

;λq1 ,λq2



Reaction Mechanisms: Co-linear QCD

! TSSA requires relative phase btwn different helicity amps

• | ↑ / ↓〉 = (|+〉 ± i|−〉) ⇒ ÂN = σ̂↑−σ̂↓

σ̂↑+σ̂↓ ∼ 2 Im f∗+f−

|f+|2+|f−|2

! Co-linear factorized QCD-parton dynamics

∆σpp↑→πX ∼ fa ⊗ fb ⊗ ∆σ̂ ⊗ Dq→π

requires helicity flip in hard part ∆σ̂ ≡ σ̂↑ − σ̂↓

• QCD interactions conserve helicity
mq → 0 and Born amplitudes real

+ x +m
−−+ +

+
! AN ∼ mqαs

PT
Kane, Repko, PRL:1978

4

âN =
σ̂↑ − σ̂↓

σ̂↑ + σ̂↓
∼

Im
(
M+∗M−)

|M+|2 + |M−|2

| ↑ / ↓〉 = (|+〉 ± i|−〉)
D

f

M∗

f

M

∆σpp↑→πX ∼ fa ⊗ fb ⊗∆σ̂ ⊗Dq→π

Collinear factorized QCD parton dynamics

∆σ̂ ≡ σ̂↑ − σ̂↓



Factorization Theorem & SSAs at Partonic level 

at the partonic level

•Born amps are real -- need “loops”----> phases
•QCD interactions conserve helicity up to corrections 

∆σ̂ ∼ Im[M∗
+M−]

+ −
X

mq
−+ + +

⊗

∗

Im

O
(

mq

Eq

)

Twist three and trivial in chiral limit

AN ∝ mq

E
αs

Kane & Repko, PRL: 1978
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Large Transverse Polarization in Inclusive Reactions

Fixed target Collider

pbeam=12 Gev/c pbeam=22 Gev/c pbeam=200 Gev/c



Modern Era Transverse SSAʼs at √s = 62.4 & 200 GeV at RHIC

PRL101, 042001 (2008)
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patterns of polarization signs. The unfilled 9 bunches are
sequential and correspond to the abort gap needed to eject
the stored beams. Pb was measured every 3 h during RHIC
stores by a polarimeter that detected recoil carbon ions
produced in elastic scattering of protons from carbon rib-
bon targets inserted into the beams. The effective AN of this
polarimeter was determined from p" þ p" elastic scattering
from a polarized gas jet target [24] thereby determining
Pb ¼ 55:0# 2:6% (56:0# 2:6%) for the Blue (Yellow)
beam in the 2006 run [25].

The FPD comprises four modules, each containing a
matrix of lead glass (PbGl) cells of dimension 3:8 cm$
3:8 cm$ 18 radiation lengths. Pairs of modules were
positioned symmetrically left (L) and right (R) of the
beam line in both directions, at a distance of %750 cm
from the interaction point [21]. The modules facing the
Yellow (Blue) beam are square matrices of 7$ 7 (6$ 6)
PbGl cells. Data from all FPD cells were encoded for each
bunch crossing, but only recorded when the summed en-
ergy from any module crossed a preset threshold.

Neutral pions are reconstructed via the decay !0 ! "".
The offline event analysis included conversion of the data
to energy for each cell, formation of clusters and recon-
struction of photons using a fit with the function that
parametrizes the average transverse profile of electromag-
netic showers. Collision events were identified by requiring
a coincidence between the east and west STAR beam-beam
counters, as used for cross section measurements [26].
Events were selected when two reconstructed photons
were contained in a fiducial volume, whose boundary
excludes a region of width 1=2 cell at the module edges.
Detector calibration was determined from the !0 peak
position in diphoton invariant mass (M"") distributions.

The estimated calibration accuracy is 2%. The analysis was
validated by checking against full PYTHIA/GEANT simula-
tions [27]. The reconstructed !0 energy resolution is given
by #E!=E! & 0:16=

ffiffiffiffiffiffiffi
E!

p
.

Because of the limited acceptance there is a strong
correlation between xF and pT for reconstructed !0

(Fig. 1). Spin effects in the xF-pT plane are studied by
positioning the calorimeters at different transverse dis-
tances from the beam, maintaining L=R symmetry for pairs
of modules. Figure 1 shows loci from h$i ¼ 3:3, 3.7, and
4.0. There is overlap between the loci, providing cross-
checks between the measurements. Because the measure-
ments were made at a colliding beam facility, both xF > 0
and xF < 0 results are obtained concurrently.
Events with 0:08<M"" < 0:19 GeV=c2 were counted

separately by spin state from one or the other beam, with
no condition on the spin state of the second beam, in the xF
bins shown in Fig. 1. For each run i, AN;i for each bin was
then determined by forming a cross ratio

AN;i ¼
1

Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p ' ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p ; (1)

whereNLðRÞ"ð#Þ;i is the number of events in the L (R) module
when the beam polarization was up (down). Equation (1)
cancels spin dependent luminosity differences through
second order. Statistical errors were approximated by
!AN;i ¼ ½Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";i þ NL#;i þ NR";i þ NR#;i

p +'1, valid for
small asymmetries. All measurements of Pb for a store
were averaged and applied to get AN;i for each bin. The
run-averaged AN #!AN values are shown in Fig. 2.

FIG. 1 (color online). Correlation between pion longitudinal
momentum scaled by

ffiffiffi
s

p
=2 (xF) and transverse momentum (pT)

for all events. Bins in xF used in Figs. 2 and 4 are indicated by
the vertical lines. There is a strong correlation between xF and
pT at a single pseudorapidity (h$i).

FIG. 2 (color online). Analyzing powers in xF bins (see Fig. 1)
at two different h$i. Statistical errors are indicated for each
point. Systematic errors are given by the shaded band, excluding
normalization uncertainty. The calculations are described in the
text. The inset shows examples of the spin-sorted invariant mass
distributions. The vertical lines mark the !0 mass.
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flight walls.
With no spin rotator magnets outside the BRAHMS interaction region,

all proton-proton collisions at BRAHMS are transversely polarized in the
vertical direction.

4. Results

A number of results are now available from transversely polarized data
taken by the BRAHMS and PHENIX experiments at center-of-mass ener-
gies of 200 and 62.4 GeV. The transverse single-spin asymmetries discussed
below are all left-right asymmetries, which can be calculated by

ALeft
N =

1

P

N↑ − RN↓

N↑ + RN↓

where ALeft
N

indicates the asymmetry calculated to the left of the polar-
ized beam, P is the beam polarization, N↑ (N↓) is the particle yield from
bunches polarized up (down), and R = L

↑

L↓ is the relative luminosity be-
tween up- and down-polarized bunches. Both beams at RHIC are polarized;
in the calculation of single-spin asymmetries, the polarization of one beam
is considered while averaging over the polarization states of the other.
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Fig. 2. Charged pion asymmetries measured at 200 and 62.4 GeV by the BRAHMS
experiment and at 19.4 GeV by the E704 experiment, shown for overlapping kinematic
ranges (see text).

In the early 1990’s large transverse single-spin asymmetries in forward
pion production were observed by the E704 experiment at Fermilab at a
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QCD test-Λ Production pp → Λ↑ X

• Need strange quark to polarize a Λ

PΛ =
σpp→Λ↑X − σpp→Λ↓X

σpp→Λ↑X + σpp→Λ↓X
(1)

Dharmartna & Goldstein PRD 1990
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FIG. 1: Schematic diagram of inclusive Λ production and
decay. The angle θp of the decay proton with respect to the
normal n̂ to the production plane is defined in the Λ rest
frame.

Here, k̂p is the proton momentum unit vector in the

Λ rest frame, !PΛ is the polarization of the Λ, and
α = 0.642 ± 0.013 is the analyzing power of the parity-
violating weak decay [20]. Assuming CP -invariance of
the decay, the analyzing power for the Λ̄ is of opposite
sign (αΛ̄ = −0.642) [20]. The quantity dN0/dΩp denotes
the decay distribution of unpolarized Λ particles. As de-
scribed above, only the normal component PΛ

n of the Λ
polarization may be non-zero in the present analysis, and
so Eq. 2 may be rewritten as

dN

dΩp
=

dN0

dΩp
(1 + αPΛ

n cos θp). (3)

For unpolarized Λ particles the distribution of the de-
cay particles is isotropic and dN0/dΩp is simply a nor-
malization factor, independent of angle. In the case of
limited spectrometer acceptance, however, it acquires a
dependence on cos θp.

To extract the polarization of a sample of Λ hyper-
ons from the angular distribution of their decay prod-
ucts in the acceptance, one may determine the following
moments:

〈cosm θp〉 ≡

∫
cosm θp

dN
dΩp

dΩp
∫

dN
dΩp

dΩp

≡

∫
cosm θp

dN
dΩp

dΩp

NΛ
acc

,

(4)
and

〈cosm θp〉0 ≡

∫
cosm θp

dN0

dΩp
dΩp

∫
dN0

dΩp
dΩp

≡

∫
cosm θp

dN0

dΩp
dΩp

NΛ
0,acc

,

(5)
where m = 1, 2, .. . The symbol 〈...〉 represents an aver-
age over an actual data sample, while 〈...〉0 denotes an
average over a hypothetical purely-unpolarized sample of
Λ particles with an isotropic decay distribution. NΛ

acc and
NΛ

0,acc are equal to the total number of Λ events for the
same luminosity accepted by the spectrometer. They are
related by

NΛ
acc = NΛ

0,acc(1 + αPΛ
n 〈cos θp〉0). (6)

Combining Eqs. 3 - 6 one obtains

〈cosm θp〉 =
〈cosm θp〉0 + αPΛ

n 〈cosm+1 θp〉0
1 + αPΛ

n 〈cos θp〉0
. (7)

The extraction of the Λ polarization PΛ
n from the ex-

perimental data is based on Eq. 7. The ‘polarized’ mo-
ments 〈cosm θp〉 can be determined by taking an average
over the experimental data set:

〈cosm θp〉 =
1

NΛ
acc

NΛ
acc∑

i=1

cosm θp,i. (8)

The ‘unpolarized’ moments 〈cosm θp〉0 cannot be ex-
tracted directly from the data as no sample of unpo-
larized Λ hyperons is available. Fortuitously, however,
the extraction of the transverse Λ polarization from the
HERMES data is greatly simplified by the up/down mir-
ror symmetry of the HERMES spectrometer, even in the
case of limited acceptance. It can be readily shown that
this geometric symmetry leads to the relation

〈cosm θp〉
top
0 = (−1)m〈cosm θp〉

bot
0 , (9)

where top and bot specify events in which the hyperon’s
momentum was directed above or below the midplane of
the spectrometer. Consequently all ‘unpolarized’ uneven
moments of the full acceptance function (top plus bot)
are zero, and all even ‘polarized’ moments are equal to
the ‘unpolarized’ ones:

〈cosm θp〉 = 〈cosm θp〉0 m = 2, 4, ... . (10)

The first moment of cos θp may be calculated sepa-
rately for the top and bot data samples to account for a
possible difference in the overall efficiency of each detec-
tor half. Using the symmetry relations (Eqs. 9 and 10),
one obtains from Eq. 7 a system of two coupled equations
for αPΛ

n and 〈cos θp〉
top
0 :

αPΛ
n =

c+/〈cos2 θp〉

1 − 〈cos θp〉
top
0 c−/〈cos2 θp〉

, (11)

〈cos θp〉
top
0 =

c−
1 − c+αPΛ

n

, (12)

where 2c+ (2c−) is the sum (difference) of 〈cos θp〉top

and 〈cos θp〉bot. This system of coupled equations can be
solved iteratively. The iteration converges quickly. If one
takes αPΛ

n = c+/〈cos2 θp〉 and 〈cos θp〉
top
0 = c− for the

first iteration, then the solution of the second iteration
for PΛ

n and 〈cos θp〉
top
0 reads:

αPΛ
n =

c+/〈cos2 θp〉

1 − c2
−/〈cos2 θp〉

, (13)

〈cos θp〉
top
0 =

c−
1 − c2

+/〈cos2 θp〉
. (14)



Comment 

• Largest TSSA least understood
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• Need strange quark to polarize a Λ PΛ = σpp→Λ↑ X−σpp→Λ↓X

σpp→Λ↑ X+σpp→Λ↓X

Dharmartna & Goldstein PRD 1990

Phases in hard part ∆σ̂
interference of loops and tree level
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Twist three and non-trival?!

Not the full story @ Twist 3 approach ETQS approach  
Gluonic Poles

Factorization and Pheno: Qiu, Sterman 1991,1999...,  Koike et al, 2000, ... 2010,  Ji, Qiu, Vogelsang, Yuan, 2005 ... 2008 ..???,   
Yuan, Zhou 2008, 2009, Kang, Qiu, 2008, 2009 ...   
Kouvaris Ji,  Qiu,Vogelsang! 2006,  Vogelsang and Yuan 2007, Bacchetta et al. 2007

Phases in soft poles propagators-hard subprocesses Efremov & Teryaev  Yad. Fiz & PLB  1984-1985



Q ∼ PT >> Λqcd Co-linear Twist Three Mechanism

Phases in soft poles of propagator in hard subprocess Efremov & Teryaev :PLB 1982

! Get helicity flips and phases mq →∼ MH and
! αs → correlation function

• ∆σ ∼ fa ⊗ TF ⊗ HETQS ⊗ Dq→π Factorized co-linear QCD
Qiu & Sterman:PLB 1991, 1999, Koike et al. PLB 2000. . . 2007, Ji,Qiu,Vogelsang,Yuan:PR
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Fig. 1. Kinematics of semi-inclusive deeply inelastic scattering.

The deep inelastic region is where Q is made large, with XBj and z held fixed

and not close to their endpoints 0 and 1. We will always assume in this paper that

the scattering is taken to lowest order in QED, with a single photon being

exchanged between the lepton and the hadronic system, fig. 1.

The reason for defining the variables XBJ, z and q
1 is that they have a simple

interpretation in the parton model. There, it is assumed that the dominant

contributions to the cross section have the form of fig. 2. The virtual photon

interacts in Born approximation with a single quark, which is close to its mass shell

and which has low transverse momentum on the scale Q. Then when hadron B is

part of the “current quark jet” produced in the hard scattering, z has the

interpretation of the fraction of the jet’s momentum that is carried by the hadron.

As usual, ~ has the interpretation of the fraction of the momentum of the

incoming hadron A that is carried by the parton that enters the hard scattering.

To treat intrinsic transverse momentum for the initial state and for the fragmen-

tation, we need a suitable frame in which to define them. First we define what we

will call the “parton model jet axis”:

p~
2_qP+x~~p~. (10)

This would be the jet momentum if there were no intrinsic transverse momentum.

Even in the presence of transverse momentum, the definition (10) gives a conve-

Fig. 2. Parton model for semi-inclusive deeply inelastic scattering.
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The picture that goes with these results is fig. 2. All that we have done is to take

account of the transverse momentum of the quarks relative to the measured initial-

and final-state hadrons. This intrinsic transverse momentum has the effect of

smearing out the delta function of q
1 that we remarked on earlier. The only

generalization needed compared with the parton model is that the hard scattering

can contain higher-order virtual corrections. In the absence of gauge bosons in the

strong interactions, this formula in the exact form given in eq. (13) is a theorem,

that can be proved as in the Drell—Yan case [191.

The spin-i gluons of QCD modify the theorem, by causing Sudakov form-factor

effects. We expect that a proof can be given just as in the Drell—Yan case [17]. The

effect is to broaden the transverse momentum distribution as Q increases, but in a

spin-independent way: the broadening is due to recoil against the transverse

momentum of soft gluon emission. This will have the effect of diluting the spin

asymmetry we will discuss next.

3.4. FACTORIZATION WITH INTRINSIC TRANSVERSE MOMENTUM AND POLARIZATION

We now explain factorization for the semi-inclusive deep inelastic cross section

when the incoming hadron A is transversely polarized but the lepton remains

unpolarized. (It is left as an exercise to treat the most general case.) The

factorization theorems, eq. (12) and eq. (14), continue to apply when we include

polarization for the incoming hadron, but with the insertion of helicity density

matrices for in and out quarks; this is a simple generalization of the results in refs.

[10,231.

The cross section will be linear in the transversity s~of the hadron (and also

linear in its helicity A). Because transverse spin for a spin- ~ particle corresponds to

off-diagonal terms in the helicity density matrix, the other primary constraint

comes from quark helicity conservation in the hard scattering, and this simplifies

the factorization theorem.

First, it is well known that at large transverse momentum, the transverse spin

asymmetry is higher twist, as I now review. In that region, we use distribution and

fragmentation functions integrated over intrinsic transverse momentum. Now, in

the absence of a measurement of the polarization of the outgoing hadron, the

single-particle fragmentation is spin independent. On the other hand, the trans-

verse-spin dependence of the distribution functions is only in the off-diagonal

elements of quark density matrices [8]. Therefore we need the part of the hard

scattering that is off-diagonal in the helicity of the initial-state quark but diagonal

in the (summed) final-state helicities. Helicity conservation at the vertices for the

gluon, photon and Z prohibits such a term, at leading twist.

But, at low transverse momentum, the fragmentation function has dependence

on transverse spin — see eq. (4). The corresponding hard scattering is just elastic

electron—quark scattering, and we need terms that are off-diagonal in the final-state
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scattering the approximation that the transverse momentum of the incoming

parton can be neglected with respect to the transverse momentum generated in the

scattering, and one also neglects the transverse momentum generated in the

fragmentation. (Note that to the extent that these transverse momenta are not

negligible, but are of order Q, the errors in the approximations are compensated

by a correct treatment of higher-order corrections to the hard scattering.)

3.3. FACTORIZATION WITH INTRINSIC TRANSVERSE MOMENTUM BUT NO POLARIZA-
TION

To gain information on the q
1 dependence at small q1 , we must derive a more

powerful theorem that involves “intrinsic transverse momentum” in both the

distribution and the fragmentation functions. Such a theorem was derived for the

Drell—Yan process and for the two-particle-inclusive cross section in e~e annihi-

lation [17,28].A similar theorem should apply here. An obvious ansatz is

E’EBd3I,d3 = Efd~f~fd2ka± fd2kbl fa/A(~’ k~1)

d6~
xE’Ekh d

31’ d~kb~”~’ khl) + Y(xB~,Q, z, q
1/Q). (13)

In this formula ó~ represents the short-distance part of elastic lepton—quark

scattering. It contains a delta function for momentum conservation. The sum over

a is over all flavors of quark and antiquark.

The first term on the right of eq. (13) dominates when q1 ~ Q. The second

term, Y, is a correction term that enables eq. (13) to reproduce the ordinary

factorization theorem eq. (12) at large transverse momentum, just as in the

Drell—Yan case [17]. The Y-term has the general form of the basic factorization

theorem eq. (12), except that the low-q1 asymptote is subtracted from the hard

scattering function.

The function fa/A defined earlier gives the intrinsic transverse-momentum

dependence of partons in the initial-state hadron. Similarly, DB/a gives the

distribution of hadrons in a parton, with kbl being the transverse momentum of

the parton relative to the hadron.

Just as in ref. [17,28], the hard-scattering factor in the first term in eq. (13) can

only be a 2 —‘ 2 process. Hence the fractional momenta of the incoming quark

from hadron A and of hadron B in the outgoing quark are forced to be Xn~and Z.

After integrating out the delta-function in d~we obtain

E’EBd3I,d3 = ~ Efd ka± fa/A(XBj, kaI)~DB/a(Z, ka±+q1)

+ Y(xBJ, Q, z, q1/Q). (14)

Ralston Soper NPB 1979, Collins NPB 1993

 Collins Soper NPB 1981,  & Sterman NPB 1985
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Figure 3.1: Examples of diagrams with an additional gluonic interaction be-
tween the soft and the hard functions.

new aspects in small steps at a time. In the first section we will treat SIDIS and Drell-
Yan scattering, two of the simplest processes, as they only involve initial or final state
interactions. Then we will consider a particular contribution to prompt photon production
as an example of a process where more gluonic interactions are possible. In section 3.3
a prescription will be given to more easily predict the structure of the gauge link for
arbitrary hard functions. Using this prescription we will calculate the Wilson lines that
occur in direct photon production and dijet production in proton-proton scattering, since
these are the processes that will be studied in more detail in the next chapter. To conclude
this chapter we will try to argue the validity of the prescription in section 3.4.

3.1 Electroweak Processes: SIDIS and Drell-Yan
In section 2.4 we have hypothesized that if the momenta of the incoming and outgoing
hadrons in semi-inclusive deep inelastic scattering are well-separated it is reasonable to
assume that the observed hadron in the final state has materialized from the soft radiation
emitted by the current quark (i.e. the active quark). In that case the quark contribution to
the hadron tensor can be written in terms of quark correlators Φ(p) and quark fragmenta-
tion correlators ∆(k) connected to each other through hard functions H(p,k):

Wµν =
1

2M

∫
d4pd4k δ4(p+q−k) Tr

[
Φ(p) H†µ(p,k)∆(k) Hν (p,k)

]
, (3.1)

where we have suppressed the summation over quark flavors. Comparing to expres-
sion (2.31) it is seen that at tree-level the hard function is just an electromagnetic vertex
Hµ(p,k)= ieqγµ (the proton charge factors e have been extracted and appear in the struc-
ture constant α in the cross section (2.30)). In the parton model contribution the quark
distribution and fragmentation correlators are given by expressions (2.28) and (2.32). Ob-
viously, this is not a physically meaningful expression, since the correlators are not gauge
invariant. However, in the diagrammatic approach an expression that involves the properly
gauge invariant correlators can be obtained by resumming all collinear gluon interactions
between the soft and the hard factors [57], such as those in Figure 3.1. The result will be
the same as the expression in (3.1) and with the same hard function Hµ(p,k)= ieqγµ as in

Amsterdam grp Boer, Bomhof ,Mulders, 
Pijlman, et al.  2003 - 2008-Gauge link 

determined by re-summing all gluon 
interactions btwn soft and hard
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Gauge link determined re-summing gluon interactions btwn soft and hard 
Efremov,Radyushkin Theor. Math. Phys. 1981

Belitsky, Ji, Yuan NPB 2003,
Boer, Bomhof, Mulders Pijlman, et al.  2003 - 2008- NPB, PLB, PRD 
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Φ
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H †µHρν;a

p

“T-Odd” Effects From Color Gauge Inv. Via Gauge links

Summing gauge link with color
LG, M. Schlegel PLB 2010
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DYSIDIS

Process Dependence,  Collins plb 02, Brodsky et al. NPB 02, Boer Mulders Pijlman Bomhoff 03, 04 ...



“Generalized Universality” Fund. Prediction of  QCD Factorization
T-Odd Effects From Color Gauge Inv. via Wilson Line

• Leading twist Gauge Invariant Distribution Functions

Boer, Mulders: NPB 2000, & Pijlman (BPM) NPB 2003, Belitsky Ji Yuan NPB 2003
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Process Dependence Collins PLB 02, Brodsky, Hwang, Schmidt NPB 02
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EIC  conjunction with DY exp. E906-Fermi, RHIC II, Compass,  JPARC  

Process Dependence,  Collins plb 02, Brodsky et al. NPB 02, Boer Mulders Pijlman Bomhoff 03, 04 ...

f⊥1T sidis
(x, kT ) = −f⊥1T DY

(x, kT ) pT ∼ kT <<
√

Q2

SIDIS DY



kT factorization

Collins, Soper, NPB 193 (81)

Ji, Ma, Yuan, PRD 71 (05)

FUU,T (x, z, P 2
h⊥, Q2) = C

[
f1D1

]

=
∫

d2pT d2kT d2lT δ(2)
(
pT − kT + lT − P h⊥/z

)

x
∑

a

e2
a fa

1 (x, p2
T , µ2)Da

1(z, k2
T , µ2) U(l2T , µ2)H(Q2, µ2)

TMD PDF TMD FF Soft factor Hard part

Ji, Ma, Yuan: PLB, PRD 2004, 2005 Extend factorization of CS-NPB: 81

Also see  Bacchetta Boer Diehl Mulders JHEP 08



FAB = C[w ⊗ f ⊗D]

Leading Twist 
Contributions



• Realization that FSI and ISI btwn struck parton 
and target remnant provide necessary phases 
that lead to non-vanishing TSSAs

• Two scale factorization in terms of TMDs

• One large scale factorization in terms twist 3 
approach

• Connection btwn two approaches? Unified 
picture Ji,Qiu,Vogelsang,Yuan PRL 2006

pT ∼ kT <<
√

Q2

Q ∼ PT >> Λqcd

ΛQCD << qT << Q

Summary of Trans polz effects in QCD



• Feynman and Field (& Fox PRD 77 & 78)-incorporate intrisic kT    

• Include Transverse spin pol.  w/ intrisic kt --Anselmino, Boglione, 
Murgia PLB 94--see talk of Mauro Anselmino this wkshp.

• Pheno.... Torino group and other 1994-2010 inclusive processes

• Weighted and unweighted asymmetries in dijet, photon & jet (safer 
reactions) Bacchetta Bomhoff Mulders Pijlman 2005 PRD & w/ 
D’Alseio and Murgia 2007 PRL, Qiu, Vogelsang, Yuan PRD 2007

• Inclusive processes studied by Kouvaris, Qiu, Vogelsang, Yuan PRD 
2006,  

• What happens when you adopt ansazt  of GPM including 
dynamical reaction mechanism of FSI/ISI in inclusive processes

• Now use process dependent Sivers function

• Since this approach is twist three is there connection w/ twist 3 ?

Generalizing the Generalized Parton Model GPM

pp→ πX pp→ γX



∆σpp↑→γX ∼ ∆fa ⊗ fb ⊗∆σ̂

Direct Photon in GPM with 

???

Jul 16, 2010 Zhongbo Kang, RBRC/BNL

TMD approach for inclusive hadron production

! Generalized Parton Model (GPM) approach

30

One should use the Sivers function that is determined from color 
structure of hard processes in calculating SSA for inclusive pp 
collisions in GPM 

adpot approach of Qiu, Vogelsang, Yuan PRD 07, Kouvaris, Qiu, Vogelsang, Yuan PRD 06



In the so-called generalized parton model (GPM) approach developed by Anselmino and collaborators, the spin-

dependent one could be written as

Eγ
d∆σ

d3Pγ
=
αemαs

S

∑

a,b

∫

dxa

xa
d2kaT∆

N fDISa/A (xa, kaT )
1

2
S A · (P̂A × k̂aT )

×

∫

dxb

xb
d2kbT fb/B(xb, kbT )H

U
ab→γ(ŝ, t̂, û)δ(ŝ + t̂ + û). (40)

Then the single transverse spin asymmetry AN is defined by the ration

AN = Eγ
d∆σ

d3Pγ

/

Eγ
dσ

d3Pγ
. (41)

In this approach, it has been assumed that the Sivers function in this process is the same as those measured in SIDIS

process. As we have shown in last section, this is not the case. One needs to take into account the process-dependence

of the Sivers function. With the process-dependence for the Sivers function, we propose a new formalism for the

spin-dependent cross section:

Eγ
d∆σ

d3Pγ
=
αemαs

S
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a,b
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dxa

xa
d2kaT∆

N f
ab→γ

a/A
(xa, kaT )

1

2
S A · (P̂A × k̂aT )

×

∫

dxb

xb
d2kbT fb/B(xb, kbT )Hab→γ(ŝ, t̂, û)δ(ŝ + t̂ + û), (42)

where ∆N f
ab→γ

a/A
(xa, kaT ) is the process-dependent Sivers function calculated in last section. Since they are directly

proportional to the Sivers function measured in SIDIS up to a prefactor, one could absorb this prefactor into the hard

part coefficient Hab→γ. By doing so, we end up with
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d3Pγ
=
αemαs
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dxa
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dxb

xb
d2kbT fb/B(xb, kbT )H

Sivers
ab→γ(ŝ, t̂, û)δ(ŝ + t̂ + û), (43)

where HSivers
ab→γ

are given by

HSiversqg→γq = e2q
N2c + 1

Nc(N2c − 1)

[

t̂

ŝ
+
ŝ

t̂

]

(44)

HSiversqq̄→γg = e2q
N2c + 1

N2c

[

t̂

û
+
û

t̂

]

(45)

Similarly for inclusive hadron production A + B → h + X, where the spin-averaged differential cross section can

be written as

Eh
dσ

d3Ph
=
α2s
S

∑

a,b,c

∫

dxa

xa
d2kaT fa/A(xa, kaT )

∫

dxb

xb
d2kbT fb/B(xb, kbT )

∫

dzc

z2c
Dh/c(zc)H

U
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (46)

The spin-dependent hard parts HU
ab→c

are calculated before, available in the literature. We list here for convenience.

HU
qq′→qq′ =

N2c − 1

2N2c

ŝ2 + û2

t̂2
(47)

HU
qq̄′→qq̄′ =

N2c − 1

2N2c

ŝ2 + û2

t̂2
(48)
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1

2
S A · (P̂A × k̂aT )

×

∫

dxb

xb
d2kbT fb/B(xb, kbT )H

Sivers
ab→γ(ŝ, t̂, û)δ(ŝ + t̂ + û), (43)

where HSivers
ab→γ

are given by

HSiversqg→γq = e2q
N2c + 1

Nc(N2c − 1)

[

t̂

ŝ
+
ŝ

t̂

]

(44)

HSiversqq̄→γg = e2q
N2c + 1

N2c

[

t̂

û
+
û

t̂

]

(45)

Similarly for inclusive hadron production A + B → h + X, where the spin-averaged differential cross section can

be written as

Eh
dσ

d3Ph
=
α2s
S

∑

a,b,c

∫

dxa

xa
d2kaT fa/A(xa, kaT )

∫

dxb

xb
d2kbT fb/B(xb, kbT )

∫

dzc

z2c
Dh/c(zc)H

U
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (46)

The spin-dependent hard parts HU
ab→c

are calculated before, available in the literature. We list here for convenience.

HU
qq′→qq′ =

N2c − 1

2N2c

ŝ2 + û2

t̂2
(47)

HU
qq̄′→qq̄′ =

N2c − 1

2N2c

ŝ2 + û2

t̂2
(48)
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and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆Nfab→c

a/A (xa, kaT )
1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (5)

in which a process-dependent Sivers function denoted as ∆Nfab→c
a/A (xa, kaT ) is used rather than that from SIDIS

∆NfSIDIS
a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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FIG. 2: Sivers function in SIDIS process in the first non-trivial order (one-gluon exchange).



Spin Dependent Cross Section in GPM

In the so-called generalized parton model (GPM) approach developed by Anselmino and collaborators, the spin-

dependent one could be written as

Eγ
d∆σ

d3Pγ
=
αemαs

S

∑

a,b

∫

dxa

xa
d2kaT∆

N fDISa/A (xa, kaT )
1

2
S A · (P̂A × k̂aT )

×

∫

dxb

xb
d2kbT fb/B(xb, kbT )H

U
ab→γ(ŝ, t̂, û)δ(ŝ + t̂ + û). (40)

Then the single transverse spin asymmetry AN is defined by the ration

AN = Eγ
d∆σ

d3Pγ

/

Eγ
dσ

d3Pγ
. (41)

In this approach, it has been assumed that the Sivers function in this process is the same as those measured in SIDIS

process. As we have shown in last section, this is not the case. One needs to take into account the process-dependence

of the Sivers function. With the process-dependence for the Sivers function, we propose a new formalism for the

spin-dependent cross section:

Eγ
d∆σ

d3Pγ
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S
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a,b
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dxa

xa
d2kaT∆

N f
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a/A
(xa, kaT )

1

2
S A · (P̂A × k̂aT )
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dxb

xb
d2kbT fb/B(xb, kbT )Hab→γ(ŝ, t̂, û)δ(ŝ + t̂ + û), (42)

where ∆N f
ab→γ

a/A
(xa, kaT ) is the process-dependent Sivers function calculated in last section. Since they are directly

proportional to the Sivers function measured in SIDIS up to a prefactor, one could absorb this prefactor into the hard

part coefficient Hab→γ. By doing so, we end up with
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2
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×

∫
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Sivers
ab→γ(ŝ, t̂, û)δ(ŝ + t̂ + û), (43)

where HSivers
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are given by

HSiversqg→γq = e2q
N2c + 1

Nc(N2c − 1)

[

t̂
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+
ŝ

t̂

]

(44)
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[
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û
+
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(45)

Similarly for inclusive hadron production A + B → h + X, where the spin-averaged differential cross section can

be written as

Eh
dσ

d3Ph
=
α2s
S

∑

a,b,c

∫

dxa

xa
d2kaT fa/A(xa, kaT )

∫

dxb

xb
d2kbT fb/B(xb, kbT )

∫

dzc

z2c
Dh/c(zc)H

U
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (46)

The spin-dependent hard parts HU
ab→c

are calculated before, available in the literature. We list here for convenience.
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t̂2
(47)
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and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆Nfab→c

a/A (xa, kaT )
1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (5)

in which a process-dependent Sivers function denoted as ∆Nfab→c
a/A (xa, kaT ) is used rather than that from SIDIS

∆NfSIDIS
a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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FIG. 2: Sivers function in SIDIS process in the first non-trivial order (one-gluon exchange).
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carefully move the process-dependence of the Sivers function to the squared hard partonic scattering amplitude under
one-gluon exchange approximation, and these modified hard parts are exactly same as those in the twist-3 collinear
approach in terms of Mandelstam variables ŝ, t̂, û (see [15]). This suggests a close connection between this modified
GPM formalism and the twist-3 approach. However, it is important to mention that Mandelstam variables ŝ, t̂, û are
themselves a function of partonic intrinsic transverse momentum in the GPM approach. We comment on these issues
at the end of Section II. The rest of the paper is organized as follows: In Sec. II, we introduce the GPM approach,
and discuss how to formulate the initial- and final-state interaction effects. In Sec. III, we estimate the asymmetry
for inclusive pion and direct photon production at RHIC energy, and compare our predictions with those from the
conventional GPM approach. We conclude our paper in Sec. IV.

II. INITIAL- AND FINAL-STATE INTERACTIONS IN SINGLE INCLUSIVE PARTICLE
PRODUCTION

In this section, we introduce the basic ideas and assumptions of the GPM approach. Then we discuss how to
formulate the initial- and final-state interactions for single inclusive particle production. Within the same framework
of GPM approach, we thus derive a new formalism for the SSAs of single inclusive particle production, with the
process-dependence of the Sivers function taken into account.

A. Generalized Parton Model

Generalized parton model was introduced by Feynman and collaborators [22], as an generalization of the usual
collinear pQCD approach. It was adapted and used to describe the SSAs for inclusive particle production recently
[17–19], which has had phenomenological success [18]. According to this approach, for the inclusive production of
large PhT hadrons (or photons), A↑(PA) + B(PB) → h(Ph) + X , the differential cross section can be written as

Eh
dσ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT fa/A↑(xa,#kaT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

∫
dzc

z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (1)

where S = (PA + PB)2, fa/A↑(xa,#kaT ) is the TMD parton distribution functions with kaT the intrinsic transverse
momentum of parton a with respect to the light-cone direction of hadron A, and Dh/c(zc) is the fragmentation
function. Since we will only consider the SSAs generated from the parton distribution functions in this paper, we
have neglected the kT -dependence in the fragmentation function. HU

ab→c(ŝ, t̂, û) is the hard part coefficients with ŝ, t̂, û
the usual partonic Mandelstam variables. Eq. (1) can also be used to describe direct photon production, in which one
replaces the fragmentation function Dh/c(zc) by δ(zc − 1), and α2

s by αemαs.
To study the SSAs, the PDFs fa/A↑(xa,#kaT ) in the transversely polarized hadron A can be expanded as [17–19]

fa/A↑(xa,#kaT ) = fa/A(xa, kaT ) +
1
2
∆Nfa/A(xa, kaT )SA · (P̂A × k̂aT ), (2)

where SA is the transverse polarization vector, P̂A and k̂aT are unit momentum vectors, fa/A(xa, kaT ) is the spin-
averaged PDFs, and ∆Nfa/A(xa, kaT ) is the Sivers functions. Thus in GPM approach, the spin-averaged differential
cross section is given by Eq. (1) with fa/A↑(xa,#kaT ) replaced by fa/A(xa, kaT ), while the spin-dependent cross section
is given by

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆Nfa/A(xa, kaT )

1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (3)

and the SSA is given by the ratio,

AN ≡ Eh
d∆σ

d3Ph

/
Eh

dσ

d3Ph
. (4)

As stated in the introduction, there are two assumptions in the GPM approach: one is that the spin-averaged
and spin-dependent differential cross sections can be factorized in terms of TMD PDFs as in Eqs. (1) and (3),
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cross section is given by Eq. (1) with fa/A↑(xa,#kaT ) replaced by fa/A(xa, kaT ), while the spin-dependent cross section
is given by

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆Nfa/A(xa, kaT )

1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HU
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and the SSA is given by the ratio,

AN ≡ Eh
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/
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As stated in the introduction, there are two assumptions in the GPM approach: one is that the spin-averaged
and spin-dependent differential cross sections can be factorized in terms of TMD PDFs as in Eqs. (1) and (3),
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and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆Nfab→c

a/A (xa, kaT )
1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (5)

in which a process-dependent Sivers function denoted as ∆Nfab→c
a/A (xa, kaT ) is used rather than that from SIDIS

∆NfSIDIS
a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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FIG. 2: Sivers function in SIDIS process in the first non-trivial order (one-gluon exchange).
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and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be
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in which a process-dependent Sivers function denoted as ∆Nfab→c
a/A (xa, kaT ) is used rather than that from SIDIS

∆NfSIDIS
a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be
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in which a process-dependent Sivers function denoted as ∆Nfab→c
a/A (xa, kaT ) is used rather than that from SIDIS

∆NfSIDIS
a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
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where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
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For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to
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(pc − k)2 + iε

≈ ū(pc)
[

g
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where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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4

On the other hand, for DY process, the initial-state interaction (as in Fig. 1(right)) leads to

v̄(pb)(−ig)γ−T a −i(p/b + k/)
(pb + k)2 + iε

≈ v̄(pb)
[

g

−k+ − iε
T a

]
, (7)

which has the same real part and opposite imaginary part compared to SIDIS process. This leads to the fact that the
spin-averaged TMD PDFs are the same, while the Sivers function will be opposite in SIDIS and DY processes. This
conclusion can be generalized to all order, and has been proven to be true using parity and time-reversal invariant
arguments [6, 8].
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FIG. 3: Initial- and final-state interactions in qq′ → qq′: (a) initial-state interaction, (b) final-state interaction, (c) and (d) the
final-state interactions for the unobserved particle.

Now let us turn to the case for inclusive single particle production in hadronic collisions, in which 2 → 2 partonic
scattering is the leading order contribution, where both initial- and final-state interactions contribute. We will
start with a simple example: qq′ → qq′. Here the initial-quark q is from the polarized nucleon, and the final-quark q
fragments to the final-state hadron. The one-gluon exchange approximation for the initial- and final-state interactions
are shown in Fig. 3. Under the eikonal approximation, for initial-state interaction Fig. 3(a),

i(p/b + k/)
(pb + k)2 + iε

(−ig)γ−T aū(pb) =
[

−g

−k+ − iε
T a

]
ū(pb), (8)

Likewise, for the final-state interaction Fig. 3(b), we have
[

g

−k+ + iε
T a

]
. (9)

Thus both interactions contribute to the phase −iπδ(k+), which is the same as in the SIDIS process as in Eq. (6).
However, they will have different color flow. To extract the extra color factors for Fig. 3(a) and (b) as compared to
the usual qq′ → qq′ without gluon attachments, we resort to the method developed in [14, 15, 25]. We obtain the
color factors CI (CFc) for initial (final)-state interaction

CI = − 1
2N2

c

, CFc = − 1
4N2

c

, (10)

while the color factors for unpolarized cross section is given by

Cu =
N2

c − 1
4N2

c
. (11)

In other words, the Sivers function in qq′ → qq′ should be the one as shown in Fig. 4, which comes from the sum of the
ISIs and FSIs with the corresponding color factors CI and CFc respectively. Thus by comparing the imaginary part
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For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[
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−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
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, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to
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the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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On the other hand, for DY process, the initial-state interaction (as in Fig. 1(right)) leads to

v̄(pb)(−ig)γ−T a −i(p/b + k/)
(pb + k)2 + iε

≈ v̄(pb)
[

g

−k+ − iε
T a

]
, (7)

which has the same real part and opposite imaginary part compared to SIDIS process. This leads to the fact that the
spin-averaged TMD PDFs are the same, while the Sivers function will be opposite in SIDIS and DY processes. This
conclusion can be generalized to all order, and has been proven to be true using parity and time-reversal invariant
arguments [6, 8].
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FIG. 3: Initial- and final-state interactions in qq′ → qq′: (a) initial-state interaction, (b) final-state interaction, (c) and (d) the
final-state interactions for the unobserved particle.

Now let us turn to the case for inclusive single particle production in hadronic collisions, in which 2 → 2 partonic
scattering is the leading order contribution, where both initial- and final-state interactions contribute. We will
start with a simple example: qq′ → qq′. Here the initial-quark q is from the polarized nucleon, and the final-quark q
fragments to the final-state hadron. The one-gluon exchange approximation for the initial- and final-state interactions
are shown in Fig. 3. Under the eikonal approximation, for initial-state interaction Fig. 3(a),

i(p/b + k/)
(pb + k)2 + iε

(−ig)γ−T aū(pb) =
[
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−k+ − iε
T a

]
ū(pb), (8)

Likewise, for the final-state interaction Fig. 3(b), we have
[

g

−k+ + iε
T a

]
. (9)

Thus both interactions contribute to the phase −iπδ(k+), which is the same as in the SIDIS process as in Eq. (6).
However, they will have different color flow. To extract the extra color factors for Fig. 3(a) and (b) as compared to
the usual qq′ → qq′ without gluon attachments, we resort to the method developed in [14, 15, 25]. We obtain the
color factors CI (CFc) for initial (final)-state interaction

CI = − 1
2N2

c

, CFc = − 1
4N2

c

, (10)

while the color factors for unpolarized cross section is given by

Cu =
N2

c − 1
4N2

c
. (11)

In other words, the Sivers function in qq′ → qq′ should be the one as shown in Fig. 4, which comes from the sum of the
ISIs and FSIs with the corresponding color factors CI and CFc respectively. Thus by comparing the imaginary part

4

On the other hand, for DY process, the initial-state interaction (as in Fig. 1(right)) leads to

v̄(pb)(−ig)γ−T a −i(p/b + k/)
(pb + k)2 + iε

≈ v̄(pb)
[

g

−k+ − iε
T a

]
, (7)

which has the same real part and opposite imaginary part compared to SIDIS process. This leads to the fact that the
spin-averaged TMD PDFs are the same, while the Sivers function will be opposite in SIDIS and DY processes. This
conclusion can be generalized to all order, and has been proven to be true using parity and time-reversal invariant
arguments [6, 8].
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Now let us turn to the case for inclusive single particle production in hadronic collisions, in which 2 → 2 partonic
scattering is the leading order contribution, where both initial- and final-state interactions contribute. We will
start with a simple example: qq′ → qq′. Here the initial-quark q is from the polarized nucleon, and the final-quark q
fragments to the final-state hadron. The one-gluon exchange approximation for the initial- and final-state interactions
are shown in Fig. 3. Under the eikonal approximation, for initial-state interaction Fig. 3(a),
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ū(pb), (8)
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Thus both interactions contribute to the phase −iπδ(k+), which is the same as in the SIDIS process as in Eq. (6).
However, they will have different color flow. To extract the extra color factors for Fig. 3(a) and (b) as compared to
the usual qq′ → qq′ without gluon attachments, we resort to the method developed in [14, 15, 25]. We obtain the
color factors CI (CFc) for initial (final)-state interaction
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while the color factors for unpolarized cross section is given by
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In other words, the Sivers function in qq′ → qq′ should be the one as shown in Fig. 4, which comes from the sum of the
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FIG. 4: Sivers function in qq′ → qq′ from ISIs and FSIs, with the corresponding color factors CI and CFc respectively.

of the eikonal propagators in Eq. (6) for SIDIS and those in Eqs. (8) and (9) for initial- and final-state interaction for
qq′ → qq′, we immediately find the Sivers function probed in qq′ → qq′ process is related to those in SIDIS as follows

∆Nf qq′→qq′

a/A =
CI + CFc

Cu
∆NfSIDIS

a/A . (12)

Thus in the GPM model, using the correct Sivers function, one should replace

∆NfSIDIS
a/A HU

qq′→qq′ ≡ ∆NfSIDIS
a/A [Cuhqq′→qq′ ] , (13)

by the following form

∆Nf qq′→qq′

a/A HU
qq′→qq′ =

CI + CFc

Cu
∆NfSIDIS

a/A HU
qq′→qq′ = ∆NfSIDIS

a/A [CIhqq′→qq′ + CFchqq′→qq′ ] , (14)

where hqq′→qq′ is the partonic cross section without color factors included. For qq′ → qq′, one has

hqq′→qq′ = 2
ŝ2 + û2

t̂2
. (15)

This example tells us that if one uses ∆NfSIDIS
a/A for the single inclusive particle production, while accounting for the

process-dependence of the Sivers function, one should move the process-dependence to the hard parts. In other words,
instead of using HU

qq′→qq′ in Eq. (3) for the spin-dependent cross section, one should use

HInc
qq′→qq′ ≡ HInc−I

qq′→qq′ + HInc−F
qq′→qq′ , (16)

where

HInc−I
qq′→qq′ = CIhqq′→qq′ , HInc−F

qq′→qq′ = CFchqq′→qq′ , (17)

are the corresponding hard parts related to initial- and final-state interactions, respectively.
There are many other partonic processes contributing to the single inclusive particle production. Similar to the

analysis in qq′ → qq′, one needs to analyze each individual Feynman diagram accordingly, carefully moving the extra
factors (process-dependence) from the corresponding Sivers function to the hard parts, thus obtaining HInc−I

ab→cd and
HInc−F

ab→cd for every channel. The modfied formalism will be given in the next subsection.
There are some cautions to our results presented here, especially in Fig. 4. It looks like Figs. 3(a), (b) can be

factorized into a convolution of Sivers function and a hard part function as shown in Fig. 4. However, this is not a
TMD factorization in the strict sense. Currently TMD factorization theorems have been established for both SIDIS
and DY processes [23, 24]. To the order we are studying, this means, the one-gluon exchange diagram for SIDIS in
Fig. 1 can be factorized into a convolution of a Sivers function ∆NfSIDIS

a/A (x, kaT ) and a hard part function H(Q),
as shown in Fig. 2. Here all the soft physics (those depending on kaT ) has been absorbed into the Sivers function
∆NfSIDIS

a/A (x, kaT ), and the hard part function H(Q) only depends on the hard scale Q, not kaT . On the other hand,
for qq′ → qq′, we write the corresponding diagram Fig. 3(a) into a similar form: a product of a Sivers function
∆Nf qq′→qq′

a/A (xa, kaT ) and a hard part function Hqq′→qq′ (ŝ, t̂, û), as shown in Fig. 4. But as we will comment later,
besides the kaT dependence in the Sivers function, one will also need to keep the kaT dependence in the hard part
functions Hqq′→qq′ , without which the SSAs will vanish in both the GPM and this modified GPM formalism. Even
though this is not a TMD factorization, one hopes this formalism is a reasonable approximation. There are two
reasons to suggest this might be the case. First of all, from phenomenological point of view, this formalism had some
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ŝ2 + û2
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a/A for the single inclusive particle production, while accounting for the

process-dependence of the Sivers function, one should move the process-dependence to the hard parts. In other words,
instead of using HU

qq′→qq′ in Eq. (3) for the spin-dependent cross section, one should use
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where

HInc−I
qq′→qq′ = CIhqq′→qq′ , HInc−F

qq′→qq′ = CFchqq′→qq′ , (17)

are the corresponding hard parts related to initial- and final-state interactions, respectively.
There are many other partonic processes contributing to the single inclusive particle production. Similar to the

analysis in qq′ → qq′, one needs to analyze each individual Feynman diagram accordingly, carefully moving the extra
factors (process-dependence) from the corresponding Sivers function to the hard parts, thus obtaining HInc−I

ab→cd and
HInc−F

ab→cd for every channel. The modfied formalism will be given in the next subsection.
There are some cautions to our results presented here, especially in Fig. 4. It looks like Figs. 3(a), (b) can be

factorized into a convolution of Sivers function and a hard part function as shown in Fig. 4. However, this is not a
TMD factorization in the strict sense. Currently TMD factorization theorems have been established for both SIDIS
and DY processes [23, 24]. To the order we are studying, this means, the one-gluon exchange diagram for SIDIS in
Fig. 1 can be factorized into a convolution of a Sivers function ∆NfSIDIS

a/A (x, kaT ) and a hard part function H(Q),
as shown in Fig. 2. Here all the soft physics (those depending on kaT ) has been absorbed into the Sivers function
∆NfSIDIS

a/A (x, kaT ), and the hard part function H(Q) only depends on the hard scale Q, not kaT . On the other hand,
for qq′ → qq′, we write the corresponding diagram Fig. 3(a) into a similar form: a product of a Sivers function
∆Nf qq′→qq′

a/A (xa, kaT ) and a hard part function Hqq′→qq′ (ŝ, t̂, û), as shown in Fig. 4. But as we will comment later,
besides the kaT dependence in the Sivers function, one will also need to keep the kaT dependence in the hard part
functions Hqq′→qq′ , without which the SSAs will vanish in both the GPM and this modified GPM formalism. Even
though this is not a TMD factorization, one hopes this formalism is a reasonable approximation. There are two
reasons to suggest this might be the case. First of all, from phenomenological point of view, this formalism had some

Comparing imag. pt of eikonal propagators for subprocess in 
SIDIS and inclusive single particle production 

3

and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆Nfab→c

a/A (xa, kaT )
1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (5)

in which a process-dependent Sivers function denoted as ∆Nfab→c
a/A (xa, kaT ) is used rather than that from SIDIS

∆NfSIDIS
a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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FIG. 2: Sivers function in SIDIS process in the first non-trivial order (one-gluon exchange).
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and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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FIG. 2: Sivers function in SIDIS process in the first non-trivial order (one-gluon exchange).
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success [18]. Secondly, as we will show later this formalism has some connection with the well-established collinear
twist-3 approach [15]. As we see here, our identification of the color factors with the hard cross-sections is reminiscent
of the results of the twist 3 approach (see in particular [15]). Indeed we will see that upon calculating all partonic
processes that contribute from each channel they have the same form in terms of Mandelstam variables ŝ, t̂, û, as
compared to those in the twist-3 collinear factorization approach [15].

To close this subsection, we want to point out the following important fact: the interaction with the unobserved
particle (the quark q′ for qq′ → qq′) vanishes after summing different cut diagrams [14, 15, 26]. To see this clearly,
we have for Fig. 3(c),

1
(pd − k)2 + iε

δ(p2
d) → −iπδ((pd − k)2)δ(p2

d), (18)

while the contribution from Fig. 3(d) will be

1
p2

d − iε
δ((pd − k)2) → +iπδ((pd − k)2)δ(p2

d). (19)

Since the remaining parts of the scattering amplitudes for these two diagrams are exactly the same except for the
above pole contributions which are opposite to each other, the contribution from the unobserved particle vanishes.
This could also be used to explain why the inclusive DIS process, the SSA vanishes. As shown in Fig. 1 (left), we
don’t observe the final-state quark for the inclusive DIS process, thus the contribution from the cut to the left and to
the right will cancel which results in a vanishing asymmetry.

We want to emphasize that the above analysis holds true only under one-gluon exchange approximation. Going
beyond one-gluon exchange, the Sivers functions are typically more complicated, there seems no simple relation (as
extra color factors) to those in the SIDIS process [27].

C. Single inclusive hadron production

Now after carefully taking into account both initial- and final-state interactions, the conventional GPM formalism
for spin-dependent cross section should be written as

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆NfSIDIS

a/A (xa, kaT )
1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HInc
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (20)

where we have a new hard part function HInc
ab→c instead of HU

ab→c used in the conventional GPM approach. Here the
process dependence in the Sivers function has been absorbed into HInc

ab→c, which can be written as

HInc
ab→c(ŝ, t̂, û) = HInc−I

ab→c (ŝ, t̂, û) + HInc−F
ab→c (ŝ, t̂, û), (21)

where HInc−I
ab→c and HInc−F

ab→c are associated with initial- and final-state interactions, respectively. The contributions for
the various contributing partonic subprocesses are given by

HInc−I
qq′→qq′ = −HInc−I

q̄q̄′→q̄q̄′ = − 1
N2

c

[
ŝ2 + û2

t̂2

]
(22)

HInc−F
qq′→qq′ = −HInc−F

q̄q̄′→q̄q̄′ = − 1
2N2

c

[
ŝ2 + û2

t̂2

]
(23)

HInc−I
qq̄′→qq̄′ = −HInc−I

q̄q′→q̄q′ = −N2
c − 2
2N2

c

[
ŝ2 + û2

t̂2

]
(24)

HInc−F
qq̄′→qq̄′ = −HInc−F

q̄q′→q̄q′ = − 1
2N2

c

[
ŝ2 + û2

t̂2

]
(25)

HInc−I
qq′→q′q = −HInc−I

q̄q̄′→q̄′ q̄ = − 1
N2

c

[
ŝ2 + t̂2

û2

]
(26)

HInc−F
qq′→q′q = −HInc−F

q̄q̄′→q̄′ q̄ =
N2

c − 2
2N2

c

[
ŝ2 + t̂2

û2

]
(27)
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FIG. 4: Sivers function in qq′ → qq′ from ISIs and FSIs, with the corresponding color factors CI and CFc respectively.

of the eikonal propagators in Eq. (6) for SIDIS and those in Eqs. (8) and (9) for initial- and final-state interaction for
qq′ → qq′, we immediately find the Sivers function probed in qq′ → qq′ process is related to those in SIDIS as follows

∆Nf qq′→qq′

a/A =
CI + CFc

Cu
∆NfSIDIS

a/A . (12)

Thus in the GPM model, using the correct Sivers function, one should replace

∆NfSIDIS
a/A HU

qq′→qq′ ≡ ∆NfSIDIS
a/A [Cuhqq′→qq′ ] , (13)

by the following form

∆Nf qq′→qq′

a/A HU
qq′→qq′ =

CI + CFc

Cu
∆NfSIDIS

a/A HU
qq′→qq′ = ∆NfSIDIS

a/A [CIhqq′→qq′ + CFchqq′→qq′ ] , (14)

where hqq′→qq′ is the partonic cross section without color factors included. For qq′ → qq′, one has

hqq′→qq′ = 2
ŝ2 + û2

t̂2
. (15)

This example tells us that if one uses ∆NfSIDIS
a/A for the single inclusive particle production, while accounting for the

process-dependence of the Sivers function, one should move the process-dependence to the hard parts. In other words,
instead of using HU

qq′→qq′ in Eq. (3) for the spin-dependent cross section, one should use

HInc
qq′→qq′ ≡ HInc−I

qq′→qq′ + HInc−F
qq′→qq′ , (16)

where

HInc−I
qq′→qq′ = CIhqq′→qq′ , HInc−F

qq′→qq′ = CFchqq′→qq′ , (17)

are the corresponding hard parts related to initial- and final-state interactions, respectively.
There are many other partonic processes contributing to the single inclusive particle production. Similar to the

analysis in qq′ → qq′, one needs to analyze each individual Feynman diagram accordingly, carefully moving the extra
factors (process-dependence) from the corresponding Sivers function to the hard parts, thus obtaining HInc−I

ab→cd and
HInc−F

ab→cd for every channel. The modfied formalism will be given in the next subsection.
There are some cautions to our results presented here, especially in Fig. 4. It looks like Figs. 3(a), (b) can be

factorized into a convolution of Sivers function and a hard part function as shown in Fig. 4. However, this is not a
TMD factorization in the strict sense. Currently TMD factorization theorems have been established for both SIDIS
and DY processes [23, 24]. To the order we are studying, this means, the one-gluon exchange diagram for SIDIS in
Fig. 1 can be factorized into a convolution of a Sivers function ∆NfSIDIS

a/A (x, kaT ) and a hard part function H(Q),
as shown in Fig. 2. Here all the soft physics (those depending on kaT ) has been absorbed into the Sivers function
∆NfSIDIS

a/A (x, kaT ), and the hard part function H(Q) only depends on the hard scale Q, not kaT . On the other hand,
for qq′ → qq′, we write the corresponding diagram Fig. 3(a) into a similar form: a product of a Sivers function
∆Nf qq′→qq′

a/A (xa, kaT ) and a hard part function Hqq′→qq′ (ŝ, t̂, û), as shown in Fig. 4. But as we will comment later,
besides the kaT dependence in the Sivers function, one will also need to keep the kaT dependence in the hard part
functions Hqq′→qq′ , without which the SSAs will vanish in both the GPM and this modified GPM formalism. Even
though this is not a TMD factorization, one hopes this formalism is a reasonable approximation. There are two
reasons to suggest this might be the case. First of all, from phenomenological point of view, this formalism had some

GPM

generalize GPM
Replace with

5

!"# !$#

% &'

$

() *
"

!"

&

"

*

+
&

, &

'-

./0

&

FIG. 4: Sivers function in qq′ → qq′ from ISIs and FSIs, with the corresponding color factors CI and CFc respectively.

of the eikonal propagators in Eq. (6) for SIDIS and those in Eqs. (8) and (9) for initial- and final-state interaction for
qq′ → qq′, we immediately find the Sivers function probed in qq′ → qq′ process is related to those in SIDIS as follows

∆Nf qq′→qq′

a/A =
CI + CFc

Cu
∆NfSIDIS

a/A . (12)

Thus in the GPM model, using the correct Sivers function, one should replace

∆NfSIDIS
a/A HU

qq′→qq′ ≡ ∆NfSIDIS
a/A [Cuhqq′→qq′ ] , (13)

by the following form

∆Nf qq′→qq′

a/A HU
qq′→qq′ =

CI + CFc

Cu
∆NfSIDIS

a/A HU
qq′→qq′ = ∆NfSIDIS

a/A [CIhqq′→qq′ + CFchqq′→qq′ ] , (14)

where hqq′→qq′ is the partonic cross section without color factors included. For qq′ → qq′, one has

hqq′→qq′ = 2
ŝ2 + û2

t̂2
. (15)

This example tells us that if one uses ∆NfSIDIS
a/A for the single inclusive particle production, while accounting for the

process-dependence of the Sivers function, one should move the process-dependence to the hard parts. In other words,
instead of using HU

qq′→qq′ in Eq. (3) for the spin-dependent cross section, one should use

HInc
qq′→qq′ ≡ HInc−I

qq′→qq′ + HInc−F
qq′→qq′ , (16)

where

HInc−I
qq′→qq′ = CIhqq′→qq′ , HInc−F

qq′→qq′ = CFchqq′→qq′ , (17)

are the corresponding hard parts related to initial- and final-state interactions, respectively.
There are many other partonic processes contributing to the single inclusive particle production. Similar to the

analysis in qq′ → qq′, one needs to analyze each individual Feynman diagram accordingly, carefully moving the extra
factors (process-dependence) from the corresponding Sivers function to the hard parts, thus obtaining HInc−I

ab→cd and
HInc−F

ab→cd for every channel. The modfied formalism will be given in the next subsection.
There are some cautions to our results presented here, especially in Fig. 4. It looks like Figs. 3(a), (b) can be

factorized into a convolution of Sivers function and a hard part function as shown in Fig. 4. However, this is not a
TMD factorization in the strict sense. Currently TMD factorization theorems have been established for both SIDIS
and DY processes [23, 24]. To the order we are studying, this means, the one-gluon exchange diagram for SIDIS in
Fig. 1 can be factorized into a convolution of a Sivers function ∆NfSIDIS

a/A (x, kaT ) and a hard part function H(Q),
as shown in Fig. 2. Here all the soft physics (those depending on kaT ) has been absorbed into the Sivers function
∆NfSIDIS

a/A (x, kaT ), and the hard part function H(Q) only depends on the hard scale Q, not kaT . On the other hand,
for qq′ → qq′, we write the corresponding diagram Fig. 3(a) into a similar form: a product of a Sivers function
∆Nf qq′→qq′

a/A (xa, kaT ) and a hard part function Hqq′→qq′ (ŝ, t̂, û), as shown in Fig. 4. But as we will comment later,
besides the kaT dependence in the Sivers function, one will also need to keep the kaT dependence in the hard part
functions Hqq′→qq′ , without which the SSAs will vanish in both the GPM and this modified GPM formalism. Even
though this is not a TMD factorization, one hopes this formalism is a reasonable approximation. There are two
reasons to suggest this might be the case. First of all, from phenomenological point of view, this formalism had some
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of the eikonal propagators in Eq. (6) for SIDIS and those in Eqs. (8) and (9) for initial- and final-state interaction for
qq′ → qq′, we immediately find the Sivers function probed in qq′ → qq′ process is related to those in SIDIS as follows

∆Nf qq′→qq′

a/A =
CI + CFc

Cu
∆NfSIDIS

a/A . (12)

Thus in the GPM model, using the correct Sivers function, one should replace

∆NfSIDIS
a/A HU

qq′→qq′ ≡ ∆NfSIDIS
a/A [Cuhqq′→qq′ ] , (13)

by the following form

∆Nf qq′→qq′

a/A HU
qq′→qq′ =

CI + CFc

Cu
∆NfSIDIS

a/A HU
qq′→qq′ = ∆NfSIDIS

a/A [CIhqq′→qq′ + CFchqq′→qq′ ] , (14)

where hqq′→qq′ is the partonic cross section without color factors included. For qq′ → qq′, one has

hqq′→qq′ = 2
ŝ2 + û2

t̂2
. (15)

This example tells us that if one uses ∆NfSIDIS
a/A for the single inclusive particle production, while accounting for the

process-dependence of the Sivers function, one should move the process-dependence to the hard parts. In other words,
instead of using HU

qq′→qq′ in Eq. (3) for the spin-dependent cross section, one should use

HInc
qq′→qq′ ≡ HInc−I

qq′→qq′ + HInc−F
qq′→qq′ , (16)

where

HInc−I
qq′→qq′ = CIhqq′→qq′ , HInc−F

qq′→qq′ = CFchqq′→qq′ , (17)

are the corresponding hard parts related to initial- and final-state interactions, respectively.
There are many other partonic processes contributing to the single inclusive particle production. Similar to the

analysis in qq′ → qq′, one needs to analyze each individual Feynman diagram accordingly, carefully moving the extra
factors (process-dependence) from the corresponding Sivers function to the hard parts, thus obtaining HInc−I

ab→cd and
HInc−F

ab→cd for every channel. The modfied formalism will be given in the next subsection.
There are some cautions to our results presented here, especially in Fig. 4. It looks like Figs. 3(a), (b) can be

factorized into a convolution of Sivers function and a hard part function as shown in Fig. 4. However, this is not a
TMD factorization in the strict sense. Currently TMD factorization theorems have been established for both SIDIS
and DY processes [23, 24]. To the order we are studying, this means, the one-gluon exchange diagram for SIDIS in
Fig. 1 can be factorized into a convolution of a Sivers function ∆NfSIDIS

a/A (x, kaT ) and a hard part function H(Q),
as shown in Fig. 2. Here all the soft physics (those depending on kaT ) has been absorbed into the Sivers function
∆NfSIDIS

a/A (x, kaT ), and the hard part function H(Q) only depends on the hard scale Q, not kaT . On the other hand,
for qq′ → qq′, we write the corresponding diagram Fig. 3(a) into a similar form: a product of a Sivers function
∆Nf qq′→qq′

a/A (xa, kaT ) and a hard part function Hqq′→qq′ (ŝ, t̂, û), as shown in Fig. 4. But as we will comment later,
besides the kaT dependence in the Sivers function, one will also need to keep the kaT dependence in the hard part
functions Hqq′→qq′ , without which the SSAs will vanish in both the GPM and this modified GPM formalism. Even
though this is not a TMD factorization, one hopes this formalism is a reasonable approximation. There are two
reasons to suggest this might be the case. First of all, from phenomenological point of view, this formalism had some

hard partonic c.s. w/o color factors
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success [18]. Secondly, as we will show later this formalism has some connection with the well-established collinear
twist-3 approach [15]. As we see here, our identification of the color factors with the hard cross-sections is reminiscent
of the results of the twist 3 approach (see in particular [15]). Indeed we will see that upon calculating all partonic
processes that contribute from each channel they have the same form in terms of Mandelstam variables ŝ, t̂, û, as
compared to those in the twist-3 collinear factorization approach [15].

To close this subsection, we want to point out the following important fact: the interaction with the unobserved
particle (the quark q′ for qq′ → qq′) vanishes after summing different cut diagrams [14, 15, 26]. To see this clearly,
we have for Fig. 3(c),

1
(pd − k)2 + iε

δ(p2
d) → −iπδ((pd − k)2)δ(p2

d), (18)

while the contribution from Fig. 3(d) will be

1
p2

d − iε
δ((pd − k)2) → +iπδ((pd − k)2)δ(p2

d). (19)

Since the remaining parts of the scattering amplitudes for these two diagrams are exactly the same except for the
above pole contributions which are opposite to each other, the contribution from the unobserved particle vanishes.
This could also be used to explain why the inclusive DIS process, the SSA vanishes. As shown in Fig. 1 (left), we
don’t observe the final-state quark for the inclusive DIS process, thus the contribution from the cut to the left and to
the right will cancel which results in a vanishing asymmetry.

We want to emphasize that the above analysis holds true only under one-gluon exchange approximation. Going
beyond one-gluon exchange, the Sivers functions are typically more complicated, there seems no simple relation (as
extra color factors) to those in the SIDIS process [27].

C. Single inclusive hadron production

Now after carefully taking into account both initial- and final-state interactions, the conventional GPM formalism
for spin-dependent cross section should be written as

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆NfSIDIS

a/A (xa, kaT )
1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HInc
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (20)

where we have a new hard part function HInc
ab→c instead of HU

ab→c used in the conventional GPM approach. Here the
process dependence in the Sivers function has been absorbed into HInc

ab→c, which can be written as

HInc
ab→c(ŝ, t̂, û) = HInc−I

ab→c (ŝ, t̂, û) + HInc−F
ab→c (ŝ, t̂, û), (21)

where HInc−I
ab→c and HInc−F

ab→c are associated with initial- and final-state interactions, respectively. The contributions for
the various contributing partonic subprocesses are given by

HInc−I
qq′→qq′ = −HInc−I

q̄q̄′→q̄q̄′ = − 1
N2

c

[
ŝ2 + û2

t̂2

]
(22)

HInc−F
qq′→qq′ = −HInc−F

q̄q̄′→q̄q̄′ = − 1
2N2

c

[
ŝ2 + û2

t̂2

]
(23)

HInc−I
qq̄′→qq̄′ = −HInc−I

q̄q′→q̄q′ = −N2
c − 2
2N2

c

[
ŝ2 + û2

t̂2

]
(24)

HInc−F
qq̄′→qq̄′ = −HInc−F

q̄q′→q̄q′ = − 1
2N2

c

[
ŝ2 + û2

t̂2

]
(25)

HInc−I
qq′→q′q = −HInc−I

q̄q̄′→q̄′ q̄ = − 1
N2

c

[
ŝ2 + t̂2

û2

]
(26)

HInc−F
qq′→q′q = −HInc−F

q̄q̄′→q̄′ q̄ =
N2

c − 2
2N2

c

[
ŝ2 + t̂2

û2

]
(27)
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of the eikonal propagators in Eq. (6) for SIDIS and those in Eqs. (8) and (9) for initial- and final-state interaction for
qq′ → qq′, we immediately find the Sivers function probed in qq′ → qq′ process is related to those in SIDIS as follows

∆Nf qq′→qq′

a/A =
CI + CFc

Cu
∆NfSIDIS

a/A . (12)

Thus in the GPM model, using the correct Sivers function, one should replace

∆NfSIDIS
a/A HU

qq′→qq′ ≡ ∆NfSIDIS
a/A [Cuhqq′→qq′ ] , (13)

by the following form

∆Nf qq′→qq′

a/A HU
qq′→qq′ =

CI + CFc

Cu
∆NfSIDIS

a/A HU
qq′→qq′ = ∆NfSIDIS

a/A [CIhqq′→qq′ + CFchqq′→qq′ ] , (14)

where hqq′→qq′ is the partonic cross section without color factors included. For qq′ → qq′, one has

hqq′→qq′ = 2
ŝ2 + û2

t̂2
. (15)

This example tells us that if one uses ∆NfSIDIS
a/A for the single inclusive particle production, while accounting for the

process-dependence of the Sivers function, one should move the process-dependence to the hard parts. In other words,
instead of using HU

qq′→qq′ in Eq. (3) for the spin-dependent cross section, one should use

HInc
qq′→qq′ ≡ HInc−I

qq′→qq′ + HInc−F
qq′→qq′ , (16)

where

HInc−I
qq′→qq′ = CIhqq′→qq′ , HInc−F

qq′→qq′ = CFchqq′→qq′ , (17)

are the corresponding hard parts related to initial- and final-state interactions, respectively.
There are many other partonic processes contributing to the single inclusive particle production. Similar to the

analysis in qq′ → qq′, one needs to analyze each individual Feynman diagram accordingly, carefully moving the extra
factors (process-dependence) from the corresponding Sivers function to the hard parts, thus obtaining HInc−I

ab→cd and
HInc−F

ab→cd for every channel. The modfied formalism will be given in the next subsection.
There are some cautions to our results presented here, especially in Fig. 4. It looks like Figs. 3(a), (b) can be

factorized into a convolution of Sivers function and a hard part function as shown in Fig. 4. However, this is not a
TMD factorization in the strict sense. Currently TMD factorization theorems have been established for both SIDIS
and DY processes [23, 24]. To the order we are studying, this means, the one-gluon exchange diagram for SIDIS in
Fig. 1 can be factorized into a convolution of a Sivers function ∆NfSIDIS

a/A (x, kaT ) and a hard part function H(Q),
as shown in Fig. 2. Here all the soft physics (those depending on kaT ) has been absorbed into the Sivers function
∆NfSIDIS

a/A (x, kaT ), and the hard part function H(Q) only depends on the hard scale Q, not kaT . On the other hand,
for qq′ → qq′, we write the corresponding diagram Fig. 3(a) into a similar form: a product of a Sivers function
∆Nf qq′→qq′

a/A (xa, kaT ) and a hard part function Hqq′→qq′ (ŝ, t̂, û), as shown in Fig. 4. But as we will comment later,
besides the kaT dependence in the Sivers function, one will also need to keep the kaT dependence in the hard part
functions Hqq′→qq′ , without which the SSAs will vanish in both the GPM and this modified GPM formalism. Even
though this is not a TMD factorization, one hopes this formalism is a reasonable approximation. There are two
reasons to suggest this might be the case. First of all, from phenomenological point of view, this formalism had some
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of the eikonal propagators in Eq. (6) for SIDIS and those in Eqs. (8) and (9) for initial- and final-state interaction for
qq′ → qq′, we immediately find the Sivers function probed in qq′ → qq′ process is related to those in SIDIS as follows

∆Nf qq′→qq′

a/A =
CI + CFc

Cu
∆NfSIDIS

a/A . (12)

Thus in the GPM model, using the correct Sivers function, one should replace

∆NfSIDIS
a/A HU

qq′→qq′ ≡ ∆NfSIDIS
a/A [Cuhqq′→qq′ ] , (13)

by the following form

∆Nf qq′→qq′

a/A HU
qq′→qq′ =

CI + CFc

Cu
∆NfSIDIS

a/A HU
qq′→qq′ = ∆NfSIDIS

a/A [CIhqq′→qq′ + CFchqq′→qq′ ] , (14)

where hqq′→qq′ is the partonic cross section without color factors included. For qq′ → qq′, one has

hqq′→qq′ = 2
ŝ2 + û2

t̂2
. (15)

This example tells us that if one uses ∆NfSIDIS
a/A for the single inclusive particle production, while accounting for the

process-dependence of the Sivers function, one should move the process-dependence to the hard parts. In other words,
instead of using HU

qq′→qq′ in Eq. (3) for the spin-dependent cross section, one should use

HInc
qq′→qq′ ≡ HInc−I

qq′→qq′ + HInc−F
qq′→qq′ , (16)

where

HInc−I
qq′→qq′ = CIhqq′→qq′ , HInc−F

qq′→qq′ = CFchqq′→qq′ , (17)

are the corresponding hard parts related to initial- and final-state interactions, respectively.
There are many other partonic processes contributing to the single inclusive particle production. Similar to the

analysis in qq′ → qq′, one needs to analyze each individual Feynman diagram accordingly, carefully moving the extra
factors (process-dependence) from the corresponding Sivers function to the hard parts, thus obtaining HInc−I

ab→cd and
HInc−F

ab→cd for every channel. The modfied formalism will be given in the next subsection.
There are some cautions to our results presented here, especially in Fig. 4. It looks like Figs. 3(a), (b) can be

factorized into a convolution of Sivers function and a hard part function as shown in Fig. 4. However, this is not a
TMD factorization in the strict sense. Currently TMD factorization theorems have been established for both SIDIS
and DY processes [23, 24]. To the order we are studying, this means, the one-gluon exchange diagram for SIDIS in
Fig. 1 can be factorized into a convolution of a Sivers function ∆NfSIDIS

a/A (x, kaT ) and a hard part function H(Q),
as shown in Fig. 2. Here all the soft physics (those depending on kaT ) has been absorbed into the Sivers function
∆NfSIDIS

a/A (x, kaT ), and the hard part function H(Q) only depends on the hard scale Q, not kaT . On the other hand,
for qq′ → qq′, we write the corresponding diagram Fig. 3(a) into a similar form: a product of a Sivers function
∆Nf qq′→qq′

a/A (xa, kaT ) and a hard part function Hqq′→qq′ (ŝ, t̂, û), as shown in Fig. 4. But as we will comment later,
besides the kaT dependence in the Sivers function, one will also need to keep the kaT dependence in the hard part
functions Hqq′→qq′ , without which the SSAs will vanish in both the GPM and this modified GPM formalism. Even
though this is not a TMD factorization, one hopes this formalism is a reasonable approximation. There are two
reasons to suggest this might be the case. First of all, from phenomenological point of view, this formalism had some
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Color modification of hard cross sections due to Gauge Link        

t-channel

s-channel

s-t interference

qg → γq

q̄q → γg

t & u-channel

t-u interference

unobserved final state 
contribution vanishes

etc ....



are associated with initial- and final-state interactions, respectively. The contributions for
the various contributing partonic subprocesses are given by

HInc
qg→γq = −HInc

q̄g→γq̄ = − Nc

N2
c − 1

e2
q

[
− t̂

ŝ
− ŝ

t̂

]
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qq̄→γg = −HInc

q̄q→γg =
1

N2
c

e2
q

[
t̂

û
+

û

t̂

]

pp→ γX
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û2

]
+

N2
c + 1
N3

c

ŝ2
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ŝ2

]

HInc−I
qq̄→qq̄ = −HInc−I

q̄q→q̄q = −N2
c − 2
2N2

c

[
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ŝ2 + û2
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û

ŝ
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ŝ2 + t̂2

û2
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• Hard amplitudes squared have same form in 
Mandelstam variables as twist-3

• however            depend on       in GPM 
whereas in twist-3 approach there has been 
collinear expansion on hard and soft factors 

• Indeed we have prelim. results that GPM 
expanded with respect to        results in twist 
result

Observations

ŝ, t̂, û

ŝ, t̂, û kT

kaT

Kouvaris,Qiu , Vogelsang, and Yuan PRD 2006



• Implement delta function

• now “s” and “t” depend on 

• expand       and study contribution from Sivers 
function and hard cross section

kaT

kaT

Eh
d∆σ

d2Ph
=

αs

s

∑

abc

∫
d2kaT

1
M

εαST nn̂kaTα
1
xa

f⊥ sidis
1T (xa, k2

aT )

∣∣∣∣∣
xa=X+

2PhT ·kaT /z
xbs+T/z

×
∫

dxb

xb

∫
dz

z2
HInc

ab→c(ŝ, t̂, û)
1

xbs + T/z

Collinear Expansion in GPM



that is....    in GPM

t̂ = (xaPA + kaT −
Ph

z
)2 =

xa

z
T − 2PhT · kaT

z

û = (pb − pc)2 = (xbPB −
Ph

z
)2 =

xb

z
U

ŝ = (pa + pb)2 = xaxbS + O(k2
T )

δ(ŝ + t̂ + û) =
1

xbs + T
z

δ(xa −X − 2PhT · KaT

xbs + T
z

)



Eh
d∆σ

d2Ph
=

αs

s

∑

abc

1
x

(TF (x, x)− x
d

dx
TF (X, X))

1
−X

εPhST nn̄/z

xbs + T/z

×
∫

dxb

xb

∫
dz

z2
HInc

ab→c(ŝ, t̂, û)
1

xbs + T/z

Same as Kouvaris, Qiu , Vogelsang, and Yuan PRD 2006

• Twist 3 and twist 2 approach connection????

we have another term ....  ~

Collinear twist three 

TF
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Formula: Two partonic channel contribute to direct photon production:
• qg → γq:

HU
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ŝ

t̂

]

(1)

HInc

qg→γq = −

Nc

N2
c − 1

e2

q

[

−

t̂

ŝ
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ISI drives result
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Formula: Two partonic channel contribute to direct photon production:
• qg → γq:
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• In this connection see Kouvaris, Qiu, Vogelsang and Yuan PRD 2006

1. The latest one: Sivers function from [2], along with DSS fragmentation function [3].

It is important to realize that this set of Sivers function gives too small asymmtry for RHIC energy. It even gives wrong

xF behavior. As most experiments observed so far, AN gets bigger when xF increases. However, this set of Sivers

function gives opposite trend.

The predictions using GPM are given by the dashed blue curves in Fig. 1. Our new prediction by including the

process-dependence are given by the solid red curves. As we can see, particularly for direct photon, GPM predicts

positive AN , while our new approach predicts negative AN .
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Figure 1: AN for inclusive particle production as a function of xF : p
↑p → γ + X (left) and p↑p → π0 + X (right). We use GRV98 LO parton

distribution function [1], the latest Sivers function from [2], and DSS fragmentation function [3].

2. The old one: Sivers function from [4], along with Kretzer fragmentation function [5].

It is important to realize that this set of Sivers function has only u and d Sivers function, all others have been set to

zero. It could generate large asymmetry if one uses GPM, as shown in the dashed blue curves in Fig. 2. In fact, the

predictions are consistent with RHIC data.

As we can see, the predictions by taking the process dependence of the Sivers function into account somehow

predict almost vanishing small AN for π
0, though the nice sign change in the direct photon production is still there.
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Figure 2: AN for inclusive particle production as a function of xF : p
↑p → γ + X (left) and p↑p → π0 + X (right). We use GRV98 LO parton

distribution function [1], the old Sivers function from [4], and Kretzer fragmentation function [5].

To understand what’s going on, one could trace back to the hard parts. It is good to realize that for the inclusive
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zero. It could generate large asymmetry if one uses GPM, as shown in the dashed blue curves in Fig. 2. In fact, the
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As we can see, the predictions by taking the process dependence of the Sivers function into account somehow

predict almost vanishing small AN for π
0, though the nice sign change in the direct photon production is still there.
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Factorization Breaking for most other process                          

f⊥1T , h⊥1 , D⊥1T , H⊥
1

Mulders & Rogers Fact. breaking PRD 2010

Kang, Qiu, Zhang  Gluonic Poles PRD 2010

Collins Qiu & Collins PRD 2007 & hep arXive

temporarily simplify the model of Sec. II by making all the
hadron and spectator fields scalars. We further simplify the
calculation by assuming mq1 ¼ mq2 ¼ mc 1

¼ mc 2
¼ mq.

For the graphs with the extra gluons on opposite sides of
the cut [Fig. 7(a) and related graphs], the factorization
anomaly for the unpolarized cross section comes from
replacing the extra off-shell quark propagators by their
eikonal propagators. Including all ways of attaching l1
and l2 to the k2 and k4 lines, one finds the same result as
in Ref. [18], but with the Abelian g1 and g2 charges

replaced by the appropriate color factor:

TrC½tatb#g2n!1 n"1
!

1

$lþ1 þi#
þ 1

lþ1 þi#

"!
1

$lþ2 $i#
þ 1

lþ2 $i#

"

¼4$2g2n!1 n
"
1 TrC½tatb#%ðlþ1 Þ%ðlþ2 Þ: (25)

For the graphs with both extra gluons coupling on the
same side of the cut [Fig. 7(b) and related graphs], the steps
are similar. Again including all ways of attaching l1 and l2
at the upper part of the graph, one finds

TrC½tatb#g2n!1 n"1
#!

1

$lþ1 þ i#

"!
1

$lþ2 þ i#

"
þ

!
1

lþ1 þ i#

"!
1

$lþ2 þ i#

"
þ

!
1

$lþ1 þ i#

"!
1

lþ2 þ i#

"
þ

!
1

lþ1 þ i#

"!
1

lþ2 þ i#

"$

¼ TrC½tatb#g2n!1 n"1
!

1

lþ1 þ i#
þ 1

$lþ1 þ i#

"
(

!
1

lþ2 þ i#
þ 1

$lþ2 þ i#

"

¼ $4$2g2n!1 n
"
1 TrC½tatb#%ðlþ1 Þ%ðlþ2 Þ: (26)

The anomalous eikonal factor here is the same as in Eq. (25), apart from an overall minus-sign. However, the propagator
denominators for graphs like Fig. 7(a) (both gluons on opposite sides of the cut) are different from the propagator
denominators for graphs like Fig. 7(b) (gluons on the same side). For graphs with the extra gluons on opposite sides of the
cut, one finds the following contribution to the TMD PDF of hadron H1:

I1ðk1TÞ ¼
g2&2

1 TrC½tatb#TrC½tbta#
ð2$Þ12 x1p

þ
1

Z
dk$d4l1d

4l2
½2ðpþ

1 $ kþ1 Þ þ lþ1 #½2ðpþ
1 $ kþ1 Þ þ lþ2 #

ðl21 þ i#Þðl22 $ i#Þ½ðk1 $ l1Þ2 $m2
q þ i##½ðk1 $ l2Þ2 $m2

q $ i##

( ð2$Þ3%ðlþ1 Þ%ðlþ2 Þ%ððp1 $ k1Þ2 $m2
qÞ

½ðp1 $ k1 þ l1Þ2 $m2
q þ i##½ðp$ kþ l2Þ2 $m2

q $ i##

¼ g2&2
1T

2
FðN2

c $ 1Þx1ð1$ x1Þ
256$7

Z
d2l1Td

2l2T
Y

j¼1;2

1

l2jT½ðk1T $ ljTÞ2 þm2
q#
: (27)

This is the same result as in Ref. [18], except that the gluon is massless and there is a non-Abelian color factor multiplying
the integral. Equation (26) allows for a similar calculation of the remaining contribution to the TMD PDF for hadron H1

from the graphs with the extra gluons on the same side of the cut:

I2ðk1TÞ ¼
$g2&2

1T
2
FðN2

c $ 1Þx1ð1$ x1Þ
256$7

Z
d2l1Td

2l2T
1

l21Tl
2
2T½ðk1T $ l1T $ l2TÞ2 þm2

q#½k21T þm2
q#
: (28)

The mismatch in denominators between Eqs. (27) and (28) means that the full contribution I1ðk1TÞ þ I2ðk1TÞ does not
generally vanish point-by-point in k1T . The sum of graphs like Fig. 7 therefore results in uncanceled terms that are not

FIG. 8. Graphs that contribute to a violation of generalized TMD-factorization. Other graphs that should be included are those with
all possible attachments of l1 to the k4 and k2 lines, and all possible attachments of l2 to the k3 and k1 lines, and all Hermitian conjugate
graphs. In total there are 16 graphs of this type.

NO GENERALIZED TRANSVERSE MOMENTUM DEPENDENT . . . PHYSICAL REVIEW D 81, 094006 (2010)

094006-11

Must take into account....



• Generalize GPM w/ color--should perform 
global analysis pheo test

• Elephant in the room is factorization and let 
alone universality

• Appears to be twist 3 and twist 2 approach 
connection-under investigation LG and Z. Kang

Conclusions 



Universality & Gluonic Pole Matrix elements
Model independent generalization of spectator model L.G.  A. Mukherjee & P. Mulders PRD 2008

in prep... this week?

P P

1k!k 1k

!G 1(k,k!k )

k

!G 1 (k,k!k )

P P

11k!k k kThe steps in these considerations:
1) The observation that the         and  integrations in  the quark-quark  quark-quark-gluon 
correlators lead to light-front correlators, for which time-ordering is irrelevant 
2)Therefore the matrix elements can be expressed as matrix elements of time-ordered products 
of operators then using LSZ formalism can study analytic structure poles and cuts
(Jaffe-1984) quark-quark and multi-parton correlators collinear correlators 
(Diehl-Gousset-1998) GPDs Radyushkin and Belitsky Phys. Rep. 2005

k−

Consider correlation functions 
as multi-particle scattering amplitudes 

Φα
G(x, x− x1) =

∫
d(ξ·P )

2π

d(η·P )
2π

eix1(η·P )ei(x−x1)(ξ·P )

× 〈P | ψ(0)Un
[0;η] gGnα(η) Un

[η;ξ] ψ(ξ) |P 〉
⌋
LC



!G 1 (k,k!k )

P P

11k!k k k

The steps in these considerations:
..... 
3) These pictures become just hadron-parton amplitudes, e.g. the quark-quark correlator is 
related to the forward antiquark-hadron scattering amplitude.  Depending on the precise 
structure these are untruncated Greens functions-time ordered products. Can use LSZ 
formalism to study analytic/singluarity structure 

Goal to study support properties 
in limit  x1 → 0



P P
! (k;P,S)

k k
hK Kh

h h!(k;K  ,S )

k k

The steps in these considerations:
..... 
3) These pictures become just hadron-parton amplitudes, e.g. the quark-quark correlator is 
related to the forward antiquark-hadron scattering amplitude.  Depending on the precise 
structure these are untruncated Greens functions-time ordered products. Can use LSZ 
formalism to study analytic/singluarity structure 

Take simple example of quark-target amplitude 
Landshoff, Polkinghorne, and Short 1971 NPB 

applied to TMDs

Goal to study support properties 



x < !1

P P

!k u !k
x > 1
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0 < x < 1

k
P P
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s

P P
!k

u

!k

!1 < x < 0

k = xP

k

k

P P
u

s

!(k+P) k!P

P!kP+k

Integrating parton correlators over         connects  them to the  
anti-parton -hadron scattering four-point function.  

Depending on the value of x,
the imaginary part of this amplitude                     represents 
the (anti)-parton distribution or fragmentation correlators.

k−

A(k2; s, u)

A(k2; s, u)



Φα(x, k2
T ) =

∫
dk−Aα(s + iε, k2 + iε, u + iε)

∣∣∣
LF

=
∫

dk−1 Aα(k−1 + iεfa(x))
∣∣∣
LF

k− =
s + iε

2(x− 1)

k− =
u + iε

2(x + 1)

k− =
k2 + iε

2x

TMDs 
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Thus Support in  x  region PDFs

Φ(x) = θ(x) θ(1− x) Disc[s]A+ θ(−x) θ(1 + x) Disc[u]A

 The integration contours for     integration w/respect to 
the kinematic singularities in the (forward) anti-parton - 
hadron scattering amplitude for the case of (non-
vanishing) distribution functions for quarks (a) and 
antiquarks (b).

!k

s >        u < 00 00u >        s < 

 < x < 0 1

0k  >2
00u >        s < s >        u < 00

!1 < x < 0 !k

0k  >2

k−



Support in  x  region FFs

 The case for fragmentation is different since the parton 
propagator for positive       contours in x and z not 
connected by analytic continuation Landshoff and Polkinghorn Phys. Rep. 1972

k2

∆(x) = θ(x− 1) Disc[s]A+ θ(−1− x) Disc[u]A

= θ(z) θ(1− z) Disc[s]A+ θ(−z) θ(1 + z) Disc[u]A



Extend analyticity study to multi-parton distribution and 
fragmentation function

s

u k!k

k

P P
k

1

1 1

1

P!k

s

u k!k

k

P P
k

1

1 1

1

P+k

s-channel u-channel

A(k2; s, u; s1, u1; k2
1, (k − k1)2)

The additional invariants for the  amplitude 

relevant for gluonic pole matrix elements,  for the 
case s > 0 and  for the case u > 0.

A(k2; s, u; s1, u1; k2
1, (k − k1)2)



The additional invariants for the  amplitude 

relevant for gluonic pole matrix elements,  for the 
case s > 0 and  for the case u > 0.

A(k2; s, u; s1, u1; k2
1, (k − k1)2)

s1 = (P ∓ k ± k1)2 and u1 = (P ∓ k1)2

k−1 =
s1 + iε

2(x1 − (x∓ 1))
+ k− k−1 =

u1 + iε

2(x1 ∓ 1)

k−1 =
(k − k1)2 + iε

2(x1 − x)
+ k− k−1 =

k2
1 + iε

2x1



• Depending on the value of          the integration contour in        bypasses the 
singularities encountered in the complex plane in a particular way, which dictates 
the support properties of the quark-gluon-quark correlation functions

• The denominators in the expressions relating        to       and      tell us that only 
when                      (for positive x) or                                (for negative  x) the 
singularities in         and          are relevant

Comments

k−1

x1

u1

s1

k−1

x1 ∈ �−�, x ��� x1 ∈ [x− 1, 1]
s1

u1

•  study case of s-channel (           )
•  Look at the gluonic poles
•              is in the interval 

s > 0
x1 → 0

0 < x < 1

x1 → 0 0 < x < 1



!k x > 1

2 0(k!k )  >1

0k  >2
1

1

1 1 00u > s < 

0k  >2
1

2 0(k!k )  >1

0 < x < 1!k1

1 1 00s > u < 
ΦG(x, x− x1)

∆G(x, x− x1)

For the case              the          integration  can be wrapped around the           
cut          which smoothly  vanishes  for                describes the by the 
arrow inside branch cut  indicates that it harmlessly recedes to infinity          

x > 1 k−1
k2
1 x1 → 0

Agrees with earlier model analysis Collins, Metz PRL 2004
Agrees with earlier model analysis LG, A. Mukherjee, P. Mulders PRD 2008
Agrees with spectral  analysis A. Metz, S. Meissner PRL 2009

∆G(x, x− x1)

lim
x1→0 = ∆G(x, x)→ 0



k−

Comments

•Text In wrapping the integration around the s- or u-cut 
• Must assume convergence in the variable       or use        
subtracted relations



Conclusions

• Study support of  multi-parton correlation functions 
through analytic structure of scattering amplitude 
•Gluonic pole contribution to fragmentation function 
vanishes--model independent result
•Implies universality of Collins function
•Consistent with  a number of past studies


