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Physics Department
University of Zagreb, Croatia

Collaboration with:

Dieter Müller (Bochum, Berkeley),
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Probing the proton with two photons
• Deeply virtual Compton scattering (DVCS) [Müller ’92, et al. ’94]

γ∗

P1 P2

DVCS

−q2

1
= Q2 q2

2
= 0

γ

t = (P2 − P1)2 , q = (q1 + q2)/2

Generalized Bjorken limit:

−q2 ' Q2/2→∞

ξ =
−q2

2P · q → const

• To twist-two accuracy (and neglecting gluon transversity)
cross-section can be expressed in terms of four Compton form
factors (CFF)

H(ξ, t,Q2), E(ξ, t,Q2), H̃(ξ, t,Q2), Ẽ(ξ, t,Q2).
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Factorization of CFFs −→ GPDs

γ∗

P1 P2

−q2
1 = Q2 q2

2 = 0
γ

x + ξ

2

x − ξ

2

Ha

Ca

• Compton form factor is a convolution:

aH(ξ, t,Q2) =

∫
dx C a(x , ξ,Q2/µ2) Ha(x , η = ξ, t, µ2)

a=NS,S(Σ,G)

• Ha(x , η, t, µ2) — Generalized parton distribution (GPD)
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Model-dependent extraction of GPDs

aH(ξ, t,Q2) =

∫
dx C a(x , ξ,Q2/µ2) Ha(x , η = ξ, t, µ2)

• convolution is not generally invertible so we can extract GPDs
only by modelling them and comparing to experiment

Our present model (details on the next few slides):

• We model sea quark and gluon GPDs in conformal moment
space, we expand them in t-channel SO(3) partial waves, and
take into account LO QCD evolution.

• We model valence quark GPDs by parametrizing them on
η = x trajectory, which at LO gives =mH directly, and <eH
via dispersion relations. Here we ignore evolution which is
probably negligible in kinematic region where valence quarks
are not.
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Modelling GPDs in moment space

• Instead of considering momentum fraction dependence
H(x , . . .)

• . . . it is convenient to make a transform into complementary
space of conformal moments j :

Hq
j (η, . . .) ≡ Γ(3/2)Γ(j+1)

2j+1Γ(j+3/2)

∫ 1

−1
dx ηj C

3/2
j (x/η) Hq(x , η, . . .)

• Hj do not mix under evolution at LO

• Measurable on the lattice [M. Goeckeler’s talk]

• For integer j , they are even polynomials in η

• In our case, they are continued to complex j to allow OPE
series summation
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Modelling conformal moments of GPDs

• Hj(t) are modelled by SO(3) partial wave decomposition of
t-channel γ∗γ scattering

γ∗ p

p
γ

m(J)

hJ,j (1− t/M2)−p

1

m(J)− t
∝ 1

J − α(t)

Hj(η, t) =

j+1∑
J

hJ,j
1

J − α(t)

1(
1− t

M2(J)

)p η
j+1−JdJ

0,ν(η)

• dJ
0,ν(η) — Wigner SO(3) functions (Legendre,

Gegenbauer,. . . )

• Similar to “dual” parametrization [Polyakov, Shuvaev ’02; K.

Semenov’s talk]
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Leading partial wave (PW) model

• Taking just a leading partial wave J = j + 1 gives ansatz:

Hj(η, t, µ
2
0) =

(
N ′Σ FΣ(t) B

(
1 + j − αΣ(0), 8

)
N ′G FG(t) B

(
1 + j − αG(0), 6

) )

αa(t)=αa(0)+0.15t Fa(t) =
j + 1− α(0)

j + 1− α(t)

(
1− t

Ma
0

2

)−pa

. . . corresponding in forward case to PDFs of form

Σ(x) = N ′Σ x−αΣ(0) (1− x)7 ; G (x) = N ′G x−αG(0) (1− x)5

• MG
0 =

√
0.7 GeV is fixed by the J/ψ production data

• Single free parameter: MΣ
0 (after DIS F2 fit fixes the rest)

For small ξ (small xBj) valence quarks are less important ⇒ Σ ≈ sea
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Subleading PW — flexible models

Hj(η, t)=

(
N ′sea Fsea(t) B

(
1 + j − αsea(0), 8

)
N ′G FG(t) B

(
1 + j − αG(0), 6

) )
︸ ︷︷ ︸

skewness r≈1.6 (too large)

+

subleading par-
tial waves, η-
dependence!


︸ ︷︷ ︸

< 0
negative skewness

• Leading PW model: works only at (N)NLO [K.K., D. Müller and K.

Passek-Kumerički ’07]

• Leading and second PW: LO fits are fine, but gluon
HG (x , x , t) tends to be negative for small x [K.K. and D. Müller

’08]

• Adding third PW: everything fine [K.K. and D. Müller ’10]

• Strengths of second and third quark and gluon partial wave
are 4 additional model parameters.
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Modelling valence GPDs
• Neglecting evolution allows a simple model of GPDs on η = x

trajectory:

Hval(x , x , t) = 1.35 r

(
2x

1 + x

)−α(t)(1− x

1 + x

)b 1(
1− 1−x

1+x
t

M2

) ,
H̃val(x , x , t) = 0.6 r̃

(
2x

1 + x

)−α(t)(1− x

1 + x

)b̃ 1(
1− 1−x

1+x
t

M̃2

) .
• α(t) = 0.43 + 0.85 t/GeV2 from (ρ, ω) Regge trajectories;

non-Regge t-dependence taken from spectator model [Hwang,

Müller ’07]

• Six free parameters: r , b, M, r̃ , b̃, M̃
• GPD E kinematically suppressed and neglected
• GPD Ẽ modelled by pion pole contribution (2 parameters)
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Usage of dispersion relations
[Teryaev ’05; K.K., Müller and Passek-K. ’07, ’08; Diehl and Ivanov ’07]

• LO perturbative prediction is “handbag” amplitude

H(ξ, t,Q2)
LO
=

∫ 1

−1
dx

(
1

ξ − x − iε
− 1

ξ + x − iε

)
H(x , ξ, t,Q2)

• giving access to GPD on the “cross-over” line η = x

1

π
=mH(ξ = x , t,Q2)

LO
= H(x , x , t,Q2)− H(−x , x , t,Q2)

• while dispersion relation connects it to <eH and at the most
one subtraction constant CH = −CE ; CH̃ = CẼ = 0

<eH(ξ, t,Q2) =

1

π
PV

∫ 1

0
dξ′
(

1

ξ − ξ′ −
1

ξ + ξ′

)
=mH(ξ′, t,Q2)+

C

(1− t/MC
2)2︸ ︷︷ ︸

CH(t,Q2)
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Example fit result (preliminary)

• experimental data organized in standardized computer- and
human-readable files

• Expressions for observables from [Belitsky, Müller and Kirchner ’01,

Belitsky and Müller ’10]

• MINUIT minimizing routine [James and Roos ’75]

• 15 parameter fit to 175 experimental points: χ2/d .o.f = 132/160

--------------------------

M02S = 0.51 +- 0.02

SECS = 0.28 +- 0.02

SECG = -2.79 +- 0.12

THIS = -0.13 +- 0.01

THIG = 0.90 +- 0.05

Mv = 4.00 +- 3.33 (edge)

rv = 0.62 +- 0.06

bv = 0.40 +- 0.67

C = 8.78 +- 0.98

MC = 0.97 +- 0.11

tMv = 0.88 +- 0.24

trv = 7.76 +- 1.39

tbv = 2.05 +- 0.40

rpi = 3.54 +- 1.77

Mpi = 0.73 +- 0.37

-----------------------------
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H1 (2007), ZEUS (2008)
• 107 measurements of σDVCS and dσDVCS/dt ∼ |H|2
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HERMES (2008)

(18 points) BCA ≡ dσe+ − dσe−

dσe+ + dσe−
∼ Acos 0φ

C + Acos 1φ
C cosφ ∼ <eH

(18 points) BSA ≡ dσe↑ − dσe↓

dσe↑ + dσe↓
∼ Asin 1φ

LU sinφ ∼ =mH

14 Krešimir Kumerički : Extraction of GPDs from DVCS data



DVCS - introduction The model Fit results Predictions Neural nets

CLAS (2007)
• (12 points, |t| ≤ 0.3 GeV2) sinφ harmonics of BSA

• Some outliers here?!
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HALL A (2006) — harmonics
• (12 pts) BSD=dσe↑ − dσe↓ sinφ harmonic
• ( 8 pts) BSS=dσe↑ + dσe↓ cos0φ and cosφ harmonics
• Fit is OK only with unusually large <eTDVCS (→ H̃, Ẽ)
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HALL A (2006) — φ-dependence
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Resulting =mH(xB, t,Q
2)
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Comparison to other fitting approaches

• We have rough agreement with other fitting approaches
(dual-model fit [Moutarde ’09], model-independent fits: [Guidal

’08], [Guidal and Moutarde ’09]), although there are some
discrepancies for Hall A data
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Resulting H(x , x , t)

• Shape of GPD at very large-x still very unknown, but
predictions for COMPASS/EIC/JLAB@12 are possible
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H1 beam charge asymmetry

BCA ≡ dσe+ − dσe−

dσe+ + dσe−
=

AInterference

|ADVCS|2 + |ABH|2
LO∝ F1<eH+

|t|
4M2

F2<eE

• Model Esea as (Bsea/Nsea)Hsea and take Bsea ≡
∫
dx x Esea as a

parameter

0 60 120 180

-0.2

-0.1

0

0.1

0.2

0.3

-0.4 -0.2 0 0.2 0.4
0

0.1

0.2
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B
C

A

B
C

A

Bsea

Bsea = 0 φ = 0

φ [degrees]

Σ-PW model at LO

H1 preliminary

H1 cos φ fit (1-σ region)

Σ-PW cos φ harmonic

• We cannot extract Bsea from H1 data
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Prediction for COMPASS beam charge-spin asymmetry

ABCSA(φ) =
dσ↑+ − dσ↓−

d↑+σ + d↓−σ
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Prediction for EIC cross section
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Problems with standard fitting approaches

1. Choice of fitting function introduces theoretical bias leading
to systematic error which cannot be estimated

2. Propagation of uncertainties from experiment to fitted
function is difficult. (Correlations are usually lost.)
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Fitting with neural networkds
1. Neural networks make bias-free interpolation of data
2. Training networks on Monte Carlo replicated data preserves

experimental uncertainties and their correlations [Giele et al. ’01]

H, E , · · ·

Neural Net

xB, t, Q2

x 100

• Already successfully applied to PDF fitting by [NNPDF] group.
Has maybe even larger potential in GPD fitting with GPD
being less-known function of more variables.
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Sample result (preliminary)
• 78 neural nets with neuron architecture 2-16-12-2 trained on

CLAS BSA and HERMES BCA

Error bands unreliable at
the moment!

• There are other interesting machine-learning approaches to
parton structure [S. Liuti et al.]
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Summary

• Global fits to unpolarized target H1, ZEUS, HERMES and
CLAS data are possible within assumption of GPD H
dominance

• cross sections measured by Hall A require additional
contributions (H̃ or Ẽ ).

• For the future: Inclusion of data on DVCS with polarized
target, and on meson production [T. Lautenschlager, K.

Passek-Kumerički, et al. work in progress].

The End
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App: Details of fits App: Mellin-Barnes representation of CFFs App: Skewness ratio

• Probability P(χ2/d.o.f.) and parameter values

-------------------------- ------------------------- ------------------------------

[unpolarized target] [unp. + pol. target] [unp. + pol. target]

H1ZEUS+UNP5 H1ZEUS+UNP5+TSA1 H1ZEUS+UNP5+TSA1 (Q2min=1.6)

P(131.94, 160) = 0.95 P(196.41, 172) = 0.1 P(168.82, 156) = 0.23

-------------------------- ------------------------- ------------------------------

M02S = 0.51 +- 0.02 M02S = 0.54 +- 0.02 M02S = 0.52 +- 0.02

SECS = 0.28 +- 0.02 SECS = 1.49 +- 0.02 SECS = 0.57 +- 0.03

THIS = -0.13 +- 0.01 THIS = -0.50 +- 0.01 THIS = -0.22 +- 0.01

SECG = -2.79 +- 0.12 SECG = -3.34 +- 0.12 SECG = -3.30 +- 0.18

THIG = 0.90 +- 0.05 THIG = 0.94 +- 0.05 THIG = 1.09 +- 0.09

Mv = 4.00 +- 3.33 (edge) Mv = 4.00 +- 3.54 (e) Mv = 4.00 +- 3.58 (e)

rv = 0.62 +- 0.06 rv = 1.07 +- 0.04 rv = 1.03 +- 0.04

bv = 0.40 +- 0.67 bv = 0.40 +- 0.02 (e) bv = 0.40 +- 0.03 (e)

C = 8.78 +- 0.98 C = 1.05 +- 0.30 C = 1.23 +- 0.33

MC = 0.97 +- 0.11 MC = 4.00 +- 3.38 (e) MC = 4.00 +- 3.36 (e)

tMv = 0.88 +- 0.24 tMv = 1.32 +- 2.26 tMv = 1.03 +- 0.82

trv = 7.76 +- 1.39 trv = 0.82 +- 0.19 trv = 0.92 +- 0.23

tbv = 2.05 +- 0.40 tbv = 0.40 +- 0.16 (e) tbv = 0.40 +- 0.33 (e)

rpi = 3.54 +- 1.77 rpi = 3.38 +- 0.16 rpi = 3.38 +- 0.17

Mpi = 0.73 +- 0.37 Mpi = 4.00 +- 2.33 (e) Mpi = 4.00 +- 2.35 (e)

---------------------------------------------------------------------------------------

• Partial χ2/npts

H1ZEUS: 81.74/107 91.64/107 84.11/107

allUNP: 50.20/68 86.11/68 69.10/54 (cut)

CLAS: 116.16/22 68.92/22 58.87/15 (cut)

CLASDM: 18.51/12 11.16/12 8.48/8 (cut)

BSDw: 9.76/12 22.54/12 12.31/8 (cut)

BSSw: 4.13/8 21.39/8 19.58/8

TSA1: 608.33/12 18.66/12 15.62/10 (cut)
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HERMES TSA
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Mellin-Barnes representation of CFFs (I)

• Factorization formula for CFFs . . .

SH(ξ,∆2,Q2) =

∫
dx C(x , ξ,Q2/µ2) H(x , ξ,∆2, µ2)

• . . . is in moment space written as conformal operator product
expansion (COPE)

SH(ξ,∆2,Q2) = 2
∞∑
j=0

ξ−j−1Cj(Q2/µ2, αs(µ)) Hj(ξ,∆
2, µ2)

• However, this series converges only for unphysical ξ > 1

• To evaluate it for ξ < 1 we analytically continue in complex j
plane and write the COPE sum as a Mellin-Barnes integral . . .
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Mellin-Barnes representation of CFFs (II)

• . . . using Sommerfeld-Watson transformation and dispersion
relations:

SH(ξ,∆2,Q2) = 2
∞∑
j=0

ξ−j−1Cj(Q2/µ2, αs(µ)) Hj(η,∆
2, µ2)

=
1

2i

∫ c+i∞

c−i∞
dj ξ−j−1

[
i + tan

(
πj

2

)]
Cj(Q2/µ2, αs(µ)) Hj(ξ,∆

2, µ2)

c

Leading pole

Regge and poles
of Wilson coef. and
anomalous dim.

tan(
πj

2
)Poles of

j
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Skewness ratio — R

• . . . is discriminating feature of GPD models

R ≡ Im ADVCS

Im ADIS

∣∣∣∣
t=0

∼
√
σDVCS

σDIS

LO∼ H(x , x)

q( 2x
1+x , 0)
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our LO fit

• measurement: R ≈ 2
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Skewness ratio (II) — r

• Skewness ratio is naturally defined by ratio of GPDs H(x , η)
at two physically relevant trajectories: η = x and η = 0

r =
H(x , x)

H(x , 0)

LO≈ 1

2α
R for q(x → 0) ∼ x−α α ≈ 1

η
=

x

η = 0

η

x 1
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 r No skewness effect according to definition
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H(x,0)
r =
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Skewness ratio (III)

• Simple GPD models are usually constrained by “natural”
DVCS-to-DIS enhancement factor
[Shuvaev et al. ’99]

r =
2j+2Γ(j + 5/2)√

πΓ(j + 3)

∣∣∣∣
j=α−1≈0.2

≈ 1.5

• . . . and thus fail to reproduce data

• Having correct r ≈ 1 skewness ratio is an important feature of
models that aim to reproduce data at LO.
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