New look at the string model of quark fragmentation

Xavier ARTRU (IPN-Lyon)

Collaborateurs :

- Algérie : Zouina Belghobsi, Laboratoire de Physique Théorique, Université de Jijel
 Essma Redouane-Salah, Université de M'sila

- Italie : Albi Kerbizi, Université de Trieste
Purpose of this study

Understand the p_T correlations which come from kinematics, to disentangle them from those which depend on quark spin, like the single and di-hadron Collins asymmetries (for transversity) and Jet handedness (for helicity) and also from the Bose-Einstein correlations.
Outlines

• jets and confinement
• string and multiperipheral approaches
• multiperipheral dynamics
• recursive method
• quark line reversal (or ‘left-right symmetry’)
• correspondance String model / multiperipheral models
• PYTHIA and “Lyon” splitting functions
• correlations between quark transverse momenta
• jet axis, primordial k_T
• non-existence of the jet axis
• lower p_T of the first-rank hadron

all this WITHOUT SPIN (for the moment)

References :
partons

\[\bar{q} \quad q \]

\(\gamma^* \) or \(W \)

\[\bar{q} \quad q \]

\[g \]

\[\gamma^* \text{ of DIS} \]

\[N \]
Two pictures of $e^+e^- \rightarrow q + \bar{q} \rightarrow \text{hadrons}$

Quark Multi Peripheral (QMPM)

String Fragmentation (SFM)

Dual model diagram

Confinement built-in

Quark \rightarrow String

γ^*
A bad picture:

Two **independent** cascades of "quark decays"

- No confinement
- Would produce two isotropic distributions in c.m. frame of each jet
Multiperipheral dynamics

\[-k^2 = |k^+k^-| + k_z^2 \]

Cutoff in \(k_T \) \(\Rightarrow \) Cutoff in \(p_T \)

Cutoff in \(|k^+k^-| \) \(\Rightarrow \) \(h_1, h_2, h_3, \ldots \) are nearly ordered in rapidity

Local Compensation of Charges and Transverse Momenta
Recursive fragmentation model

- with virtual mesons: Krzywicky & Petersson; Finkel & Peccei (1972)
- with quarks: Feynman & Field

Splitting distribution for $k \rightarrow p + k'$:

$$f(Z) \, dZ$$
(Krzywicky…)

$$f(Z, k'_T) \, dZ \, d^2p_T$$
(Feynman-Field…)

$$f(Z, p_T, k'_T) \, dZ \, d^2p_T$$
(Lund-symmetric)

$$Z = p^+/k^+ \quad k^+ = k^0 + k^z$$

$$z_4 = p_4^+/k_A^+ = Z_4 \, (1- z_3) \,(1- z_2) \,(1- z_1)$$
An important constraint:
Symmetry of *quark line reversal*

\[\text{Downgoing quark line} \quad \text{is equivalent to} \quad \text{Upgoing antiquark line} \]

\[\text{Lund-symmetric model} \]
The string fragmentation model
or “yoyo” model
Simplest string motion: the relativistic yo-yo

\[X^- = t - z \quad \text{and} \quad X^+ = t + z \]

\[\text{yo-yo “at rest”} \quad \text{yo-yo in motion} \]

(\text{the string tension } \kappa \approx 1 \text{ GeV/fermi is taken as unity})
Space-time history of string fragmentation

Mass = \(\sqrt{s_{(\gamma^*+N)}} = W \)

Big yoyo

small yoyo

= hadron

quark pair creation

q_B

q_A = q_1

\[h_N \]

\[h_3 \]

\[h_2 \]

\[h_1 \]

\[Q_3 \]

\[Q_2 \]

\[Q_1 \]
Correspondance $\text{QMPM} \approx \text{SFM}$

k of QMPM and vector \mathbf{OQ} of SFM are symmetrical about the $X^+ (=t+z)$ axis.

String Fragmentation Model and **Quark MultiPeripheral Model** are two complementary pictures.
The PYTHIA splitting function

\[
f(q \rightarrow h + q') \propto \exp(-b_T k_T'^2) \\
\times Z^{-1} \times (1-Z)^a \times \exp\{- Z^{-1} b_L (m_h^2 + p_T^2)\} \\
\times N^{-1}(m_h^2 + p_T^2)
\]

where

\[
N(m_h^2 + p_T^2) = \int dZ Z^{-1} \times (1-Z)^a \times \exp\{- Z^{-1} b_L (m_h^2 + p_T^2)\}
\]

The PYTHIA algorithm:

- draw \(k_T' \) first, with the \(\exp(-b_T k_T'^2) \) distribution
- draw \(Z \) with the distribution on the 3rd line

\(\Rightarrow \) no \((k_T, k_T')\) correlation, in spite of the factor \(\exp\{-b_L(m_h^2 + p_T^2)/Z\} \)
which penalizes large \(|k_T - k_T'| \).

The factor \(N^{-1}(m_h^2 + p_T^2) \) cancels this correlation.
The “Lyon” splitting function

\[f(q \rightarrow h + q') \propto \exp(-b_T k'_T^2) \]
\[\times Z^{-1} \times (1-Z)^a \times \exp\{- (Z^{-1} - c) \cdot b_L \cdot (m_h^2 + p_T^2)\} \]

- The factor \(N^{-1}(m_h^2 + p_T^2) \) has been thrown away.
- \(k_T \) and \(k'_T \) are correlated: \(\langle k_T \cdot k'_T \rangle \) is positive
- We added a new parameter \(c \).
- Monte Carlo drawing of \(k'_T \) and \(Z \) is no more complicated than in PYTHIA
Meaning of the parameter c

In the exponential, $Z_1^{-1} b_L (m_1^2 + p_{1T}^2)$ is the area in the past lightcone of H_1. The factor $\exp\{- Z_1^{-1} b_L (m_1^2 + p_{1T}^2)\}$ of PYTHIA is the probability to have no string cutting in that area, assuming a uniform fragility constant b_L. However, a cut in the rectangle $C_1 Q_1 H_1 Q_2$ is kinematically forbidden. The meson h_1 is “born” in C_1, not H_1. Thus we require no string cutting in the past light cone of Q_2.

The exponential factor becomes $\exp\{- (Z^{-1} - 1) b_L (m_h^2 + p_T^2)\}$. For flexibility, we put $-c$ instead of -1.
Tentative to define a *theoretical* jet axis, or *string axis*

A string is spanned between **two** colored objects (quark, diquark, gluon). The jet axis should be defined by the 4-momenta k_A and k_B of these objects. A hadron of this jet has 4-momentum $p = z^+ k_A + z^- k_B + p_{T/string}$.

$p_T=0$ defines a *2-D hyperplane* spanned by k_A and k_B.

One should speak of a *jet hyperplane* or *string hyperplane*.

The particles of a jet are roughly aligned in *velocity space*.

\[e^+ e^- \rightarrow q + \bar{q} + \text{gluon} \]
Practical jet axis, primordial k_T

The string hyperplane is not accessible experimentally. In DIS, a practical jet axis is defined by the momentum Q of the virtual photon (γ^*). Relative to Q, the struck quark (A) has a transverse momentum $k_{T/Q}$, called *primordial transverse momentum*.

The nucleon remnant (B) has the opposite $k_{T/Q}$.

From $p = z^+ k_A + z^- k_B + p_{T/string}$:

$$p_{T/Q} = p_{T/string} + x_F k_{T/Q},$$

with $z^+ = z = p^+ / p_A^+$, $z^- = p^- / p_B^-$, $x_F = z^+ - z^- = 2 p_z (c.m.) / W$.

Then, $\langle p_{T/Q} \rangle^2 = \langle p_{T/string} \rangle^2 + x_F^2 \langle k_{T/Q} \rangle^2$.

Instead of z^2
Relation between x_F, and z

In the hadronic c.m. frame

$z = z^+ = p^+/W$,

$z^- = p^-/W$,

$x_F = 2\, p_z/W$

\[
z^+ = \frac{1}{2} \left[x_F + \sqrt{x_F^2 + 4(m^2 + p_T^2)/W^2} \right]
\]
Lower p_T of the first-rank hadron

$$p_{T/\text{string}} = (k_T - k'_T)_{/\text{string}}$$

$$\rightarrow \langle p_T^2 \rangle_{/\text{string}} = 2 \langle k_T^2 \rangle - 2 \langle k_T \cdot k'_T \rangle \sim 2 \langle k_T^2 \rangle_{/\text{string}}$$

except for the first rank, because $k_{1T/\text{string}} = 0$.

the recursive model predicts, at large but equal z,

$$\langle p_T^2 \rangle_{\text{favored}} < \langle p_T^2 \rangle_{\text{unfavored}}$$

For instance, in DIS on protons: $\langle p_T^2 \rangle (\pi^+) < \langle p_T^2 \rangle (\pi^-)$

Is it the case experimentally?
k_A and k_A^* are internal momenta of quark loops = integration variables.

$k_A - k_A^*$ has no classical counterpart. When $k_A \neq k_A^*$ one can speak of a $k_A \times k_A^*$ interference.

Also the ranks of the hadrons are theoretically ambiguous, due to crossing between identical particles.
Main conclusions

• We have proposed a new splitting formula introducing the k_T correlations, which are missing in PYTHIA.

• Our splitting function also depends on a new parameter c. Kinematical constraints forbid string decay in some regions, suggesting $c=1$.

• In DIS, $\langle p_{T/Q}^2 \rangle = \langle p_{T/string}^2 \rangle + x_F^2 \langle k_{T/Q}^2 \rangle$.

• The recursive models generally predict a smaller $\langle p_T^2 \rangle$ for a favored meson than for an unfavored one, at large but equal z. This has to be clarified on the experimental side.

• Jet axis and hadron rank cannot be defined without ambiguity, even theoretically.

Thank you for attention!