Extraction of GPDs from DVCS off unpolarized target

Krešimir Kumerički

Physics Department University of Zagreb, Croatia

Collaboration with:

Dieter Müller (Bochum, Berkeley), Andreas Schäfer (Regensburg)

GPD2010 workshop: "Hard Meson and Photon Electroproduction" 11-15 Oct 2010, ECT*, Trento

(日) (문) (문) (문) (문)

The model

Global fit results

Predictions for future experiments

Neural nets approach

Krešimir Kumerički: Extraction of GPDs from DVCS data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The model

Fit results

Predictions

Neural nets 0000

Probing the proton with two photons

• Deeply virtual Compton scattering (DVCS) [Müller '92, et al. '94]

$$t = (P_2 - P_1)^2$$
, $q = (q_1 + q_2)/2$
 ζ^{γ} Generalized Bjorken limit:

• To twist-two accuracy (and neglecting gluon transversity) cross-section can be expressed in terms of four Compton form factors (CFF)

$$\mathcal{H}(\xi,t,\mathcal{Q}^2),\ \mathcal{E}(\xi,t,\mathcal{Q}^2),\ \tilde{\mathcal{H}}(\xi,t,\mathcal{Q}^2),\ \tilde{\mathcal{E}}(\xi,t,\mathcal{Q}^2).$$

 DVCS - introduction
 The model
 Fit results
 Predictions
 Neur.

 000
 0000000
 00000000
 000
 0000

Factorization of CFFs \longrightarrow GPDs

• Compton form factor is a convolution:

$${}^{a}\mathcal{H}(\xi,t,\mathcal{Q}^{2}) = \int \mathrm{d}x \ C^{a}(x,\xi,\mathcal{Q}^{2}/\mu^{2}) \ H^{a}(x,\eta = \xi,t,\mu^{2})$$
$${}^{a=\mathrm{NS},\mathrm{S}(\Sigma,G)}$$

• $H^{a}(x, \eta, t, \mu^{2})$ — Generalized parton distribution (GPD)

Krešimir Kumerički: Extraction of GPDs from DVCS data

・ロト ・四ト ・ヨト ・ヨト

The model

Fit results 000000000 Predictions 000

Neural nets 0000

Model-dependent extraction of GPDs

$${}^{a}\mathcal{H}(\xi,t,\mathcal{Q}^{2}) = \int \mathrm{d}x \ C^{a}(x,\xi,\mathcal{Q}^{2}/\mu^{2}) \ H^{a}(x,\eta=\xi,t,\mu^{2})$$

 convolution is not generally invertible so we can extract GPDs only by modelling them and comparing to experiment

Our present model (details on the next few slides):

- We model sea quark and gluon GPDs in conformal moment space, we expand them in *t*-channel SO(3) partial waves, and take into account LO QCD evolution.
- We model valence quark GPDs by parametrizing them on $\eta = x$ trajectory, which at LO gives $\Im \mathcal{H} \mathcal{H}$ directly, and $\Re \mathcal{H}$ via dispersion relations. Here we ignore evolution which is probably negligible in kinematic region where valence quarks are not.

Fit results

Predictions 000 Neural nets 0000

Modelling GPDs in moment space

- Instead of considering momentum fraction dependence H(x,...)
- ... it is convenient to make a transform into complementary space of conformal moments *j*:

$$H_{j}^{q}(\eta,...) \equiv \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j} \ C_{j}^{3/2}(x/\eta) \ H^{q}(x,\eta,...)$$

- *H_j* do not mix under evolution at LO
- Measurable on the lattice [M. Goeckeler's talk]
- For integer j, they are even polynomials in η
- In our case, they are continued to complex j to allow OPE series summation

The model

Fit results

Predictions

Neural nets 0000

Modelling conformal moments of GPDs

H_j(t) are modelled by SO(3) partial wave decomposition of *t*-channel γ^{*}γ scattering

$$H_{j}(\eta, t) = \sum_{J}^{j+1} h_{J,j} \frac{1}{J - \alpha(t)} \frac{1}{\left(1 - \frac{t}{M^{2}(J)}\right)^{p}} \eta^{j+1-J} d_{0,\nu}^{J}(\eta)$$

d^J_{0,ν}(η) — Wigner SO(3) functions (Legendre, Gegenbauer,...)

The model

Fit results

Predictions

Neural nets 0000

Modelling conformal moments of GPDs

H_j(t) are modelled by SO(3) partial wave decomposition of *t*-channel γ^{*}γ scattering

$$H_{j}(\eta, t) = \sum_{J}^{j+1} h_{J,j} \frac{1}{J - \alpha(t)} \frac{1}{\left(1 - \frac{t}{M^{2}(J)}\right)^{p}} \eta^{j+1-J} d_{0,\nu}^{J}(\eta)$$

- d^J_{0,ν}(η) Wigner SO(3) functions (Legendre, Gegenbauer,...)
- Similar to "dual" parametrization [Polyakov, Shuvaev '02; K. Semenov's talk]

The model

Fit results

Predictions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Neural nets 0000

Leading partial wave (PW) model

• Taking just a leading partial wave J = j + 1 gives ansatz:

$$\begin{split} \mathbf{H}_{j}(\eta, t, \mu_{0}^{2}) &= \begin{pmatrix} N_{\Sigma}' F_{\Sigma}(t) \mathbf{B} (1+j-\alpha_{\Sigma}(0), 8) \\ N_{G}' F_{G}(t) \mathbf{B} (1+j-\alpha_{G}(0), 6) \end{pmatrix} \\ \alpha_{a}(t) &= \alpha_{a}(0) + 0.15t \qquad F_{a}(t) = \frac{j+1-\alpha(0)}{j+1-\alpha(t)} \left(1-\frac{t}{M_{0}^{a2}}\right)^{-p_{a}} \end{split}$$

... corresponding in forward case to PDFs of form

$$\Sigma(x) = N'_{\Sigma} x^{-\alpha_{\Sigma}(0)} (1-x)^7$$
; $G(x) = N'_{G} x^{-\alpha_{G}(0)} (1-x)^5$

The model

Fit results

Predictions

Neural nets

Leading partial wave (PW) model

• Taking just a leading partial wave J = j + 1 gives ansatz:

$$\begin{split} \mathbf{H}_{j}(\eta, t, \mu_{0}^{2}) &= \begin{pmatrix} N_{\Sigma}' F_{\Sigma}(t) \mathbf{B} (1+j-\alpha_{\Sigma}(0), 8) \\ N_{G}' F_{G}(t) \mathbf{B} (1+j-\alpha_{G}(0), 6) \end{pmatrix} \\ \alpha_{a}(t) &= \alpha_{a}(0) + 0.15t \qquad F_{a}(t) = \frac{j+1-\alpha(0)}{j+1-\alpha(t)} \left(1-\frac{t}{M_{0}^{a2}}\right)^{-p_{a}} \end{split}$$

... corresponding in forward case to PDFs of form

$$\Sigma(x) = N'_{\Sigma} x^{-lpha_{\Sigma}(0)} (1-x)^7$$
; $G(x) = N'_{G} x^{-lpha_{G}(0)} (1-x)^5$

- $M_0^G = \sqrt{0.7}\,{
 m GeV}$ is fixed by the J/ψ production data
- Single free parameter: M_0^{Σ} (after DIS F_2 fit fixes the rest)

For small ξ (small x_{Bj}) valence quarks are less important $\Rightarrow \sum \approx \text{sea}$

negative skewness

- Leading PW model: works only at (N)NLO [K.K., D. Müller and K. Passek-Kumerički '07]
- Leading and second PW: LO fits are fine, but gluon $H^{G}(x, x, t)$ tends to be negative for small x [K.K. and D. Müller '08]
- Adding third PW: everything fine [K.K. and D. Müller '10]
- Strengths of second and third quark and gluon partial wave are 4 additional model parameters.

The model

Fit results

Predictions

Neural nets

Modelling valence GPDs

 Neglecting evolution allows a simple model of GPDs on η = x trajectory:

$$H^{\text{val}}(x, x, t) = 1.35 \, r \, \left(\frac{2x}{1+x}\right)^{-\alpha(t)} \left(\frac{1-x}{1+x}\right)^{b} \frac{1}{\left(1-\frac{1-x}{1+x}\frac{t}{M^{2}}\right)},$$
$$\tilde{H}^{\text{val}}(x, x, t) = 0.6 \, \tilde{r} \, \left(\frac{2x}{1+x}\right)^{-\alpha(t)} \left(\frac{1-x}{1+x}\right)^{\tilde{b}} \frac{1}{\left(1-\frac{1-x}{1+x}\frac{t}{M^{2}}\right)}.$$

- $\alpha(t) = 0.43 + 0.85 t / \text{GeV}^2$ from (ρ , ω) Regge trajectories; non-Regge *t*-dependence taken from spectator model [Hwang, Müller '07]
- Six free parameters: r, b, M, r, b, M
- GPD E kinematically suppressed and neglected
- GPD \tilde{E} modelled by pion pole contribution (2 parameters)

Predictions

Neural nets 0000

Usage of dispersion relations

[Teryaev '05; K.K., Müller and Passek-K. '07, '08; Diehl and Ivanov '07]

• LO perturbative prediction is "handbag" amplitude

$$\mathcal{H}(\xi, t, \mathcal{Q}^2) \stackrel{\text{LO}}{=} \int_{-1}^{1} dx \, \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right) H(x, \xi, t, \mathcal{Q}^2)$$

• giving access to GPD on the "cross-over" line $\eta = x$

$$\frac{1}{\pi}\Im \mathfrak{M}\mathcal{H}(\xi=x,t,\mathcal{Q}^2)\stackrel{\mathrm{LO}}{=}\mathcal{H}(x,x,t,\mathcal{Q}^2)-\mathcal{H}(-x,x,t,\mathcal{Q}^2)$$

while dispersion relation connects it to ℜeH and at the most one subtraction constant C_H = −C_E; C_{H̃} = C_Ẽ = 0

$$\Re e \mathcal{H}(\xi, t, \mathcal{Q}^2) = \frac{1}{\pi} \operatorname{PV} \int_0^1 d\xi' \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'} \right) \Im \mathcal{H}(\xi', t, \mathcal{Q}^2) + \underbrace{\frac{\mathcal{C}}{(1 - t/M_{\mathcal{C}}^2)^2}}_{\mathcal{C}_{\mathcal{H}}(t, \mathcal{Q}^2)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Neural nets

Example fit result (preliminary)

- experimental data organized in standardized computer- and human-readable files
- Expressions for observables from [Belitsky, Müller and Kirchner '01, Belitsky and Müller '10]
- MINUIT minimizing routine [James and Roos '75]
- 15 parameter fit to 175 experimental points: $\chi^2/d.o.f = 132/160$

```
\begin{array}{l} \text{MO2S} = 0.51 \ \mbox{+-} 0.02 \\ \text{SECS} = 0.28 \ \mbox{+-} 0.02 \\ \text{SECG} = -2.79 \ \mbox{+-} 0.12 \\ \text{THIS} = -0.13 \ \mbox{+-} 0.01 \\ \text{THIG} = 0.90 \ \mbox{+-} 0.05 \\ \text{Mv} = 4.00 \ \mbox{+-} 0.33 \ (\text{edge}) \\ \text{rv} = 0.62 \ \mbox{+-} 0.67 \\ \text{C} = 8.78 \ \mbox{+-} 0.98 \\ \text{MC} = 0.97 \ \mbox{+-} 0.11 \\ \text{tMv} = 0.88 \ \mbox{+-} 0.24 \\ \text{trv} = 7.76 \ \mbox{+-} 1.39 \\ \text{tbv} = 2.05 \ \mbox{+-} 0.40 \\ \text{rpi} = 3.54 \ \mbox{+-} 1.77 \\ \text{Mpi} = 0.73 \ \mbox{+-} 0.37 \end{array}
```

The model

Fit results

Predictions

Neural nets

H1 (2007), ZEUS (2008)

• 107 measurements of $\sigma^{
m DVCS}$ and $d\sigma^{
m DVCS}/dt \sim |\mathcal{H}|^2$

CLAS (2007)

Fit results

• (12 points, $|t| \le 0.3 \, {
m GeV}^2$) sin ϕ harmonics of BSA

Some outliers here?!

Krešimir Kumerički: Extraction of GPDs from DVCS data

Krešimir Kumerički: Extraction of GPDs from DVCS data

(日)

ъ

э

Krešimir Kumerički : Extraction of GPDs from DVCS data

(日)

э

Comparison to other fitting approaches

• We have rough agreement with other fitting approaches (dual-model fit [Moutarde '09], model-independent fits: [Guidal '08], [Guidal and Moutarde '09]), although there are some discrepancies for Hall A data

Krešimir Kumerički : Extraction of GPDs from DVCS data

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Shape of GPD at very large-x still very unknown, but predictions for COMPASS/EIC/JLAB@12 are possible

The model

Fit results

Predictions •00

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Neural nets

H1 beam charge asymmetry

$$BCA \equiv \frac{\mathrm{d}\sigma_{e^+} - \mathrm{d}\sigma_{e^-}}{\mathrm{d}\sigma_{e^+} + \mathrm{d}\sigma_{e^-}} = \frac{\mathcal{A}_{\mathrm{Interference}}}{|\mathcal{A}_{\mathrm{DVCS}}|^2 + |\mathcal{A}_{\mathrm{BH}}|^2} \overset{\mathrm{LO}}{\propto} F_1 \Re e \mathcal{H} + \frac{|t|}{4M^2} F_2 \Re e \mathcal{E}$$

 YCS - introduction
 The model
 Fit results
 Predictions
 Neural net:

 00
 000000
 00000000
 000
 0000

H1 beam charge asymmetry

$$BCA \equiv \frac{\mathrm{d}\sigma_{e^+} - \mathrm{d}\sigma_{e^-}}{\mathrm{d}\sigma_{e^+} + \mathrm{d}\sigma_{e^-}} = \frac{\mathcal{A}_{\mathrm{Interference}}}{|\mathcal{A}_{\mathrm{DVCS}}|^2 + |\mathcal{A}_{\mathrm{BH}}|^2} \overset{\mathrm{LO}}{\propto} F_1 \Re e \mathcal{H} + \frac{|t|}{4M^2} F_2 \Re e \mathcal{E}$$

• Model E_{sea} as $(\mathcal{B}_{\text{sea}}/N_{\text{sea}})H_{\text{sea}}$ and take $\mathcal{B}_{\text{sea}} \equiv \int dx \, x \, E_{\text{sea}}$ as a parameter

Krešimir Kumerički: Extraction of GPDs from DVCS data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The model

Fit results

Predictions •00 Neural nets

H1 beam charge asymmetry

$$BCA \equiv \frac{\mathrm{d}\sigma_{e^+} - \mathrm{d}\sigma_{e^-}}{\mathrm{d}\sigma_{e^+} + \mathrm{d}\sigma_{e^-}} = \frac{\mathcal{A}_{\mathrm{Interference}}}{|\mathcal{A}_{\mathrm{DVCS}}|^2 + |\mathcal{A}_{\mathrm{BH}}|^2} \overset{\mathrm{LO}}{\propto} F_1 \Re e \mathcal{H} + \frac{|t|}{4M^2} F_2 \Re e \mathcal{E}$$

• Model $E_{\rm sea}$ as $(\mathcal{B}_{\rm sea}/N_{\rm sea})H_{\rm sea}$ and take $\mathcal{B}_{\rm sea} \equiv \int dx \, x \, E_{\rm sea}$ as a

• We cannot extract \mathcal{B}_{sea} from H1 data

 VCS - introduction
 The model
 Fit results
 Predictions
 Neural

 00
 000000
 00000000
 000
 0000

Prediction for COMPASS beam charge-spin asymmetry

$$\mathcal{A}_{ ext{BCSA}}(\phi) = rac{d\sigma^{\uparrow +} - d\sigma^{\downarrow -}}{d^{\uparrow +}\sigma + d^{\downarrow -}\sigma}$$

The model

Fit results

Predictions

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ クタ()

Neural nets 0000

Prediction for EIC cross section

The model

Fit results

Predictions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Neural nets

Problems with standard fitting approaches

- 1. Choice of fitting function introduces theoretical bias leading to systematic error which cannot be estimated
- 2. Propagation of uncertainties from experiment to fitted function is difficult. (Correlations are usually lost.)

The model

Fit results

Predictions 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Neural nets

Fitting with neural networkds

- 1. Neural networks make bias-free interpolation of data
- 2. Training networks on Monte Carlo replicated data preserves experimental uncertainties and their correlations [Giele et al. '01]

The model

Fit results

Predictions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Neural nets 0000

Fitting with neural networkds

- 1. Neural networks make bias-free interpolation of data
- 2. Training networks on Monte Carlo replicated data preserves experimental uncertainties and their correlations [Giele et al. '01]

ΙΙΙ

DVCS - introductionTheDOODOO

The model

Fit results

Predictions 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Neural nets 0000

Fitting with neural networkds

- 1. Neural networks make bias-free interpolation of data
- 2. Training networks on Monte Carlo replicated data preserves experimental uncertainties and their correlations [Giele et al. '01]

. [I

The model

Fit results

Predictions 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Neural nets 0000

Fitting with neural networkds

- 1. Neural networks make bias-free interpolation of data
- 2. Training networks on Monte Carlo replicated data preserves experimental uncertainties and their correlations [Giele et al. '01]

The model

Fit results

Predictions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Neural nets 0000

Fitting with neural networkds

- 1. Neural networks make bias-free interpolation of data
- 2. Training networks on Monte Carlo replicated data preserves experimental uncertainties and their correlations [Giele et al. '01]

ction The model Fit results Predictions

Neural nets

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fitting with neural networkds

- 1. Neural networks make bias-free interpolation of data
- 2. Training networks on Monte Carlo replicated data preserves experimental uncertainties and their correlations [Giele et al. '01]

action The model Fit results Predictions

Neural nets 0000

Fitting with neural networkds

- 1. Neural networks make bias-free interpolation of data
- 2. Training networks on Monte Carlo replicated data preserves experimental uncertainties and their correlations [Giele et al. '01]

Krešimir Kumerički: Extraction of GPDs from DVCS data

tion The model Fit results Predictions Neural nets 000000 00000000 000 000 000

Fitting with neural networkds

- 1. Neural networks make bias-free interpolation of data
- 2. Training networks on Monte Carlo replicated data preserves experimental uncertainties and their correlations [Giele et al. '01]

Krešimir Kumerički: Extraction of GPDs from DVCS data

tion The model Fit results Predictions Neural nets 000000 00000000 000 000 000

Fitting with neural networkds

- 1. Neural networks make bias-free interpolation of data
- 2. Training networks on Monte Carlo replicated data preserves experimental uncertainties and their correlations [Giele et al. '01]

 Already successfully applied to PDF fitting by [NNPDF] group. Has maybe even larger potential in GPD fitting with GPD being less-known function of more variables. ntroduction Th

Fit results

Predictions

Neural nets

Sample result (preliminary)

• 78 neural nets with neuron architecture 2-16-12-2 trained on CLAS BSA and HERMES BCA

 There are other interesting machine-learning approaches to parton structure [S. Liuti et al.]
 Kresimir Kumerički: Extraction of GPDs from DVCS data

- Global fits to unpolarized target H1, ZEUS, HERMES and CLAS data are possible within assumption of GPD *H* dominance
- cross sections measured by Hall A require additional contributions (*H̃* or *Ẽ*).
- For the future: Inclusion of data on DVCS with polarized target, and on meson production [T. Lautenschlager, K. Passek-Kumerički, et al. work in progress].

Krešimir Kumerički : Extraction of GPDs from DVCS data

- Global fits to unpolarized target H1, ZEUS, HERMES and CLAS data are possible within assumption of GPD *H* dominance
- cross sections measured by Hall A require additional contributions (*H̃* or *Ẽ*).
- For the future: Inclusion of data on DVCS with polarized target, and on meson production [T. Lautenschlager, K. Passek-Kumerički, et al. work in progress].

The End

Krešimir Kumerički : Extraction of GPDs from DVCS data

App: Mellin-Barnes representation of CFFs

App: Skewness ratio

Probability $P(\chi^2/d.o.f.)$ and parameter values •

[unpolarized target] H1ZEUS+UNP5 P(131.94, 160) = 0.95	[unp. + pol. target] H1ZEUS+UNP5+TSA1 P(196.41, 172) = 0.1	[unp. + pol. target] H12EUS+UNP5+TSA1 (Q2min=1.6) P(168.82, 156) = 0.23
$\begin{array}{c} & \text{MO2S} = 0.51 + - 0.02 \\ & \text{SECS} = 0.28 + - 0.02 \\ & \text{THIS} = -0.13 + - 0.01 \\ & \text{SECG} = -2.79 + - 0.12 \\ & \text{THIG} = 0.90 + - 0.05 \\ & \text{Mv} = 4.00 + - 3.33 \text{ (edge)} \\ & \text{rv} = 0.62 + - 0.06 \\ & \text{bv} = 0.40 + - 0.67 \\ & \text{c} = 8.78 + - 0.98 \\ & \text{MC} = 0.97 + - 0.11 \\ & \text{tMv} = 0.88 + - 0.24 \\ & \text{trv} = 7.76 + - 1.39 \\ & \text{tbv} = 2.05 + - 0.40 \\ & \text{rpi} = 3.54 + - 1.77 \\ & \text{Mpi} = 0.73 + - 0.37 \end{array}$	$\begin{array}{l} \hline \\ \text{M02S} = 0.54 + - 0.02 \\ \text{SECS} = 1.49 + - 0.02 \\ \text{THIS} = -0.50 + - 0.01 \\ \text{SECG} = -3.34 + - 0.12 \\ \text{THIG} = 0.94 + - 0.05 \\ \text{Mv} = 4.00 + - 3.54 (e) \\ \text{rv} = 1.07 + - 0.04 \\ \text{bv} = 0.40 + - 0.02 (e) \\ \text{C} = 1.05 + - 0.30 \\ \text{MC} = 4.00 + - 3.38 (e) \\ \text{tMv} = 1.32 + - 2.26 \\ \text{trv} = 0.82 + - 0.19 \\ \text{tbv} = 0.40 + - 0.16 (e) \\ \text{rpi} = 3.38 + - 0.16 \\ \text{Mpi} = 4.00 + - 2.33 (e) \end{array}$	$\begin{array}{l} & \\ MO2S = 0.52 + - 0.02 \\ SECS = 0.57 + - 0.03 \\ THIS = -0.22 + - 0.01 \\ SECG = -3.30 + - 0.18 \\ THIG = 1.09 + - 0.09 \\ Mv = 4.00 + - 3.58 (e) \\ rv = 1.03 + - 0.04 \\ bv = 0.40 + - 0.03 (e) \\ C = 1.23 + - 0.33 \\ MC = 4.00 + - 3.36 (e) \\ tMv = 1.03 + - 0.82 \\ trv = 0.92 + - 0.23 \\ tbv = 0.40 + - 0.33 (e) \\ rpi = 3.38 + - 0.17 \\ Mpi = 4.00 + 2.35 (e) \end{array}$
 Partial χ²/npts H1ZEUS: 81.74/107 allUNP: 50.20/68 CLAS: 116.16/22 CLASDM: 18.51/12 RSDW: 9.76/12 	91.64/107 86.11/68 68.92/22 11.16/12 22.54/12	84.11/107 69.10/54 (cut) 58.87/15 (cut) 8.48/8 (cut) 12.31/8 (cut)
BSSw: 4.13/8 TSA1: 608.33/12	21.39/8 18.66/12	19.58/8 15.62/10 (cut)

15.62/10 (cut)

・ロト・日本・コート・コー うらく

App: Mellin-Barnes representation of CFFs

App: Skewness ratio

HERMES TSA

Krešimir Kumerički : Extraction of GPDs from DVCS data

э

æ

App: Mellin-Barnes representation of CFFs $_{\odot \odot}$

App: Skewness ratio

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Mellin-Barnes representation of CFFs (I)

• Factorization formula for CFFs

$${}^{S}\mathcal{H}(\xi,\Delta^{2},\mathcal{Q}^{2}) = \int \mathrm{d}x \ \mathbf{C}(x,\xi,\mathcal{Q}^{2}/\mu^{2}) \ \mathbf{H}(x,\xi,\Delta^{2},\mu^{2})$$

• ... is in moment space written as conformal operator product expansion (COPE)

$${}^{\mathrm{S}}\mathcal{H}(\xi,\Delta^{2},\mathcal{Q}^{2}) = 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \mathbf{H}_{j}(\xi,\Delta^{2},\mu^{2})$$

App: Mellin-Barnes representation of CFFs $_{\odot \odot}$

App: Skewness ratio

Mellin-Barnes representation of CFFs (I)

• Factorization formula for CFFs

$${}^{S}\mathcal{H}(\xi,\Delta^{2},\mathcal{Q}^{2}) = \int \mathrm{d}x \ \mathbf{C}(x,\xi,\mathcal{Q}^{2}/\mu^{2}) \ \mathbf{H}(x,\xi,\Delta^{2},\mu^{2})$$

• ... is in moment space written as conformal operator product expansion (COPE)

^S
$$\mathcal{H}(\xi, \Delta^2, \mathcal{Q}^2) = 2 \sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_j(\mathcal{Q}^2/\mu^2, \alpha_s(\mu)) \mathbf{H}_j(\xi, \Delta^2, \mu^2)$$

• However, this series converges only for unphysical $\xi>1$

App: Mellin-Barnes representation of CFFs $_{\odot \odot}$

App: Skewness ratio

Mellin-Barnes representation of CFFs (I)

• Factorization formula for CFFs

$${}^{S}\mathcal{H}(\xi,\Delta^{2},\mathcal{Q}^{2}) = \int \mathrm{d}x \ \mathbf{C}(x,\xi,\mathcal{Q}^{2}/\mu^{2}) \ \mathbf{H}(x,\xi,\Delta^{2},\mu^{2})$$

• ... is in moment space written as conformal operator product expansion (COPE)

^S
$$\mathcal{H}(\xi, \Delta^2, \mathcal{Q}^2) = 2 \sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_j(\mathcal{Q}^2/\mu^2, \alpha_s(\mu)) \mathbf{H}_j(\xi, \Delta^2, \mu^2)$$

- However, this series converges only for unphysical $\xi>1$
- To evaluate it for $\xi < 1$ we analytically continue in complex j plane and write the COPE sum as a Mellin-Barnes integral ...

Mellin-Barnes representation of CFFs (II)

• ... using Sommerfeld-Watson transformation and dispersion relations:

$${}^{S}\mathcal{H}(\xi,\Delta^{2},\mathcal{Q}^{2}) = 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \mathbf{H}_{j}(\eta,\Delta^{2},\mu^{2})$$

$$= \frac{1}{2i} \int_{c-i\infty}^{c+i\infty} dj \,\xi^{-j-1} \left[i + \tan\left(\frac{\pi j}{2}\right)\right] \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \mathbf{H}_{j}(\xi,\Delta^{2},\mu^{2})$$

$$\overset{\text{Leading pole}}{\overset{\text{Leading pole}}{\overset{\text{def}}{\overset{\text{de}}}{\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}}\overset{\text{de}}{\overset{\text{de}}}\overset{\text{de}}{\overset{\text{de}}}\overset{\text{de}}{\overset{\text{de}}}\overset{\text{de}}{\overset{\text{de}}}\overset{\text{de}}{\overset{\text{de}}}\overset{\text{de}}{\overset{\text{de}}}\overset{\text{de}}{\overset{\text{de}}}\overset{\text{de}}{\overset{\text{de}}}\overset{\text{de}}{\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}{\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}{\overset{\text{de}}}\overset{\text{de}}{\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}{\overset{\text{de}}}\overset{\text{de}}\overset{\text{de}}}\overset{\text{$$

App: Mellin-Barnes representation of CFFs

App: Skewness ratio •00

3

Skewness ratio — R

• ... is discriminating feature of GPD models

• measurement: $R \approx 2$

Krešimir Kumerički : Extraction of GPDs from DVCS data

イロト イポト イヨト イヨト

App: Mellin-Barnes representation of CFFs

App: Skewness ratio

Skewness ratio (II) — r

• Skewness ratio is naturally defined by ratio of GPDs $H(x, \eta)$ at two physically relevant trajectories: $\eta = x$ and $\eta = 0$

Krešimir Kumerički: Extraction of GPDs from DVCS data

< ロ > < 同 > < 回 > < 回 >

App: Mellin-Barnes representation of CFFs

App: Skewness ratio

Skewness ratio (II) — r

• Skewness ratio is naturally defined by ratio of GPDs $H(x, \eta)$ at two physically relevant trajectories: $\eta = x$ and $\eta = 0$

$$r = rac{H(x,x)}{H(x,0)} \stackrel{LO}{pprox} rac{1}{2^{lpha}} R$$
 for $q(x o 0) \sim x^{-lpha}$ $lpha pprox 1$

Krešimir Kumerički : Extraction of GPDs from DVCS data

App: Mellin-Barnes representation of CFFs

App: Skewness ratio

Skewness ratio (II) — r

• Skewness ratio is naturally defined by ratio of GPDs $H(x, \eta)$ at two physically relevant trajectories: $\eta = x$ and $\eta = 0$

App: Mellin-Barnes representation of CFFs

App: Skewness ratio

くしゃ 本語 アメヨア オヨア しゅう

Skewness ratio (III)

 Simple GPD models are usually constrained by "natural" DVCS-to-DIS enhancement factor [Shuvaev et al. '99]

 $r = \frac{2^{j+2}\Gamma(j+5/2)}{\sqrt{\pi}\Gamma(j+3)}\bigg|_{j=\alpha-1\approx0.2} \approx 1.5$

- ... and thus fail to reproduce data
- Having correct $r \approx 1$ skewness ratio is an important feature of models that aim to reproduce data at LO.