Réunion COMPASS, CERN, 13 octobre 2016

New look at the string model of quark fragmentation

Xavier ARTRU (IPN-Lyon)

Collaborateurs :

 Algérie : Zouina Belghobsi, Laboratoire de Physique Théorique, Univerisité de Jijel

Essma Redouane-Salah, Université de M'sila

- Italie : Albi Kerbizi, Université de Trieste

Purpose of this study

Understand the \mathbf{p}_{T} correlations which come from kinematics, to disentangle them from those which depend on quark spin, like the single and di-hadron Collins asymmetries (for transversity) and Jet handedness (for helicity) and also from the Bose-Einstein correlations.

Outlines

- jets and confinement
- string and multiperipheral approaches
- multiperipheral dynamics
- recursive method
- quark line reversal (or 'left-right symmetry')
- correspondance String model / multiperipheral models
- PYTHIA and "Lyon" splitting functions
- correlations between quark transverse momenta
- jet axis, primordial ${\bf k}_{\rm T}$
- non-existence of the jet axis
- lower \mathbf{p}_{T} of the first-rank hadron

all this WITHOUT SPIN (for the moment)

References :

- X.A., Z. Belghobsi, E. Redouane-Salah, Phys. Rev. **D**94 (Aug. 2016)
- Master thesis of A. Kerbizi (Trieste, Sept. 19, 2015)

Two pictures of $e^+e^- \rightarrow q + qbar \rightarrow hadrons$

Quark MultiPeripheral (QMPM)

String Fragmentation (SFM)

A bad picture :

two independent cascades of "quark decays"

- No confinement
- Would produce two isotropic distributions in c.m. frame of each jet

Multiperipheral dynamics

quark virtuality : $-k^2 = |k^+k^-| + k^2_T$

Cutoff in $\mathbf{k}_{\mathrm{T}} \rightarrow \text{Cutoff in } \mathbf{p}_{\mathrm{T}}$

Cutoff in $|k^+k^-| \rightarrow h_1, h_2, h_3, \dots$ are nearly ordered in rapidity

Local Compensation of Charges and Transverse Momenta

Recursive fragmentation model

- with virtual mesons : Krzywicky & Petersson ; Finkel & Peccei (1972)
- with quarks : Feynman & Field

An important constraint : Symmetry of *quark line reversal*

The string fragmentation model or "yoyo" model

Simplest string motion : the relativistic yo-yo

(the string tension $\kappa \approx 1$ GeV/fermi is taken as unity)

Space-time history of string fragmentation

String Fragmentation Model and Quark MultiPeripheral Model are two complementary pictures.

The PYTHIA splitting function

$$f(q \rightarrow h+q') \propto \exp(-b_T \mathbf{k}'_T^2)$$

$$\times Z^{-1} \times (1-Z)^a \times \exp\{-Z^{-1} b_L(m_h^2 + \mathbf{p}_T^2)\} \qquad \mathbf{q'}$$

$$\times N^{-1}(m_h^2 + \mathbf{p}_T^2)$$

where

$$N(m_{h}^{2}+\boldsymbol{p}_{T}^{2}) = \int dZ Z^{-1} \times (1-Z)^{a} \times \exp\{-Z^{-1} b_{L}(m_{h}^{2}+\boldsymbol{p}_{T}^{2})\}$$

The **PYTHIA algorithm :**

- draw \mathbf{k}'_{T} first, with the exp(-b_T \mathbf{k}'_{T}^{2}) distribution
- draw Z with the distribution on the 3rd line
- → no $(\mathbf{k}_T, \mathbf{k}'_T)$ correlation, in spite of the factor exp{-b_L(m_h²+ \mathbf{p}_T^2)/Z } which penalizes large $|\mathbf{k}_T \mathbf{k}'_T|$. The factor N⁻¹(m_h²+ \mathbf{p}_T^2) cancels this correlation.

The "Lyon" splitting function

 $f(q \rightarrow h+q') \propto exp(-b_T \mathbf{k'}_T^2)$

× Z⁻¹ × (1-Z)^a × exp{- (Z⁻¹- c) . $b_L . (m_h^2 + p_T^2)$ }

- The factor $N^{-1}(m_h^2 + p_T^2)$ has been thrown away.
- \mathbf{k}_{T} and \mathbf{k}'_{T} are correlated : $\langle \mathbf{k}_{T} \cdot \mathbf{k}'_{T} \rangle$ is positive
- We added a new parameter c.
- Monte Carlo drawing of $\mathbf{k'}_{T}$ and Z is no more complicated than in PYTHIA

Meaning of the parameter c

For flexibility, we put - c instead of -1.

Tentative to define a *theoretical* jet axis, or *string axis*

A string is spanned between **two** colored objects (quark, diquark, gluon). The jet axis should be defined by the 4-momenta k_A and k_B of these objects. A hadron of this jet has 4-momentum $p = z^+ k_A + z^- k_B + \mathbf{p}_{T/string}$. $\mathbf{p}_T = 0$ defines a 2-D hyperplane spanned by k_A and k_B . One should speak of a **jet hyperplane** or **string hyperplane**.

Practical jet axis, primordial \mathbf{k}_{T}

The string hyperplane is not accessible experimentally. In DIS, a *practical* jet axis is defined by the momentum **Q** of the virtual photon (γ^*). Relative to **Q**, the struck quark (A) has a transverse momentum $\mathbf{k}_{T/\mathbf{Q}}$, called *primordial transverse momentum*. The nucleon remnant (B) has the opposite $\mathbf{k}_{T/\mathbf{Q}}$.

Relation between x_F , and z

Lower \mathbf{p}_{T} of the first-rank hadron

$$\mathbf{p}_{\text{T/string}} = (\mathbf{k}_{\text{T}} - \mathbf{k'}_{\text{T}})_{\text{/string}}$$

$$\rightarrow \langle \mathbf{p}_{\text{T}}^2 \rangle_{\text{/string}} = 2 \langle \mathbf{k}_{\text{T}}^2 \rangle - 2 \langle \mathbf{k}_{\text{T}} \cdot \mathbf{k'}_{\text{T}} \rangle \sim 2 \langle \mathbf{k}_{\text{T}}^2 \rangle_{\text{/string}}$$
except fo the first rank, because $\mathbf{k}_{\text{1T/string}} = 0$.

➔ the recursive model predicts, at large but equal z,

$$\langle \mathbf{p}_{T}^{2} \rangle_{\text{favored}} < \langle \mathbf{p}_{T}^{2} \rangle_{\text{unfavored}}$$

For instance, in DIS on protons : $\langle \mathbf{p}_T^2 \rangle(\pi^+) < \langle \mathbf{p}_T^2 \rangle(\pi^-)$

Is it the case experimentally ?

Non-existence of a theoretical jet axis

 k_A and k_A^* are internal momenta of quark loops = integration variables.

 k_A - k_A * has no classical counterpart. When $k_A \neq k_A$ * one can speak of a $k_A \times k_A$ * interference.

Also the **ranks** of the hadrons are theoretically ambiguous, due to crossing between identical particles.

Main conclusions

- We have proposed a new splitting formula introducing the \mathbf{k}_{T} correlations, which are missing in PYTHIA.
- Our splitting function also depends on a new parameter *c*. Kinematical constraints forbid string decay in some regions, suggesting c=1.
- In DIS, $\langle \mathbf{p}_{T/\mathbf{Q}} \rangle^2 = \langle \mathbf{p}_{T/\text{string}} \rangle^2 + x_F^2 \langle \mathbf{k}_{T/\mathbf{Q}} \rangle^2$.
- The recursive models generally predict a smaller (p_T²) for a favored meson than for an unfavored one, at large but equal z. This has to be clarified on the experimental side.
- Jet axis and hadron rank cannot be defined withoput ambiguity, even theoretically.

Thank you for attention !