

LSF – HTCondor migration
Ben Jones IT-CM-IS

Agenda
• Batch Service
• Why exit LSF?
• What is HTCondor?
• Benefits of HTCondor
• Timescale
• How can IT help?
• Usage patterns
• Questions

Batch Service
• Service used for both grid and “local”

submission, with HPC on the way
• Local means open to all CERN users,

kerberos, shared filesystem, managed
submission nodes

• ~100k cores in LSF pools
• ~50k cores in HTCondor

• Till now just grid
• ~800k jobs per day

Why exit LSF?
• Proprietary product
• Limits to number of nodes (>5K not advisable)
• Doesn’t scale very well past 180K jobs
• Slow queries, submission

• All goes through one master
• Security model limits flexibility of submission

hosts
• Product seems to be diverging from our use

case
• Scaling into machines, rather than jobs + nodes

What is
• Open Source batch system developed at the

CHTC at the University of Wisconsin
• “High Throughput Computing”
• Long history in HEP and elsewhere

(including previously at CERN)
• Used extensively in OSG, and things like the

CMS global pool (160K++ cores)
• System of symmetric matching of job

requests to resources using ClassAds of job
requirements and machine resources

Benefits: scalability

Split the Collectors

9/5/17 Document reference 8

Benefits: Flexibility
• Extra “Universes”

• Docker, Parallel as well as Vanilla
• DAGs

• Job dependencies between different submit files
• Condor-G to submit to other systems

• For example, condor submission to boinc
• Flexible configuration allows routes to clouds, or

specific resources, or HPC
• HTCondor can be a single frontend to have jobs

run in many different ways on different systems
• Cgroups to ensure jobs can coexist without

stepping on each others’ resources

Out with the old…

Benefits: community

Timescale
• Grid is prod since November
• Local required work with upstream for

kerberos renewal, now no technical issues
• IBM support till end of 2017
• IT support for LSF till end of Run 2

How can IT help?
• Some help available with migration

• We can help advise on submission scripts etc
• Migration can be easy for most use cases
• Documentation and tutorial available at

http://cern.ch/batchdocs
• batch-operations@cern.ch / SNOW to batch

team / contact us directly

Differences with LSF
• There are no queues

• You just submit jobs – we do ask for time
requirements (more later)

• Time is measured / limited / charged in Wall
• No CPU time means no normalisation to consider

• No more “1 normalised hour” (currently avg 20 minutes)
• Rather than queues, jobs submitted with a

maxRuntime
• Specified either with a +JobFlavour or +maxRuntime
• More capacity for shorter jobs < 25h and less for v

long < 1wk

Memory limits
• Jobs are assigned slots with scaled 2gb /

core
• CGroups enforce memory limits

• Soft limit
• Processes are swapped to disk if machine has

memory pressure
• If remaining process has RSS >

RequestMemory, it is killed
• You can request > 2gb per job!

• [but you will get > 1 core]

Job Differences
• You need to write a submit file

• They’re easy, reusable, and powerful
• Can’t submit a job from a job

• Unless that first job is a DAG!
• Complex workflows can be expressed using

DAGs
• No array jobs

• A submit file can submit multiple jobs
• Many ways to control behaviour of multiple jobs

Things that haven’t changed
• Shared filesystems

• AFS, EOS, CVMFS available
• AFS can be used for submission working dir as

per LSF
• EOS FUSE in future

• Jobs have access to Kerberos/AFS tokens
• Fairshare works in broadly same way
• Job writes to local scratch directory by

default

Questions so far?

19

Running a Job with
HTCondor

[slides from CHTC at University of
Wisconsin]

20

Jobs
• A single computing task is called a “job”
• Three main pieces of a job are the input,

executable (program) and output

• Executable must be runnable from the
command line without any interactive input

21

Job Example
• For our example, we will be using an

imaginary program called
“compare_states”, which compares two
data files and produces a single output file.

wi.dat

compare_
states

us.dat

wi.dat.out

$ compare_states wi.dat us.dat wi.dat.out

22

File Transfer
• Our example will use HTCondor’s file

transfer option:

Submit Execute

(submit_dir)/
input files
executable

(execute_dir)/
output files

23

Job Translation
• Submit file: communicates everything

about your job(s) to HTCondor

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

24

Submit File

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

job.submit

25

Submit File
• List your

executable and
any arguments it
takes.

• Arguments are
any options
passed to the
executable from
the command line.

compare_
states

$ compare_states wi.dat us.dat wi.dat.out

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

job.submit

26

Submit File
• Indicate

your input
files.

wi.dat

us.dat

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

job.submit

27

Submit File
• HTCondor will

transfer back
all new and
changed files
(usually
output) from
the job.

wi.dat.out

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

job.submit

28

Submit File
• log: file

created by
HTCondor to
track job
progress

• output/err
or: captures
stdout and
stderr

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

job.submit

29

Submit File
• Request the

appropriate
resources
for your job
to run.

• queue:
keyword
indicating
“create a
job.”

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

job.submit

30

Submitting and Monitoring

• To submit a job/jobs:
condor_submit submit_file_name

• To monitor submitted jobs, use:
condor_q

$ condor_submit job.submit
Submitting job(s).
1 job(s) submitted to cluster 128.

$ condor_q
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17 10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice CMD: compare_states 5/9 11:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit
HTCondor Manual: condor_q

31

More about condor_q
• By default condor_q shows:

– user’s job only (as of 8.6)
– jobs summarized in “batches” (as of 8.6)

• Constrain with username, ClusterId or
full JobId, which will be denoted
[U/C/J] in the following slides

$ condor_q
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17 10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice CMD: compare_states 5/9 11:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId =	ClusterId .ProcId

32

More about condor_q
• To see individual job information, use:

condor_q -nobatch

• We will use the -nobatch option in the
following slides to see extra detail about
what is happening with a job

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

33

Job Idle

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

$ condor_q - nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

Submit Node

34

Job Starts

compare_states
wi.dat
us.dat

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 < 0 0.0 compare_states wi.dat us.dat w

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

Submit Node

(execute_dir)/

Execute Node

35

Job Running
$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:01:08 R 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

Submit Node

(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out

Execute Node

36

Job Completes

(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out

stderr
stdout

wi.dat.out

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128 alice 5/9 11:09 0+00:02:02 > 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Execute Node

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

Submit Node

37

Job Completes (cont.)
$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err
wi.dat.out

Submit Node

38

Log File
000 (128.000.000) 05/09 11:09:08 Job submitted from host:
<128.104.101.92&sock=6423_b881_3>
...
001 (128.000.000) 05/09 11:10:46 Job executing on host:
<128.104.101.128:9618&sock=5053_3126_3>
...
006 (128.000.000) 05/09 11:10:54 Image size of job updated: 220

1 - MemoryUsage of job (MB)
220 - ResidentSetSize of job (KB)

...
005 (128.000.000) 05/09 11:12:48 Job terminated.

(1) Normal termination (return value 0)
Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

0 - Run Bytes Sent By Job
33 - Run Bytes Received By Job
0 - Total Bytes Sent By Job
33 - Total Bytes Received By Job
Partitionable Resources : Usage Request Allocated

Cpus : 1 1
Disk (KB) : 14 20480 17203728
Memory (MB) : 1 20 20

39

Job States

condor_
submit

Idle
(I)

Running
(R)

Completed
(C)

transfer
executable

and input to
execute

node

transfer
output

back to
submit node

in the queue leaving the queue

40

Assumptions
• Aspects of your submit file may be

dictated by infrastructure and configuration
• For example: file transfer

– previous example assumed files would need
to be transferred between submit/execute

– not the case with a shared filesystem
should_transfer_files = NO

should_transfer_files = YES

41

Job Matching and
Class Ad Attributes

42

The Central Manager
• HTCondor matches jobs with computers

via a “central manager”.

submit
execute

execute

execute

central manager

43

Class Ads
• HTCondor stores a list of information about

each job and each computer.
• This information is stored as a “Class Ad”

• Class Ads have the format:
AttributeName = value

HTCondor Manual: Appendix A: Class Ad Attributes

can be a boolean,
number, or string

44

Job Class Ad
RequestCpus = 1
Err = "job.err"
WhenToTransferOutput = "ON_EXIT"
TargetType = "Machine"
Cmd =
"/home/alice/tests/htcondor_week/compar
e_states"
JobUniverse = 5
Iwd = "/home/alice/tests/htcondor_week"
RequestDisk = 20480
NumJobStarts = 0
WantRemoteIO = true
OnExitRemove = true
TransferInput = "us.dat,wi.dat"
MyType = "Job"
Out = "job.out"
UserLog =
"/home/alice/tests/htcondor_week/job.lo
g"
RequestMemory = 20
...

...

+
HTCondor configuration*

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

=

45

Computer “Machine” Class
Ad

HasFileTransfer = true
DynamicSlot = true
TotalSlotDisk = 4300218.0
TargetType = "Job"
TotalSlotMemory = 2048
Mips = 17902
Memory = 2048
UtsnameSysname = "Linux"
MAX_PREEMPT = (3600 * 72)
Requirements = (START) && (
IsValidCheckpointPlatform) && (
WithinResourceLimits)
OpSysMajorVer = 6
TotalMemory = 9889
HasGluster = true
OpSysName = "SL"
HasDocker = true

...

=

+
HTCondor configuration

46

Job Matching
• On a regular basis, the central manager

reviews Job and Machine Class Ads and
matches jobs to computers.

submit
execute

execute

execute

central manager

47

Job Execution
• (Then the submit and execute points

communicate directly.)

submit
execute

execute

execute

central manager

48

Class Ads for People
• Class Ads also provide lots of useful

information about jobs and computers to
HTCondor users and administrators

49

Finding Job Attributes

$ condor_q -l 128.0
WhenToTransferOutput = "ON_EXIT"
TargetType = "Machine"
Cmd = "/home/alice/tests/htcondor_week/compare_states"
JobUniverse = 5
Iwd = "/home/alice/tests/htcondor_week"
RequestDisk = 20480
NumJobStarts = 0
WantRemoteIO = true
OnExitRemove = true
TransferInput = "us.dat,wi.dat"
MyType = "Job”
UserLog = "/home/alice/tests/htcondor_week/job.log"
RequestMemory = 20
...

• Use the “long” option for condor_q
condor_q -l JobId

50

Useful Job Attributes
• UserLog: location of job log
• Iwd: Initial Working Directory (i.e.

submission directory) on submit node
• MemoryUsage: maximum memory the job

has used
• RemoteHost: where the job is running
• BatchName: attribute to label job batches
• ...and more

51

Displaying Job Attributes

$ condor_q -af ClusterId ProcId RemoteHost MemoryUsage

17315225 116 slot1_1@e092.chtc.wisc.edu 1709
17315225 118 slot1_2@e093.chtc.wisc.edu 1709
17315225 137 slot1_8@e125.chtc.wisc.edu 1709
17315225 139 slot1_7@e121.chtc.wisc.edu 1709
18050961 0 slot1_5@c025.chtc.wisc.edu 196
18050963 0 slot1_3@atlas10.chtc.wisc.edu 269
18050964 0 slot1_25@e348.chtc.wisc.edu 245
18050965 0 slot1_23@e305.chtc.wisc.edu 196
18050971 0 slot1_6@e176.chtc.wisc.edu 220

• Use the “auto-format” option:
condor_q [U/C/J] -af Attribute1 Attribute2 ...

52

Other Displays
• See the whole queue (all users, all jobs)
condor_q -all

$ condor_q -all

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS
alice DAG: 128 5/9 02:52 982 2 _ _ 1000 18888976.0 ...
bob DAG: 139 5/9 09:21 _ 1 89 _ 180 18910071.0 ...
alice DAG: 219 5/9 10:31 1 997 2 _ 1000 18911030.0 ...
bob DAG: 226 5/9 10:51 10 _ 1 _ 44 18913051.0
bob CMD: ce.sh 5/9 10:55 _ _ _ 2 _ 18913029.0 ...
alice CMD: sb 5/9 10:57 _ 2 998 _ _ 18913030.0-999

53

condor_q Reminder
• Default output is batched jobs

– Batches can be grouped manually using the
JobBatchName attribute in a submit file:

– Otherwise HTCondor groups jobs
automatically

• To see individual jobs, use:
condor_q -nobatch

+JobBatchName = “CoolJobs”

54

Class Ads for Computers
as condor_q is to jobs, condor_status is to computers (or “machines”)

$ condor_status
Name OpSys Arch State

Activity LoadAv Mem Actvty
slot1@c001.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 0.000 673
25+01
slot1_1@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01
slot1_2@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01
slot1_3@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+00
slot1_4@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+14
slot1_5@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 1024 0+01
slot1@c002.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 1.000 2693 19+19
slot1_1@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+04
slot1_2@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01
slot1_3@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 0.990 2048 0+02
slot1@c004.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 0.010 645 25+05
slot1_1@c004.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01Total Owner Claimed Unclaimed Matched Preempting
Backfill Drain

X86_64/LINUX 10962 0 10340 613 0 0 0 9
X86_64/WINDOWS 2 2 0 0 0 0 0 0

Total 10964 2 10340 613 0 0 0 9

HTCondor Manual: condor_status

55

Machine Attributes

$ condor_status -l slot1_1@c001.chtc.wisc.edu
HasFileTransfer = true
COLLECTOR_HOST_STRING = "cm.chtc.wisc.edu”
TargetType = "Job”
TotalTimeClaimedBusy = 43334c001.chtc.wisc.edu
UtsnameNodename = ""
Mips = 17902
MAX_PREEMPT = (3600 * (72 - 68 * (WantGlidein =?= true)))
Requirements = (START) && (IsValidCheckpointPlatform) && (
WithinResourceLimits)
State = "Claimed"
OpSysMajorVer = 6
OpSysName = "SL”
...

• Use same options as condor_q:
condor_status -l Slot/Machine
condor_status [Machine] -af Attribute1 Attribute2 ...

56

Machine Attributes

$ condor_q -compact
Machine Platform Slots Cpus Gpus TotalGb FreCpu FreeGb CpuLoad
ST
e007.chtc.wisc.edu x64/SL6 8 8 23.46 0 0.00 1.24
Cb
e008.chtc.wisc.edu x64/SL6 8 8 23.46 0 0.46 0.97
Cb
e009.chtc.wisc.edu x64/SL6 11 16 23.46 5 0.00 0.81
**
e010.chtc.wisc.edu x64/SL6 8 8 23.46 0 4.46 0.76
Cb
matlab-build-1.chtc.wisc.edu x64/SL6 1 12 23.45 11 13.45 0.00
**
matlab-build-5.chtc.wisc.edu x64/SL6 0 24 23.45 24 23.45 0.04
Ui
mem1.chtc.wisc.edu x64/SL6 24 80 1009.67 8 0.17 0.60
**

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

x64/SL6 10416 0 9984 427 0 0 0 5
x64/WinVista 2 2 0 0 0 0 0 0

• To summarize, use the “-compact” option
condor_status -compact

57

(60 SECOND) PAUSE
Questions so far?

58

Submitting Multiple Jobs
with HTCondor

59

Many Jobs, One Submit File

• HTCondor has built-in ways to submit
multiple independent jobs with one submit
file

60

Advantages
• Run many independent jobs...

– analyze multiple data files
– test parameter or input combinations
– and more!

• ...without having to:
– start each job individually
– create separate submit files for each job

61

Multiple, Numbered, Input
Files

• Goal: create 3 jobs that each analyze a
different input file.

executable = analyze.exe
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
output = job.out
error = job.err

queue

job.submit

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/

62

Multiple Jobs, No Variation

• This file generates 3 jobs, but doesn’t use
multiple inputs and will overwrite outputs

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/
executable = analyze.exe
arguments = file0.in file0.out
transfer_input_files = file.in

log = job.log
output = job.out
error = job.err

queue 3

job.submit

63

Automatic Variables

• Each job’s
ClusterId and
ProcId numbers
are saved as job
attributes

• They can be
accessed inside
the submit file
using:
– $(ClusterId)
– $(ProcId)

queue N

128

128

128

0

1

2

ClusterId ProcId

...

128 N-1

...

64

executable = analyze.exe
arguments = file0.in file0.out
transfer_input_files = file0.in

log = job.log
output = job.out
error = job.err

queue

job.submit

Job Variation

• How to uniquely identify each job
(filenames, log/out/err names)?

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/

65

Using $(ProcId)

• Use the $(ClusterId), $(ProcId)
variables to provide unique values to jobs.*

executable = analyze.exe
arguments = file$(ProcId).in file$(ProcId).out
should_transfer_files = YES
transfer_input_files = file$(ProcId).in
when_to_transfer_output = ON_EXIT

log = job_$(ClusterId).log
output = job_$(ClusterId)_$(ProcId).out
error = job_$(ClusterId)_$(ProcId).err

queue 3

job.submit

* May also see $(Cluster), $(Process) in documentation

66

Organizing Jobs

67

Shared Files
• HTCondor can transfer an entire directory

or all the contents of a directory
– transfer whole directory

– transfer contents only

• Useful for jobs with many shared files;
transfer a directory of files instead of listing
files individually

transfer_input_files = shared/

transfer_input_files = shared
job.submit
shared/

reference.db
parse.py
analyze.py
cleanup.py
links.config

(submit_dir)/

68

Organize Files in Sub-
Directories

• Create sub-directories* and use paths in
the submit file to separate input, error, log,
and output files.

log

*	must	be	created	before	the	job	is	submitted

69

Use Paths for File Type

executable = analyze.exe
arguments = file$(Process).in file$(ProcId).out
transfer_input_files = input/file$(ProcId).in

log = log/job$(ProcId).log
error = err/job$(ProcId).err

queue 3

job.submit
analyze.exe

input/
file0.in
file1.in
file2.in

log/
job0.log
job1.log
job2.log

err/
job0.err
job1.err
job2.err

file0.out
file1.out
file2.out

job.submit

(submit_dir)/

70

InitialDir
• Change the submission directory for each job

using initialdir
• Allows the user to organize job files into

separate directories.
• Use the same name for all input/output files
• Useful for jobs with lots of output files

job0 job1 job2 job3 job4

71

Separate Jobs with InitialDir

executable = analyze.exe
initialdir = job$(ProcId)
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
error = job.err

queue 3

job.submit
analyze.exe

job0/
file.in
job.log
job.err
file.out

job1/
file.in
job.log
job.err
file.out

job2/
file.in
job.log
job.err
file.out

job.submit

(submit_dir)/

Executable should be
in the directory with
the submit file, *not*
in the individual job

directories

72

Other Submission Methods

• What if your input files/directories aren’t
numbered from 0 - (N-1)?

• There are other ways to submit many jobs!

73

Submitting Multiple Jobs
Replacing
single job
inputs

with a
variable of
choice

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

queue 1

executable = compare_states
arguments = $(infile) us.dat $(infile).out

transfer_input_files = us.dat, $(infile)

queue ...

74

multiple
“queue”
statements

matching ...
pattern

in ... list

from ... file

Possible Queue Statements
infile = wi.dat
queue 1
infile = ca.dat
queue 1
infile = ia.dat
queue 1

queue infile matching *.dat

queue infile in (wi.dat ca.dat ia.dat)

queue infile from state_list.txt
wi.dat
ca.dat
ia.dat

state_list.txt

75

multiple
“queue”
statements

matching ...
pattern

in ... list

from ... file

Possible Queue Statements
infile = wi.dat
queue 1
infile = ca.dat
queue 1
infile = ia.dat
queue 1

queue infile matching *.dat

queue infile in (wi.dat ca.dat ia.dat)

queue infile from state_list.txt
wi.dat
ca.dat
ia.dat

Not	Recommended

state_list.txt

76

multiple
queue
statements

Not recommended. Can be useful when submitting job batches
where a single (non-file/argument) characteristic is changing

matching ..
pattern

Natural nested looping, minimal programming, use optional
“files” and “dirs” keywords to only match files or directories
Requires good naming conventions,

in .. list Supports multiple variables, all information contained in a single
file, reproducible
Harder to automate submit file creation

from .. file Supports multiple variables, highly modular (easy to use one
submit file for many job batches), reproducible
Additional file needed

Queue Statement
Comparison

77

Using Multiple Variables
• Both the “from” and “in” syntax support

using multiple variables from a list.

executable = compare_states
arguments = -y $(option) -i $(file)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = $(file)

queue file,option from job_list.txt

wi.dat, 2010
wi.dat, 2015
ca.dat, 2010
ca.dat, 2015
ia.dat, 2010
ia.dat, 2015

job.submit job_list.txt

HTCondor Manual:	submit	file	options

78

Other Features
• Match only files or directories:

• Submit multiple jobs with same input data

– Use other automatic variables: $(Step)

queue input matching files *.dat

queue directory matching dirs job*

queue 10 input matching files *.dat

arguments = -i $(input) -rep $(Step)
queue 10 input matching files *.dat

Questions?

