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Introduction

The dedicated experiments provide an increasing amount of experimental data
on hard exclusive processes described within GPD formalism. The extraction of
GPDs from the experimental data is highly demanded.

GPDs are complicated functions of x, ξ, and t as well as of factorization scale.
The direct extraction of GPDs from the observables is an extremely difficult
task. GPDs always enter the observables being integrated over x with weighting
functions.

In order to extract GPDs from the data, one usually relies on different
phenomenologically motivated parameterizations and simultaneous fitting
procedures for several observables. This require suitable Anzätze and theoretical
development.

GPD modelling is usually guided by

1 Relation to PDFs and form factors

2 Lorentz symmetry requirements such as polynomiality property

3 Evolution properties of GPDs

4 Analyticity requirements

5 Regge phenomenology considerations

6 The insight obtained from GPD calculations in different dynamical model

7 Experimental constrains (e.g. skewness effect for small xBj)



Conformal PW expansion for GPDs I

Main advantage of expansion of GPDs in conformal PW: trivial solution of the LO
evolution equations.

Conformal moments of quark GPDs are defined with respect to

cn(x, ξ) = Nn × ξnC
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n
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)
; Normalization: limξ→0 cn(x, ξ) = xn.
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Orthogonality of the basis:
∫ 1

−1
dx pn(x, ξ)cn(x, ξ) = δmn



Conformal PW expansion for GPDs II

Conformal PW expansion for GPDs:

H(x, ξ, t) =
∞∑
n=0

pn(x, ξ)mn(ξ, t) .

Conformal moments are reproduced by this series.

Restricted support property ; GPD vanishes in the outer region.

The expansion is to be understand as an ill-defined sum of generalized functions.

Allows to factorize x, ξ and t dependence of GPDs.

Different ways to assign meaning to conformal PW expansion

1 Sommerfeld-Watson transform + Mellin-Barnes integral techniques D. Müller
and A. Schäfer’05; A. Manashov, M. Kirch and A. Schafer’05;

2 Shuvaev transform A. Shuvaev’99, J. Noritzsch’00;
Dual parametrization of GPDs M. Polyakov and A. Shuvaev’02;



Mellin-Barnes techniques in simple words I

Sommerfeld-Watson transform:

H(x, ξ, t) =
1

2i

∮ (∞)

(0)
dj

(−1)j

sinπj
pj(x, ξ)mj(ξ, t) .

Residue theorem leads to conformal P.W. expansion (Resj=n
1

sinπj
=

(−1)j

π
).

The main difficulty is to find the appropriate analytic continuation of pj(x, ξ)
and mj(x, ξ) in j.

For pj(x, ξ) the problem is solved by the so-called Schläfli integral:

pj(x, ξ) =
Γ
(

5
2

+ j
)

(−1)j+1

Γ
(

1
2

)
Γ(2 + j)

1

2πi

∮ 1+ε

−1−ε
du

(u2 − 1)j+1

(x+ uξ)j+1
.

For integer j = n and |x| ≤ ξ by residue theorem it gives Gegenbauer
polynomials via Rodriguez formula.



Mellin-Barnes techniques in simple words II

Important case ξ = 0 ⇒ integral kernel for the inverse Mellin transform:

pj(x, 0) = x−j−1
Γ
(

5
2

+ j
)

(−1)j+1

Γ
(

1
2

)
Γ(2 + j)

∫ 1

−1
du(1− u2)j+1 =

(−1)j sin(π(j + 1))

π

1

xj+1
.

In general pj(x, ξ) is expressed through

2F1 hypergeometric function. Asymptotic
behavior of pj(x, ξ) for j →∞ is known.

Asymptotic behavior of mj -?

Integral over the large arc must vanish.

Mellin-Barnes integral representation for GPDs:

H(x, ξ, t) =
i

2

∫ c+i∞

c−i∞
dj

(−1)j

sinπj
pj(x, ξ)mj(ξ, t) .

Simple expression for the elementary amplitude.

Easy to include perturbative corrections.



The basis for Shuvaev transform & dual parametrization

How to restore f(x) from its Mellin moments Mn =
∫
dxxnf(x)?

Formal solution: f(x) =
∞∑
n=0

Mnδ
(n)(x)

(−1)n

n!
.

X A trick: δ(n)(x) =
1

2πi
(−1)nn!

[
1

(x− iε)n+1
−

1

(x+ iε)n+1

]
.

Define F (z) =
∞∑
n=0

Mn

zn+1
; then f(x) =

1

2πi
[F (x− iε)− F (x+ iε)] .

Shuvaev transform:

Introduce fξ(y) whose Mellin moments generate Gegenbauer moments of GPD:∫ 1

0
dyynfξ(y) = mn(ξ)

One can explicitly construct the kernel K(x, ξ; y) such that

H(x, ξ) =

∫ 1

0
dyK(x, ξ; y) fξ(y) .



Dual Parametrization: basic facts

Dual Parametrization (M. Polyakov, A. Shuvaev’02):

Mellin moments expanded in a set of suitable orthogonal polynomials. E.g.
partial waves of the t-channel (t-channel refers to h̄h→ γ∗γ):

N−1
n

(n+ 1)(n+ 2)

2n+ 3
mn(ξ, t) = ξn+1

n+1∑
l=0

Bnl(t)Pl

(
1

ξ

)

Conformal PW expansion id then rewritten as:

H(x, ξ, t) =
∞∑
n=1
odd

n+1∑
l=0
even

Bnl(t) θ
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)
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ξ
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Introduce Qk(y, t) that generate the generalized F.F.:

Bn n+1−k(t) =

∫ 1

0
dyynQk(y, t) .

GPD is given by the convolution with the set of kernels:

H(x, ξ, t) =
∞∑
k=0

∫ 1

0
dyK(k)(x, ξ, y)Qk(y, t) .



t-channel point of view and duality

Conformal PW expansion converges for ξ > 1.

By means of the crossing relation one gets conformal PW expansion for two
particle GDAs.

x

ξ
↔ 1− 2z;

1

ξ
↔ 1− 2ζ; t↔W 2

Duality in the spirit of R. Dolen, D. Horn, C. Schmid’67. GPDs are presented as
infinite series of t-channel Regge exchanges M. Polyakov’98:

〈π(p′)| Ô |π(p)〉 ∼ Crossing of
∑
RJ

∑
polarization

of RJ

1

t−M2
RJ

× 〈π(p′)π(−p)|RJ 〉︸ ︷︷ ︸
RJNN̄ effective vertex

〈RJ | Ô |0〉︸ ︷︷ ︸
F.T. of DA of RJ

.

Expansion in the t-channel PW:

cos θt =
s− u√

1− 4m2

t
(Q2 + t)

=
1

ξ
√

1− 4m2

t

+O(
1

Q2
) ,



Dual Parametrization for spin- 1
2 hadrons

Combinations of nucleon GPDs suitable for PW expansion in the t-channel PW:

H(E) ≡ H +
t

4M2
N

E : Pl

(
1

ξ

)
H(M) ≡ H + E : P ′l

(
1

ξ

)
H̃(PS) ≡ H̃ +

t

4M2
N

Ẽ : Pl

(
1

ξ

)
H̃ : P ′l

(
1

ξ

)

E.g. unpolarized singlet (C = +1) quark GPDs (Hq
+(x, 0, 0) = q(x) + q̄(x)) and

unpolarized gluon GPDs (Hg(x, 0, 0) = xg(x))

H
q (E,M)
+ (x, ξ, t) = 2

∞∑
n=1
odd

n+1∑
l=0
even

B
q (E,M)
nl (t) θ
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Hg (E,M)(x, ξ, t) =
∞∑
n=1
odd

n+1∑
l=0
even

B
g (E,M)
nl (t) θ
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Dual parametrization: summing up the formal series

How to construct the convolution kernels? H(x, ξ, t) =
∞∑
k=0

∫ 1

0
dyK(k)(x, ξ, y)Qk(y, t) .

Mellin moments of Qk(y, t) generate the generalized F.F. Bnl:

Bn n+1−k(t) =

∫ 1

0
dyynQk(y, t) .

M. Polyakov and A. Shuvaev’02 (see also M. Polyakov and KS’08):

K(k)(x, ξ, y) = discz=xF
(k)(z, ξ, y) , where

F (k)(z, ξ, y) =
1

y

(
1 + y

∂

∂y

)∫ 1

−1
dsξk

z1−k
s√

z2
s − 2zs + ξ2

, zs ≡ 2
z − ξs

(1− s2)y
.

Two ways to compute the discontinuity:

1 Expand in powers of 1
zs

and employ Rodriguez formula for Gegenbauer

polynomials ⇒ formally recover conformal PWE for GPD.

2 Consider the discontinuity due to the cut 1−
√

1− ξ2 < zs < 1 +
√

1− ξ2

(and from poles at zs = 0 for k ≥ 2) ⇒ analytical expressions for the
convolution kernels in terms of elliptic integrals.



Basic properties

GPD is presented as a convolution over y of convolution kernels with the set of
forward-like functions Qk (Gk for gluon GPDs).

Scale dependence of Qk, Gk is given by DGLAP equations.

GPDs satisfy polynomiality property and the support property.

The D-term is the natural ingredient of the dual parametrization.

The limit ξ → 0. The forward-like function Q
(E)
0 (x, t = 0) ≡ Q0(x) and

G
(E)
0 (x, t = 0) ≡ G0(x) are expressed as

X Q0(x) = q(x) + q̄(x)−
x

2

∫ 1

x

dy

y2
(q(y) + q̄(y)) ;

X G0(x) = 9x2

∫ 1

x

dy

y3
g(y)− 3x

∫ 1

x

dy

y2
g(y) .

“Minimalist” model for GPDs which takes into account only Q0, G0. does not
describe properly the DVCS data! Thus more conformal PW are to be included!

A principle allowing to take into account only a finite number of conformal PWs
(i.e. Qk, Gk)?



Convolutions with hard kernels

Our final goal is the computation of the Compton F.Fs.

The elementary amplitude is the natural building block.

A(ξ) =

∫ 1

0
dxH(x, ξ)

[
1

ξ − x− i0
−

1

ξ + x− i0

]
= 4

∞∑
n=1
odd

n+1∑
l=0
even

Bn lPl

(
1

ξ

)
;

ImA(ξ) = 2

∫ 1

1−
√

1−ξ2
ξ

dx

x
N(x)

1√
2x
ξ
− x2 − 1

.

GPD quintessence N(x) =
∑∞
ν=0 x

2νQ2ν(x)

♠ A problem reported for less trivial kernels (e.g. for αs correction to CFF:)

∫ 1

0
dxC(x, ξ)H(x, ξ) = 4

∞∑
n=1
odd

n+1∑
l=0
even

Bn lC(n)Pl

(
1

ξ

)

In order to sum up the PW expansion for CFF one has to build an integral
transformation∫ 1

0
dy yk+l−1 (KC(y, z1, ...., zp), Qk(zp)) = C(k + l − 1)Bnl



Abel transform tomography

The observer at ∞ looking along a line parallel
to the x-axis a distance y above the origin sees
the projection:

a(y2) =

∫ ∞
−∞

dxm(ρ2) =

∫ ∞
y2

dρ2 m(ρ2)√
ρ2 − y2

M. Polyakov’07: with the help of Joukowski conformal map 1
w

= 1
2

(
x+ 1

x

)
it is

possible to present the relation between ImA(ξ) and GPD quintessence N(x) in
the form of the Abel integral equation.

The inverse transform for N(x):

N(x) =
1

π

x(1− x2)

(1 + x)
3
2

∫ 1

2x
1+x2

dξ

ξ
3
2

1√
ξ − 2x

1+x2

{
1

2
ImA(ξ)− ξ

d

dξ
ImA(ξ)

}
.

The information on GPDs from the amplitude of hard exclusive process can be
quantified in terms of a GPD quintessence function and the value of the D-
form factor.



Reparametrization procedure I

The key role is played by the expansion of GPD H(x, ξ) in powers of ξ around
the point ξ = 0 with fixed x (x > ξ).

H(x, ξ) = H(0)(x) + ξ2H(2)(x) + ξ4H(4)(x) + ...

= Q0(x) +

√
x

2

∫ 1

x

dy

y3/2
Q0(y) + ξ2

[
−

1− x2

4x

∂

∂x
Q0(x)+

1

32

∫ 1

x
dy Q0(y)

{
1

y

(
3

√
x

y
+ 3

√
y

x

)
+

1

y3

(
3

√
y

x
−
( y
x

) 3
2
)}

+
1

4
Q2(x) +

3

32

∫ 1

x
dy Q2(y)

1

y

(
1

2

√
x

y
+

√
y

x
+

5

2

( y
x

) 3
2
)]

+O(ξ4)

Up to the order ξ2µ this expansion involves only Q2ν(x) with ν ≤ µ
Assume that the expansion of GPD H(x, ξ) around ξ = 0 for x > ξ calculated in
the framework of a certain parametrization/phenomenological model is known:
H(x, ξ) = φ0(x) + φ2(x)ξ2 + φ4(x)ξ4 +O(ξ6) ,

with φ2ν(x) = 1
(2ν)!

∂2ν

∂ξ2ν
H(x, ξ)ξ=0 .

Using this expansion we are about to recast any particular model for H(x, ξ) in
the framework of the dual parametrization and determine the corresponding
functions Q2ν(x) order by order.



Reparametrization procedure II

For Q0(x) the usual expression is recovered.

The result for Q2(x) reads:

Q2(x) =
2(1− x2)

x2
q(x) +

(1− x2)

x
q′(x) +

∫ 1

x
dy

(
−15x

4 y4
−

3

2 y3
+

5x

4 y2

)
q(y)

+ 4φ2(x)−
∫ 1

x
dy φ2(y)

(
15x

4 y2
+

3

2y
+

3

4x

)
.

The derivation of results for Q4, Q6, etc is straightforward.

Some lessons

A problem reported! Assume q(x) ∼ 1
xα

with α ≈ 1. Then Q2(x) ∼ 1
x2+α and

in general Q2ν(x) ∼ 1
x2ν+α . This leads to the possible divergences of

B2ν−1 0 =

∫ 1

0

dx

x
x2νQ2ν(x) .

Note that B2ν−1 0 are the lowest order Mellin moments of the forward like
functions Q2ν with ν > 0 relevant for the calculation of GPDs. In the DVCS
amplitude these B2ν−1 0 contribute only into the D form factor. This has deep
consequences.



Dual parametrization v.s. Radyushkin DD Ansatz I

Reparametrization procedure allows to establish the link between the dual
parametrization of GPDs and RDDA, Radyushkin’97.

GPD is obtained as a one dimensional section of a two-variable double distribution fq :

Hq(x, ξ) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα δ(x− β − αξ) fq(β, α) +D-term

RDDA: fq(β, α) = h(β, α)q(β).

h(b)(β, α) =
Γ(2b+ 2)

22b+1Γ2(b+ 1)

[(1− |β|)2 − α2]b

(1− |β|)2b+1

Several first forward like functions Q0,2,4 that reexpress Radyushkin DD Ansatz
in the framework of the dual parametrization were computed.

A way to compare: assume power-like asymptotic behavior of q(x) for small x:
q(x) ∼ 1

xα
with 1 < α < 2 and compare ImA(ξ) for ξ ∼ 0.



Dual parametrization v.s. Radyushkin DD Ansatz II

ImA(ξ) for ξ ∼ 0 from Q0,2,4(x):

ImA(0)(ξ) + ImA(2)(ξ) + ImA(4)(ξ) + ...

∼
2α+1

ξα

Γ( 1
2

)Γ(α+ 3
2

)

Γ(α+ 2)
{1 + (α− b) c2(α, b) + (α− b) (α− b+ 1) c4(α, b) + ...} .

ImADD(ξ) ∼
22b+1−α

ξα

Γ( 1
2

)Γ(b+ 3
2

)Γ(1 + b− α)

Γ(2 + 2b− α)

For α = b the coefficients in front of leading singular term of ImADD(ξ) and
ImA(0)(ξ) coincide. For small ξ the minimalist dual model is equivalent to
RDDA with b = 1.

For b = α+M , M > 0, integer, it suffices to take account of a finite number of
forward-like functions Q2ν with ν ≤M obtained using the reparametrization
procedure to reproduce the leading small-ξ asymptotic behavior of ImADD(ξ).

The two parametrizations result in distinct behavior of ImA(ξ) for ξ ∼ 1. One
has to sum up all partial waves in the dual parametrization in order to reproduce
∼ (1− ξ)b behavior of ImA(ξ) in RDDA.



Skewness effect for Hq g (E,M)

Assume that q(E,M)(x) ∼ 1/xα
q

; g(E,M)(x) ∼ 1/xα
g

.

Skewness effect in the “minimalist” dual model equals conformal ratio (K. Kumericki,
D. Mueller and K. Passek-Kumericki’08, 09)

r
q (E,M)
Q0

≡
Hq (E,M)(ξ, ξ)

Hq (E,M)(ξ, 0)

∣∣∣∣∣
ξ∼0

'
2α
q
Γ(αq + 3

2
)

Γ( 3
2

)Γ(2 + αq)
≈ 3/2 for αq ≈ 1 ;

r
g (E,M)
G0

≡
Hg (E,M)(ξ, ξ)

Hg (E,M)(ξ, 0)

∣∣∣∣∣
ξ∼0

'
2α
g+1Γ(αg + 3

2
)

Γ( 3
2

)Γ(3 + αg)
≈ 1 for αg ≈ 1 .

Skewness effect from H1:

R = 2αq rq ∼
√
σDVCS

σDIS

The observable ratio R(Q2) for
fixed W = 82 GeV. The Figure
is taken from H1’07.



Some lessons

In order to describe the data the dual parametrization model should include

some additional forward like functions Q
(E,M)
2ν with ν > 0. These functions

should be singular enough in order to make influence on the small ξ asymptotic
behavior of ImA(ξ).

Same problem in other words. Conformal partial wave expansion written as a
Mellin-Barnes integral K. Kumericki, D. Mueller and K. Passek-Kumericki’08
employ

mj(ξ) = ξj+1
j+1∑

J=Jmin

hJ

J − α(t)
PJ

(
1

ξ

)
.

In addition to the LO SO(3) partial wave (J = j + 1) the next to leading SO(3)
partial wave should be included. Then it turns out possible to fit the small-xBj
experimental data to a reasonable accuracy.

Seems to be a problem:

In order to contribute to the leading small-ξ singular behavior of ImA(ξ):

Q2ν(x) ∼
1

x2ν+α
.

This leads to divergencies of generalized form factors B2ν−1 0.

These divergent generalized form factors contribute only into the D-form factor.



Analytical properties

X Once subtracted dispersion relation in ω = 1
ξ

for the elementary amplitude reads (

e.g. Teryaev’05):

A(ξ) = 4Dq +
1

π

∫ 1

0
dξ′
(

1

ξ − ξ′ − iε
−

1

ξ + ξ′ − iε

)
ImA(ξ′ − iε) .

Common wisdom:

The subtraction constant in a dispersion relation presents an independent
quantity, which cannot be fixed just with help of the information on the
discontinuities of the amplitude. In order to determine the value of the
subtraction constant one has to attain certain additional information on the
amplitude under consideration.

A way to proceed:

D. Mueller et al.: fix the value of the subtraction constant assume analytical

properties in j of combinations of coefficients h
(2ν+j)
2ν at powers of ξ of Mellin

moments of GPD.

∫ 1

0
dx xNH+(x, ξ) = h

(N)
0 + h

(N)
2 ξ2 + ...+ h

(N)
N+1ξ

N+1 (N = 1, 3, ...) .



GPD sum rule

Dispersion relation together with the definition of the LO amplitude
O. Teryaev’05, I. Anikin and O. Teryaev’07 :∫ 1

0
dx

(
1

ξ − x
−

1

ξ + x

)
[H+(x, ξ)−H+(x, x)] = 4Dq .

Expansion in in powers of 1
ξ

+ polynomiality property ⇒ a family of sum rules:

∞∑
ν=1

h
(2ν+j)
2ν =

∫ 1

0
dx xj [H+(x, x)−H+(x, 0)] , with j = 1, 3, ... .

Subtraction constant can be fixed:

2Dq =
∞∑
ν=1

h
(2ν−1)
2ν = lim

j→−1

{∫ 1

0
dx xj [H+(x, x)−H+(x, 0)]

}
,

Analytical regularization

Compute for large positive j. Then analytically continue to j = −1

This is precisely a so-called analytic (or canonical) regularization ( 1 < α < 2):∫ 1

(0)
dx

f(x)

x1+α
=

∫ 1

0
dx

1

x1+α

[
f(x)− f(0)− xf ′(0)

]
−
f(0)

α
−
f ′(0)

α− 1
.



Fixing D- form factor

Restrict the class of functions e.g. (I. Gelfand and G. Shilov’64):

z2νQ2ν(z), N(z), ImA(z) ∈
{
F : F (z) =

R∑
r=1

1

xαr
fr(z)

}
,

with finite R.

The subtraction constant can be fixed according to:

2Dq =

∫ 1

(0)
dx

1

x
[H+(x, x)−H+(x, 0)] .

How this applies for the dual parametrization:

Dq =

∫ 1

0

dx

x
Q0(x)

(
1

√
1 + x2

− 1

)
+

∫ 1

(0)

dx

x
[N(x)−Q0(x)]

1
√

1 + x2
.

This suggests the use of analytic regularization:

B2ν−1 0 =

∫ 1

(0)

dx

x
x2νQ2ν(x) .



On the possible non analytic contributions

The possibility to fix the D-form factor strongly relies on the postulated
analyticity of Mellin moments of GPDs in Mellin space.

Once this requirement is lifted the D-term may introduce an independent
contribution into ReA(ξ).

Adding of a supplementary D-term θ(1− x2

ξ2
) δD

(
x
ξ

)
with the Gegenbauer

expansion:

δD(z) = (1− z2)
∞∑
n=1
odd

δdn C
3
2
n (z)

to a GPD is equivalent to an introduction of the non analytic contributions to
the forward-like functions in the framework of the dual parametrization:

x2νQ2ν(x) −→ x2νQ2ν(x) + 2δd2ν−1 xδ(x);

Such situation occurs in certain dynamical models. E.g. pion GPD in nonlocal
chiral quark model. See K.S.’08

This results in terms “invisible” for Abel tomography like ξδ(ξ) for ImA(ξ).



Check of analyticity assumptions?

X The value of the D form factor is fixed by the small-xBj behavior of σDVCS .
Consider a toy example

Alter the leading small-ξ asymptotic behavior of ImA(ξ) for small-ξ in order to
match well with H1 HERA and ZEUS data.

The contribution of N(x)−Q0(x) should make no influence for relatively large
values of ξ where according to the result of M. Polyakov and M.
Vanderhaeghen’ 08 the minimalist model provide the satisfactory description of
e.g. the Jlab/HallA data.

Advantage of the dual parametrization: one can model directly ImA. ReA
satisfying dispersion relation can be computed from N restored by the Abel
tomography.

ImAQ0 (ξ, t) ∼ cq
2a(t)+1

ξa(t)

Γ( 1
2

)Γ(a(t) + 3
2

)

Γ(a(t) + 2)
≡ CQ0 (t)

1

ξa(t)
,

where a(t) = α+ α′t. Then try

ImAN−Q0 (ξ, t) = CN−Q0 (t)
1

ξa(t)
(1− ξ)β .



Calculation of the D form factor. Analyticaly regularized contribution sensitive
to small-ξ behavior dominates D.

DN−Q0 (t) =

∫ 1

(0)

dξ

ξ
ImAN−Q0 (ξ, t) = CN−Q0 (t)B(1 + β,−a(t)) .

Ties together the t and ξ dependence of GPDs.

For 1 < α < 2 there are two “tachion” poles at t = − α
α′ and t = −α−1

α′ .

In order to get rid of “tachion” contributions into the D form factor:

CN−Q0 (t) = CN−Q0 (0)
(
t+

α

α′

)(
t+

α− 1

α′

)
α′2

α(α− 1)
.



Conclusions

1 The dual parametrization represents a way of handing conformal PW expansion
of GPDs. To large extent it is equivalent to Shuvaev transform and
Mellin-Barnes type integral based techniques.

2 Simple generalization for both quark and gluon GPDs (unpolarized, polarized
and in principle helicity flip) of spin- 1

2
hadrons.

3 Basic theoretical requirements hold for GPDs in the dual representation.

4 The parametrization possess several useful features useful for model builders:
reparametrization procedure, Abel transform tonmography, etc. But still unable
to compute αs corrections for CFF in a closed form.

5 For small xBj the minimalist dual model is equivalent to RDDA with b = 1 (and
leading SO(3) PW approximation for D. Müllers et al. approach).

6 The forward-like functions Q2ν(x) with ν ≥ 1 may contribute to the leading
singular small-xBj behavior of the imaginary part of DVCS amplitude. This
makes the small-xBj behavior of ImADVCS independent of the asymptotic
behavior of PDFs.

7 Assuming analyticity of Mellin moments of GPDs we are able to fix the value of
the D-form factor in terms of the GPD quintessence function and the
forward-like function Q0(x). “Duality property” of GPDs is respected.

8 The value of the D form factor is fixed by the small-xBj behavior of σDVCS .



On the possible non analytic contributions II

l = 0 fixed pole contribution

The analyticity of Mellin moments in Mellin space can be absent due to the
so-called fixed pole singularity at j = −1. In the Mellin space this kind of
singularity reveals itself as a term proportional to a Kronecker δ−1j which is non
analytic in j.

The existence of a fixed pole at j = −1 (i.e. angular momentum l = 0) in the
case of forward Compton scattering amplitude was reasoned with the Regge
theory inspired argumentation in and revealed in the experimental measurements
(see C. Damashek’70, C. Dominguez’70).

Nevertheless, according to J. Cornwall et al. ’70,71, S. Brodsky et al. ’71,73 via
a subtracted sum rule the fixed pole contribution can be related to the
imaginary part of Compton amplitude. Once generalized for the case of DVCS
these considerations would also imply no independent D-term contribution into
DVCS amplitude (see S. Brodsky’08).
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