Understanding the large transverse momentum spectrum in SIDIS

Nobuo Sato University of Connecticut Seminar at COMPASS CERN, 2018

Kinematic regions of SIDIS

Semi inclusive deep inelastic scattering (SIDIS)

Process is dominated by one photon exchange with large virtuality $Q^2 \gg \lambda_{\rm QCD}$

Key question : How is p_h^{\perp} generated at short distances?

Semi inclusive deep inelastic scattering (SIDIS)

$$\frac{d\sigma}{dx \, dy \, d\Psi \, dz \, d\phi_h \, dP_{hT}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \sum_{i=1}^{18} F_i(x, z, Q^2, P_{hT}^2) \beta_i$$

F_i	Standard label	β_i
F_1	$F_{UU,T}$	1
F_2	$F_{UU,L}$	ε
F_3	F_{LL}	$S_{ }\lambda_e\sqrt{1-\varepsilon^2}$
F_4	$F_{UT}^{\sin(\phi_h + \phi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(\phi_h + \phi_S)$
F_5	$F_{UT,T}^{\sin(\phi_h - \phi_S)}$	$ ec{S}_{\perp} { m sin}(\phi_h-\phi_S)$
F_6	$F_{UT,L}^{\sin(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(\phi_h - \phi_S)$
F_7	$F_{UU}^{\cos 2\phi_h}$	$\varepsilon \cos(2\phi_h)$
F_8	$F_{UT}^{\sin(3\phi_h-\psi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(3\phi_h - \phi_S)$
F_9	$F_{LT}^{\cos(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \lambda_e\sqrt{1-\varepsilon^2}\cos(\phi_h-\phi_S)$
F_{10}	$F_{UL}^{\sin 2\phi_h}$	$S_{ }\varepsilon\sin(2\phi_h)$
F_{11}	$F_{LT}^{\cos \phi_S}$	$ \vec{S}_{\perp} \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_S$
F_{12}	$F_{LL}^{\cos \phi_h}$	$S_{ }\lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_h$
F_{13}	$F_{LT}^{\cos(2\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)$
F_{14}	$F_{UL}^{\sin \phi_h}$	$S_{\parallel}\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_h$
F_{15}	$F_{LU}^{\sin \phi_h}$	$\lambda_e \sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_h$
F_{16}	$F_{UU}^{\cos \phi_h}$	$\sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h$
F_{17}	$F_{UT}^{\sin \phi_S}$	$ \vec{S}_{\perp} \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S$
F_{18}	$F_{UT}^{\sin(2\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h-\phi_S)$

Bacchetta et al (2007)

Different regions are sensitive to distinct physical mechanisms

Collinearlity

 $R \equiv P_h \cdot k_f / P_h \cdot k_i$

- R is indicator of kinematic regions where TMD factorization is applicable
- Do not use it for cuts!!

Rapidity (R. Dempsey, W. Melnitchouk, T.C. Rogers, M. Diefenthaler, NS)

- SIDIS rapidity distribution is expected to display two peaks
- Using pythia8+DIRE we estimate the distance between the peaks as a function of W² = (P + q)²

Supported by JLab LDRD

Theory of current fragmentation

Theory framework for current fragmentation

Theory framework for current fragmentation

Theory framework for current fragmentation

The formulation of is based on a scale separation governed by the ratio

$$q_{\rm T}/Q$$

where

$$z = \frac{P \cdot p_h}{P \cdot q}, \quad q_{\rm T} = p_h^{\perp} / z$$

The cross section is built as

$$\frac{d\sigma}{dxdQ^2dzdp_h^{\perp}} = \mathbf{W} + \mathbf{FO} - \mathbf{ASY} + \mathcal{O}(m^2/Q^2)$$
$$\sim \mathbf{W} \quad \text{for } q_{\mathrm{T}} \ll Q$$
$$\sim \mathbf{FO} \quad \text{for } q_{\mathrm{T}} \sim Q$$

Why q_{T}/Q ? (J. Gonzalez-Hernandes, T.C Rogers, NS, B. Wang)

Lets define

$$k \equiv k_1 - q$$

Propagators in the blob

$$\frac{1}{k^2 + O(\Lambda_{\text{QCD}}^2)}, \qquad \frac{1}{k^2 + O(Q^2)}$$

Two extreme regions

o
$$|k^2| \sim \Lambda^2_{\rm QCD} \to k$$
 is part of PDF
o $|k^2| \sim Q^2 \to k$ is part of hard blob

■ |k²|/Q² is the relevant Lorentz invariant measure of transverse momentum size

p

Why $q_{\rm T}/Q$? (J. Gonzalez-Hernandes, T.C Rogers, NS, B. Wang)

In terms of partonic variables

$$\left|\frac{k^2}{Q^2}\right| = (1-\hat{z}) + \hat{z}\frac{q_{\mathrm{T}}^2}{Q^2}$$

• For $q_T < Q$ one can write

$$\left|\frac{q_{\mathrm{T}}}{Q^2} < \left|\frac{k^2}{Q^2}\right| < 1 - z \left(1 - \frac{q_{\mathrm{T}}^2}{Q^2}\right)\right|$$

One can conclude that

- o $q_{\rm T} \ll Q$ signals the onset of TMD region
- o $q_{\rm T} \sim Q$ signals the large transverse momentum region

Phenomenology

Existing phenomenology

- These analyzes used only W (Gaussian, CSS)
- Samples with $q_{\rm T}/Q \sim 1.63$ has been included
- **BUT TMDs are only valid for** $q_T/Q \ll 1$!

Large $p_{\rm T}$ SIDIS phenomenology

At LO:

$$\frac{d\sigma}{dxdQ^2dzdp_{\rm T}} \sim \sum_q e_q^2 \int_{\frac{q_{\rm T}}{Q^2}\frac{xz}{1-z}+x}^1 \frac{d\xi}{\xi-x} f_q(\xi,\mu) \ d_q(\zeta(\xi),\mu) \ H(\xi)$$

For collinear distributions we use

• PDFs: CJ15

o FFs: DSS07

COMPASS: $l + d \rightarrow l' + h^+ + X$

COMPASS: $l + d \rightarrow l' + h^+ + X$

HERMES: $l + p \rightarrow l' + \pi^+ + X$

HERMES: $l + p \rightarrow l' + \pi^+ + X$

- What are we missing?
- perturtative parts : power corrections, threshold corrections
- non-perturbative parts : PDFs, FFs

The role of non perturbative input

• For $p_{\rm T}$ integrated @ LO:

$$\frac{d\sigma}{dxdQ^2dz}\sim \sum_q e_q^2 f_q(x,\mu)~d_q(z,\mu)$$

For $p_{\rm T}$ differential @ LO:

$$\frac{d\sigma}{dxdQ^2dzdp_{\rm T}} \sim \sum_{q} e_q^2 \int_{\frac{q_{\rm T}^2}{Q^2} \frac{xz}{1-z} + x}^{1} \frac{d\xi}{\xi - x} f_q(\xi, \mu) \ d_q(\zeta(\xi), \mu) \ H(\xi)$$

Note:

- gluon PDFs/FFs are involved in $p_{\rm T}$ differential but not in the integrated case
- For $p_{\rm T}$ differential, the $q_{\rm T}$ factor in the integrand provides point-by-point in $q_{\rm T}$ constraints on PDF/FF
- The $p_{\rm T}$ spectrum is very sensitive to the shape of PDF/FF

Revisiting charged hadron FFs (in JAM)

Revisiting charged hadron FFs (in JAM)

Data sets:

o SIDIS $(h^+, h^-) q_T$ integrated data from COMPASS o $e^+e^- \rightarrow h^{\pm} + X$ (work with the 0.2 < z < 0.8 samples) o PDFs: JAM18 (more on this at the end)

d

 \bar{s}

c

Extracted FFs:

■ The gluon fragmentation is significantly different → recently observed by the NNPDF

Revisiting charged hadron FFs (in JAM)

Revisiting charged hadron FFs (in JAM)

$$\chi^2/\text{npts} = 0.48$$

New predictions for the SIDIS $q_{\rm T}$ spectrum

Old predictions (DSS07) @ LO

New predictions (JAM18) @ LO

New predictions (JAM18) @ NLO (DDS)

- It is possible to restore the predictive power of pQCD for the SIDIS large $p_{\rm T}$ by retunning the FFs
- Conversely the large $q_{\rm T}$ SIDIS spectrum can be used constrain more accurately FFs in particular the gluon
- These results opens up the possibility to for the first time start the TMD phenomenology within the full W + Y

Summary and outlook

$$\frac{d\sigma}{dx \, dy \, d\Psi \, dz \, d\phi_h \, dP_{hT}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \sum_{i=1}^{18} F_i(x, z, Q^2, P_{hT}^2) \beta_i$$

F_i	Standard label	β_i
F_1	$F_{UU,T}$	1
F_2	$F_{UU,L}$	ε
F_3	F_{LL}	$S_{\parallel}\lambda_e\sqrt{1-\varepsilon^2}$
F_4	$F_{UT}^{\sin(\phi_h + \phi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(\phi_h + \phi_S)$
F_5	$F_{UT,T}^{\sin(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \mathrm{sin}(\phi_h - \phi_S)$
F_6	$F_{UT,L}^{\sin(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(\phi_h - \phi_S)$
F_7	$F_{UU}^{\cos 2\phi_h}$	$\varepsilon \cos(2\phi_h)$
F_8	$F_{UT}^{\sin(3\phi_h-\psi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(3\phi_h - \phi_S)$
F_9	$F_{LT}^{\cos(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \lambda_e\sqrt{1-\varepsilon^2}\cos(\phi_h-\phi_S)$
F_{10}	$F_{UL}^{\sin 2\phi_h}$	$S_{ } \varepsilon \sin(2\phi_h)$
F_{11}	$F_{LT}^{\cos \phi_S}$	$ \vec{S}_{\perp} \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_S$
F_{12}	$F_{LL}^{\cos \phi_h}$	$S_{ }\lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_h$
F_{13}	$F_{LT}^{\cos(2\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)$
F_{14}	$F_{UL}^{\sin \phi_h}$	$S_{\parallel}\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_h$
F_{15}	$F_{LU}^{\sin \phi_h}$	$\lambda_e \sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_h$
F_{16}	$F_{UU}^{\cos \phi_h}$	$\sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h$
F_{17}	$F_{UT}^{\sin \phi_S}$	$ \vec{S}_{\perp} \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S$
F_{18}	$F_{UT}^{\sin(2\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h-\phi_S)$

- The apparent disagreement between data and FO can be resolved by tunning FFs
- It provides for the first time the possibility to describe *F*_{UU} in the full **W** + FO ASY
- This is important as all the structure functions that are typically provided in a form of asymmetries A_i = F_i/F_{UU}