Global extraction of quark TMDs

Fulvio Piacenza

in collaboration with A.Bacchetta, C.Bissolotti, G.Bozzi, F.Delcarro, M.G.Echevarría, C.Pisano, M.Radici, A.Signori

European Research Council

Istituto Nazionale di Fisica Nucleare

3DSPIN: structure of the nucleon

Orbital motion - Nucleon Structure from 1D to 3D

Generalized parton distribution (GPD) Transverse momentum dependent parton distribution (TMD)

[Bacchetta's talk (2016)]

Transverse Momentum Distributions: TMD PDF

dependence on:

longitudinal momentum fraction $\, \mathscr{X} \,$ transverse momentum $\, {m k}_{\perp} \,$ energy scale

Semi-inclusive Deep Inelastic Scattering

 $l(\ell) + N(\mathcal{P}) \to l(\ell') + h(\mathcal{P}_h) + X$

 $l(\ell) + N(\mathcal{P}) \to l(\ell') + h(\mathcal{P}_h) + X$

Semi-inclusive Deep Inelastic Scattering

 $l(\ell) + N(\mathcal{P}) \to l(\ell') + h(\mathcal{P}_h) + X$

Semi-inclusive Deep Inelastic Scattering

TMDs: Fragmentation Function

TMD Fragmentation Functions (TMD FFs)

dependence on:

longitudinal momentum fraction Z

transverse momentum P_{\perp}

energy scale

Structure functions and TMDs

multiplicities

$$\begin{aligned} F_{UU,T}\left(x, z, P_{hT}^{2}, Q^{2}\right) &= \sum_{a} \mathcal{H}_{UU,T}^{a}\left(Q^{2}; \mu^{2}\right) \int d^{2}k_{T} \, d^{2}P_{T} \, f_{1}^{a}\left(x, k_{T}^{2}; \mu^{2}\right) \, D_{1}^{h/a}\left(z, P_{T}^{2}; \mu^{2}\right) \\ &\cdot \delta^{2}(zk_{T} - P_{hT} + P_{T}) + Y_{UU,T}(Q^{2}, P_{hT}^{2}) + \mathcal{O}\left(M^{2}/Q^{2}\right) \end{aligned}$$

Structure functions and TMDs

multiplicities

$$F_{UU,T}(x, z, P_{hT}^2, Q^2) = \sum_a \mathcal{H}_{UU,T}^a (Q^2; \mu^2) \int d^2 k_T \, d^2 P_T f_1^a(x, k_T^2; \mu^2) D_1^{h/a}(z, P_T^2; \mu^2)$$
$$\cdot \delta^2 (zk_T - P_{hT} + P_T) + Y_{UUT}(Q^2, P_{hT}^2) + \mathcal{O}(M^2/Q^2)$$

not implemented in present fits

TMD Evolution

$$f_1^a(x,k_{\perp};\mu^2) = \frac{1}{2\pi} \int d^2 b_{\perp} e^{-ib_{\perp} \cdot k_{\perp}} \widetilde{f}_1^a(x,b_{\perp};\mu^2)$$

Perturbative ingredients

PAVIA 2017

Perturbative ingredients

PAVIA 2017

Model: non perturbative elements

inspired by models (p-wave contribution)

x-dependence of TMD width

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

where

$$N_1 \equiv g_1(\hat{x})$$
$$\hat{x} = 0.1$$

$$\tilde{F}_{i,NP}(x,b_T) = \frac{\langle \mathbf{k}_{\perp} / \mathbf{i} \rangle \mathbf{k}_{\perp} + \lambda \langle \mathbf{k}_{\perp} / \mathbf{i} \rangle \mathbf{k}_{\perp}}{11 \text{ parameters:}} + \lambda \langle \mathbf{k}_{\perp} / \mathbf{k}_{\perp$$

$$N_{1}, \alpha, \sigma, \lambda$$

$$A \text{ for TMD PDF}$$

$$N_{3}, N_{4}, \beta, \delta, \gamma, \lambda_{F}$$

$$6 \text{ for TMD FF}$$

$$g_K = -g_2 \frac{b_T^2}{2}$$

1 for NP contribution to $g_2 = 0.14 \pm$ TMD evolution

Experimental data

Z Production

90 data points

Data selection and analysis

Motivations behind kinematical cuts

TMD factorization ($Ph_T/z \ll Q^2$) Avoid target fragmentation (low z) and exclusive contributions (high z)

Data region

Data region

	Framework	SIDIS HERMES	SIDIS COMPASS	DY	Z production	# points
KN 2006	NLL/NLO	×	×	\checkmark		98
Pavia 2013	No Evo	\checkmark	×	×	X	1539
Torino 2014	No Evo	(separately)	(separately)	X	×	576 (H) 6284 (C)
DEMS 2014	NNLL/NLO	×	×	\checkmark		223
Pavia 2017	NLL/LO			\checkmark		8059
SV 2017	NNLL/NNLO	X	X	\checkmark		309

An almost global fit

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2017 (+ JLab)	LO-NLL					8059

[JHEP06(2017)081]

Summary of results

Total number of data points: 8059

Total number of free parameters: 11 → 4 for TMD PDFs → 6 for TMD FFs → 1 for TMD evolution

 $\chi^2/d.of. = 1.55 \pm 0.05$

COMPASS data SIDIS h⁺

to avoid known problems with Compass data normalization:

Observable

$$\frac{m_N^h\left(x, z, \boldsymbol{P}_{hT}^2, Q^2\right)}{m_N^h\left(x, z, \min[\boldsymbol{P}_{hT}^2], Q^2\right)}$$

COMPASS data SIDIS h⁺

Drell-Yan data

‡ Fermilab

Q² Evolution: The peak is now at about 1 GeV, it was at 0.4 GeV for SIDIS

Z-boson production data

normalization : fixed from DEMS fit, different from exp. (not really relevant for TMD parametrizations)

Q² Evolution: The peak is now at about 4 GeV

Mean transverse momentum

Best fit value: transverse momenta

	Bacchetta, Delcarro, Pisano, Radici, Signori JHEP06(2017)081 Signori, Bacchetta, Radici, Schnell arXiv:1309.3507
	Schweitzer, Teckentrup, Metz, arXiv:1003.2190
\bigcirc	Anselmino et al. arXiv:1312.6261 [HERMES]
	Anselmino et al. arXiv:1312.6261 [HERMES, high z]
	Anselmino et al. arXiv:1312.6261 [COMPASS, norm.]
\land	Anselmino et al. arXiv:1312.6261 [COMPASS, high z, norm.]
\checkmark	Echevarria, Idilbi, Kang, Vitev arXiv:1401.5078 (Q = 1.5 GeV)

Red/orange regions: 68% CL from replica method Inclusion of DY/Z diminishes the correlation Inclusion of Compass increases the $\langle P_{\perp}^2 \rangle$ and reduces its spread e+e- would further reduce the correlation

Shape uncertainties in replicas

Stability of results

Test of our default choices

How does the χ^2 of a single replica change if we modify them?

Original χ^2 /dof = **1.51**

Normalization of HERMES data as done for COMPASS: χ^2 /dof = 1.27

Parametrizations for collinear PDFs

(NLO GJR 2008 default choice): NLO MSTW 2008 (1.84), NLO CJ12 (1.85)

More stringent cuts

(TMD factorization better under control) $\chi^2/dof \rightarrow 1$ Ex: Q2 > 1.5 GeV²; 0.25 < z < 0.6; PhT < 0.2Qz $\Rightarrow \chi^2/dof = 1.02$ (477 bins)

What's next

 $\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} \left(\widetilde{C}_{a/i} \otimes f_{1}^{i} \right)(x,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{a}(x,b_{T})$ $A_1(\mathcal{O}(\alpha_S^1))$ $A_2(\mathcal{O}(\alpha_S^2))$ $A_3(\mathcal{O}(\alpha_S^3))$ $B_1(\mathcal{O}(\alpha_S^1))$ $B_2(\mathcal{O}(\alpha_S^2))$ $C_0(\mathcal{O}(\alpha_S^0))$ $C_1(\mathcal{O}(\alpha_S^1))$ $C_2(\mathcal{O}(\alpha_S^2))$ $H_0(\mathcal{O}(\alpha_S^0))$ $H_1(\mathcal{O}(\alpha_S^1))$ $H_2(\mathcal{O}(\alpha_S^2))$ $Y_2(\mathcal{O}(\alpha_S^2))$ $Y_1(\mathcal{O}(\alpha_S^1))$

$$m_N^h\left(x, z, P_{hT}^2, Q^2\right) = \frac{d\sigma_N^h / \left(dx \, dz \, dP_{hT}^2 \, dQ^2\right)}{d\sigma_{DIS} / \left(dx \, dQ^2\right)}$$

Data to be included

7 TeV 8 TeV

7 TeV

8 TeV $pp \rightarrow Z_0/\gamma^* \rightarrow (\mu^+ + \mu^-/e^+ + e^-)$

7 TeV 8 TeV 13 TeV $pp \rightarrow Z_0 \rightarrow \mu^+ + \mu^-$

Data to be included

Preliminary results

Number of experimental data

90

Same kinematical cuts in x,Q²,z,Ph_T

Same data for DY 203

SIDIS eN 1514

Ζ

Total: 3931 data

Include all data

SIDIS h⁺

Use 200 replica parameters from previous fit

Normalized at 1st data point of bin

Include all data

Exploratory analysis without normalization

 $\chi^2/dof > 4$

Sensitive to z value

 N_i between 0.92 and 1.52 for 90% of bins (COMPASS 17) (total range 0.55< N_i <1.66)

Issues at high pt

Drell-Yan

Drell-Yan

Q=4.7 GeV, *x_F*={0.15,0.35}, target=p

First global extraction of TMDs from SIDIS, DY and Z boson

Test of the universality and evolution formalism of partonic TMDs

New Data

 compatible with parameters obtained from previous analysis

requires further considerations on normalisation

- flavor separation (proton target, identified hadrons)
- •average z-value of bins
- •new unpolarised Drell-Yan data (possible p-p, p-pbar?) especially at high q_T

low energy Drell-Yan data

Experiment	Reaction	Year	TMD fits	PDF fits	high-qT tail
R209	р-р	1981	~	×	~
E288	p-Cu, p-Pt	1981	•	×	×
E605	p-Cu	1991	~	~	×
E866	p-p, p-d	2003	×	~	•

 $20~GeV \lesssim \sqrt{s} \lesssim 60~GeV$

BACKUP

Example of original data

Example of original data

Data are replicated (with Gaussian distribution)

The fit is performed on the replicated data

The procedure is repeated 200 times

For each point, a central 68% confidence interval is identified

Previous fit studies

	Framework	HERMES	COMPASS	DY	Z production	N of points
KN 2006 <u>hep-ph/0506225</u>	LO-NLL	×	×		 	98
Pavia 2013 (+Amsterdam, Bilbao) <u>arXiv:1309.3507</u>	No evo (QPM)	•	×	×	×	1538
Torino 2014 (+JLab) <u>arXiv:1312.6261</u>	No evo (QPM)	(separately)	(separately)	×	×	576 (H) 6284 (C)
DEMS 2014 <u>arXiv:1407.3311</u>	NLO-NNLL	×	×		•	223
EIKV 2014 <u>arXiv:1401.5078</u>	LO-NLL	1 (x,Q ²) bin	1 (x,Q ²) bin		•	500 (?)
Pavia 2017 (+ JLab)	LO-NLL	~	~	~	~	8059

$\tilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} \left(\tilde{C}_{a/i} \otimes f_{1}^{i} \right)(x,b_{*};\mu_{b}) e^{\tilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}(x,b_{T})$

$\widetilde{f}_1^a(x,b_T;\mu^2) = \sum_i (\widetilde{C}_{a/i} \otimes f_1^i)(x,b_*;\mu_b) e^{\widetilde{S}(b_*;\mu_b,\mu)} e^{g_K(b_T)\ln\frac{\mu}{\mu_0}} \widehat{f}_{\mathrm{NP}}^a(x,b_T)$

$$\widetilde{f}_{1}^{a}(x, b_{T}; \mu^{2}) = \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x, b_{*}; \mu_{b}) e^{\widetilde{S}(b_{*}; \mu_{b}, \mu)} e^{g_{K}(b_{T}) \ln \frac{\mu}{\mu_{0}}} \widehat{f}_{NP}^{a}(x, b_{T})$$

$$\mu_{b} = 2e^{-\gamma_{E}}/b_{*} \qquad b_{*} \equiv \frac{b_{T}}{\sqrt{1 + b_{T}^{2}/b_{\max}^{2}}} \qquad \text{Collins, Soper, Sterman, NPB250 (85)}$$

$$\mu_{b} = 2e^{-\gamma_{E}}/b_{*} \qquad b_{*} \equiv b_{\max} \left(1 - e^{-\frac{b_{T}^{4}}{b_{\max}^{4}}}\right)^{1/4} \qquad \text{Bacchetta, Echevarria, Mulders, Radici, Signoriant arXiv: 1508.00402}$$

$$\mu_{b} = Q_{0} + q_{T} \qquad b_{*} = b_{T} \qquad \text{DEMS 2014}$$

Complex-b prescription

Laenen, Sterman, Vogelsang, PRL 84 (00)

Pavia 2017 perturbative ingredients

Model: non perturbative elements

input TMD FF (Q²=IGeV²)

$$\hat{D}_{1NP}^{a \to h} = \text{ F.T. of } \frac{1}{g_{3a \to h} + (\lambda_F/z^2)g_{4a \to h}^2} \left(e^{-\frac{P_{\perp}^2}{g_{3a \to h}}} + \lambda_F \frac{P_{\perp}^2}{z^2} e^{-\frac{P_{\perp}^2}{g_{4a \to h}}}\right)$$

sum of two different gaussians with different variance with kinematic dependence on transverse momenta

width z-dependence

$$g_{3,4}(z) = N_{3,4} \frac{(z^{\beta} + \delta) (1 - z)^{\gamma}}{(\hat{z}^{\beta} + \delta) (1 - \hat{z})^{\gamma}} \quad \text{where} \quad \begin{cases} N_{3,4} \equiv g_{3,4}(\hat{z}) \\ \hat{z} = 0.5 \end{cases}$$

Average transverse momenta

$$\langle \mathbf{k}_{\perp}^2 \rangle(x) = \frac{g_1(x) + 2\lambda g_1^2(x)}{1 + \lambda g_1(x)}$$

$$\left\langle \mathbf{P}_{\perp}^2 \right\rangle(z) = \frac{g_3^2(z) + 2\lambda_F g_4^3(z)}{g_3(z) + \lambda_F g_4^2(z)}$$

Include only COMPASS

