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FACTORIZATION AND UNIVERSALITY IN DIS
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(SOME of the) MODELS  FOR FRAGMENTATION

3

•Lund String Model
• Very Successful implementation in JETSET, PYTHIA.
• Highly Tunable  - Limited Predictive Power.
• No Spin Effects - Formal developments by         

X. Artru et al but no quantitative results!

•Spectator Model
• Quark model calculations with empirical form 

factors.
• No unfavored fragmentations.
• Need to tune parameters for small z dependence.

•NJL-jet Model
• Multi-hadron emission framework with

     effective quark model input.
• Monte-Carlo framework allows flexibility in     

including the transverse momentum, 
     spin effects,  two-hadron correlations, etc. 
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Fig. 1. Tree-level diagram for quark to meson fragmentation process.

from gluons. We do not want to promote the specific elements of the model as the “truth”. In fact, it is not unreasonable to expect
that the dynamical mechanism of gluon final-state interactions can be applied also in other models, leading to results similar to
ours. In the future, calculations based on such mechanism might be made more rigorous within a QCD framework.

We also present, for the first time, the Collins function for the fragmentation of quarks into kaons. This calculation is relevant
for the interpretation of recent kaon measurements done at HERMES [16] as well as COMPASS [17] and for future measurements
at BELLE and JLab.

2. Model calculation of the unpolarized fragmentation function

In the fragmentation process, the probability to produce hadron h from a transversely polarized quark q , in, e.g., the qq̄ rest
frame if the fragmentation takes place in e+e− annihilation, is given by (see, e.g., [18])

(1)Dh/q↑
(
z,K2

T

)
= D

q
1

(
z,K2

T

)
+ H

⊥q
1

(
z,K2

T

) (k̂ × KT ) · sq

zMh
,

where Mh the hadron mass, k is the momentum of the quark, sq its spin vector, z is the light-cone momentum fraction of the hadron
with respect to the fragmenting quark, and KT the component of the hadron’s momentum transverse to k. D

q
1 is the unintegrated

unpolarized fragmentation function, while H
⊥q
1 is the Collins function. Therefore, H

⊥q
1 > 0 corresponds to a preference of the

hadron to move to the left if the quark is moving away from the observer and the quark spin is pointing upwards.
In accordance with factorization, fragmentation functions can be calculated from the correlation function [19]

(2)!(z, kT ) = 1
2z

∫
dk+ !(k,Ph) = 1

2z

∑

X

∫
dξ+ d2ξT

(2π)3 eik·ξ 〈0|Un+
(+∞,ξ)ψ(ξ)|h,X〉〈h,X|ψ̄(0)Un+

(0,+∞)|0〉
∣∣
ξ−=0,

with k− = P −
h /z. A discussion on the structure of the Wilson lines, U , can be found in Ref. [19]. Here, we limit ourselves to

recalling that in Refs. [20,21] it was shown that the fragmentation correlators are the same in both semi-inclusive DIS and e+e−

annihilation, as was also observed earlier in the context of a specific model calculation [20] similar to the one under consideration
here. In the rest of the article we shall utilize the Feynman gauge, in which transverse gauge links at infinity give no contribution
and can be neglected [22–24].

The tree-level diagram describing the fragmentation of a virtual (timelike) quark into a pion/kaon is shown in Fig. 1. In the
model used here, the final state |h,X〉 is described by the detected pion/kaon and an on-shell spectator, with the quantum numbers
of a quark and with mass ms . We take a pseudoscalar pion–quark coupling of the form gqπγ5τi , where τi are the generators of
the SU(3) flavor group. Our model is similar to the ones used in, e.g., Refs. [25–28]. The most important difference from previous
calculations that included also the Collins function, i.e., those in Refs. [8–12], is that the mass of the spectator ms is not constrained
to be equal to the mass of the fragmenting quark.

The fragmentation correlator at tree level, for the case u → π+, is

(3)!(0)(k,p) = −
2g2

qπ

(2π)4

(/k + m)

k2 − m2 γ5(/k − /P h + ms)γ5
(/k + m)
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(
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2 − m2
s

)

and, using the δ-function to perform the k+ integration,
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2g2

qπ

32π3
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,

where k2 is related to k2
T through the relation

(5)k2 = zk2
T /(1 − z) + m2

s /(1 − z) + M2
h/z,

which follows from the on-mass-shell condition of the spectator quark of mass ms . We take m to be the same for u and d quarks,
but different for s quarks. Isospin and charge-conjugation relations imply

(6)Du→π+
1 = Dd̄→π+

1 = Dd→π−
1 = Dū→π−

1 ,

Fig. 3. – The spectator approximation for a parton with momentum k fragmenting into a detected
hadron with momentum Ph.

recently published [45], but it is fair to say that a full treatment of TMD evolution in
the Collins e↵ect is still missing.

3. – Models

Since the extraction of fragmentation functions from experimental data is a↵ected
by large uncertainties, as we have seen about the Collins function and, more generally,
about the KT dependence acquired by hadrons during the fragmentation, it is desirable
that this phenomenology is supported by model speculations. In the following, we sketch
three main classes of models that appeared in the recent literature.

3
.1. Spectator approximation. – The spectator approximation amounts to describe the

fragmentation as the decay of a parton with momentum k into the observed hadron h
with momentum Ph leaving a residual system in an on-shell state with momentum k�Ph

(see the diagram in Fig. 3). The latter condition grants that most of the calculations
can be performed analytically, including the expression for the o↵-shellness k2(z) of the
fragmenting parton. The drawback is that only the favoured channel can be taken into
account.

For the typical u ! ⇡+ channel, two main choices have been adopted in the literature
for the quark-pion-spectator vertex: the pseudoscalar coupling g⇡q�5 [46, 47, 48, 49, 50]
and the pseudovector coupling g⇡q�5�µPµ

h [51, 52, 48]. In all cases the coupling was
assumed to be point-like except in Refs. [50, 49], where a gaussian form factor was used
with a z-dependent cut-o↵.

Complicated objects like the Collins function appear if there are nonvanishing in-
terference diagrams involving di↵erent channels. In the spectator approximation, these
final-state interactions can be achieved by adding to the left or right side of the diagram
in Fig. 3 insertions involving pions and/or gluons. As an example, in Fig. 4 the KT - inte-

grated 1
2 -moment H

? ⇡+(1/2)
1,u (normalized to D⇡+

1,u) from Ref. [49] is plotted as a function
of z for three di↵erent hard scales and compared with the parametrization of Ref. [43],
whose statistical error is represented by the uncertainty band. The spectator results were
obtained using a pseudoscalar q⇡ coupling and gluon insertions. The model parameters
were fixed by reproducing the unpolarized D1 at the lowest available Q2 = 0.4 GeV2,
as it was extracted from e+e� data in Ref. [53]. Since the parametrization of H?

1 was
performed using SIDIS data for the Collins e↵ect at Q2 = 2.5 GeV2, the band in Fig. 4
should be compared with the dashed (green) line, showing a substantial agreement with
the spectator model.
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Figure 1. Electroweak boson ! qq̄ ! mesons.

qN ⌘ q�1 is a ”quark propagating backward in time” and kN ⌘ �k(q̄�1).

Kinematical notations :
k0 = k(q0) and k(q̄�1) are in the +ẑ and �ẑ directions respectively. For a quark, tn ⌘ knT .
For a 4-vector, a± = a0 ± az and aT = (ax, ay). We denote by a tilde the dual transverse
vector ãT ⌘ ẑ ⇥ aT = (�a

y, ax).

In Monte-Carlo simulations, the kn are generated according to the splitting distribution

dW ( qn�1 ! hn + qn) = fn(�n, t
2
n�1, t

2
n, p2

nT , ) d�n d2tn , �n ⌘ p+
n /k+

n�1 .

In particular the symmetric Lund splitting function [3],

fn � �an�1�an�1
n (1 � �an) exp

⇥�b (m2
n + p2

nT )/�n

⇤
, (3)

inspired by the string model, fulfills the requirement of forward-backward equivalence.
On can also consider [6] the upper part of Fig.1 as a multiperipheral [7] diagram

with the Feynman amplitude

Mq0+q̄�1�h1...+hN = v̄(k�1, S�1) �qN ,hN ,qN�1(kN , kN�1) �qN�1(kN�1) · · ·
· · · �q2(k2) �q2,h2,q1(k2, k1) �q1(k1) �q1,h1,q0(k1, k0) u(k0, S0) . (4)

S0 and S�1 are the polarisation vectors of the intial quark and antiquark. S2 = 1, Sz =
helicity, ST = transversity. � and � are vertex functions and propagators which depend
on the quark momenta and flavors. Note that Fig.1 is a loop diagram : k0 is an integration
variable, therefore the ”jet axis” is not really defined. Furthermore, in Z0 or �� decay,
the spins q0 and q̄�1 are entangled so that one cannot define S0 and S�1 separately.

Collins and jet-handedness e�ects. Let us first assume that the jet axis (quark
direction) is well determined :

- the Collins e�ect [1], in �q ! h+X , is an asymmetry in sin[�(S)��(h)] for a transversely
polarized quark. The fragmentation function reads

F (z, pT ; ST ) = F0(z, p
2
T ) (1 + AT ST .p̃T /|pT |) (p̃T ⌘ ẑ ⇥ pT) . (5)

2

Fig. 7. – The process e+e� ! q0q̄�1 ! h1 + h2 + . . . + hN as a recursive q ! hq0 splitting.

scattering amplitude,

�i ⇡ exp[�bh2
iT /2]

⇥
µ(h2

iT ) + i� · ẑ ⇥ hiT

⇤
,(3)

i.e. with a non-spin-flip complex function µ and a spin-flip part, b being some free
parameter. These prescriptions can be shown to respect invariance under all ”good”
transformations like rotations, boosts, and parity, all considered with respect to the jet
axis ẑ.

If Im(µ) 6= 0, this imaginary part can be shown to act as a source of transverse
polarization at step i even if the quark was unpolarized or longitudinally polarized at
step i � 1 [57]. This means also that during the cascade the helicity of a quark can be
partly converted to its transversity or viceversa. As a consequence, if Im(µ) 6= 0 one can
have for N = 1 a Collins e↵ect S1 · ẑ ⇥ h1T , and for N = 2 an iterated Collins e↵ect
with alternate sign, which could explain the experimental findings H? unf

1 ⇡ �H? fav
1

described in Sec. 2
.3 [38]. This result confirms the outcome of the Lund 3P0 string

mechanism [58]. But in addition it contains the three-particle correlation ẑ · h2T ⇥ h1T

named jet handedness [59], which is interpreted as a two-step mechanism: at i = 1, a
transverse polarization S1T k h1T is generated from the helicity S0z of previous step; at
i = 2, a Collins e↵ect takes place as ẑ·h2T ⇥S1T , which coincides with the jet handedness.

Further work is needed to promote the multiperipheral model of Ref. [57] to a real-
istic Monte Carlo event generator. For example, one should include antiquarks in the
fragmentation cascade, or explore the interference of the amplitude in Fig. 7 with dia-
grams showing di↵erently ordered N hadrons. Preliminary experimental results already
appeared for K� SIDIS production by the HERMES collaboration (an almost vanishing
Collins e↵ect [60] and a large cos 2� asymmetry in the unpolarized cross section [61])
that cannot be easily accommodated in the multiperipheral model in its present version.

4. – Di-hadron Fragmentation Functions

As already sketched in Sec. 2
.3, the extraction of the transversity parton distribution

via the Collins e↵ect su↵ers from several uncertainties and model dependencies, mostly
related to the need of dealing with TMD objects. A complementary approach is provided
by the semi-inclusive process ep" ! e0(h1h2)X where two unpolarized hadrons with

q
Q

Q’ Q’’

p



MOTIVATION
‣  Build a model for multi-hadron emission process using 

microscopic quark models as input.

‣A robust and expandable Monte Carlo framework for describing 
both Favored and Unfavored fragmentation functions.

‣NO model parameters fitted to fragmentation data! 

‣Momentum and quark flavor conservation is imposed.

‣ Extensions to TMD, Polarized Quark Fragmentation, Dihadron 
Fragmentations. 
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 THE QUARK JET MODEL

q Q Q’ Q’’

Field, Feynman, Nucl.Phys.B136:1,1978.

Assumptions:

‣ Number Density 
interpretation

‣ No re-absorption

‣ ∞ hadron emissions

5
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q (1� z)|h=Q̄0q



 THE QUARK JET MODEL

q Q Q’ Q’’

Field, Feynman, Nucl.Phys.B136:1,1978.

Assumptions:

‣ Number Density 
interpretation

‣ No re-absorption

‣ ∞ hadron emissions

Probability of finding hadron h with 
mom. frac. [z, z+dz] in a jet of quark q

The probability scales 
with mom. fraction

5

Dh
q (z)dz = d̂hq (z)dz +

Z 1

z
d̂Qq (y)dy ·Dh

Q(
z

y
)
dz

y
Prob. of  mom. [y, y+dy] is 
transferred to jet at step 1.

Prob. of emitting at step 1



NAMBU--JONA-LASINIO MODEL 

•Effective Quark Lagrangian

G

LNJL =  q(i/@ �mq) q +G( q� q)
2

Effective Quark model of QCD

•Covariant, has the same flavor symmetries as QCD.
•Low energy chiral effective theory of QCD.

6

Yoichiro Nambu and Giovanni Jona-Lasinio:

 “Dynamical Model of Elementary Particles 
Based on an Analogy with Superconductivity. 1”

 Phys.Rev. 122, 345 (1961)



NAMBU--JONA-LASINIO MODEL 
•Dynamically Generated Quark Mass 
from GAP Eqn.

Gap Equation & Mass Generation

9 /27
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effect of gluon cloud
Rapid acquisition of mass is

● Dynamically generated quark masses ⇐⇒ 〈ψψ〉 &= 0

● Proper-time regularization: ΛIR and ΛUV

➞ Z(p2 = M2) = 0 =⇒ No free quarks =⇒ Confinement
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Fixing Model Parameters

k

p

kk

k

- 1- 1
= +

k
q

q−k

k

•Pion mass and quark-pion coupling from 
t-matrix pole.

k
q

q−k

k

•Pion decay constant

•Use Lepage-Brodsky Invariant Mass cut-off regularization scheme.

• Choose a              and use physical      ,       ,       , to fix 
model parameters      ,     ,       and calculate           .Ms

Mu(d) m⇡f⇡ mK
G⇤3 ghqQ

M12  ⇤12 =
q
⇤2
3 +M2

1 +
q
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3 +M2

2



NJL: INTEGRATED NUCLEON PDFS
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I. C. Cloet, W. Bentz, and A. W. Thomas, PLB 621, 246 (2005).

A good description of both unpolarized and polarized PDFs.I.C. Cloët et al. / Physics Letters B 659 (2008) 214–220 217

Fig. 2. Model results for the triplet of twist-2 valence up quark distributions,
at Q2

0 = 0.16 GeV2. The spin-independent and helicity distributions are taken
from earlier work presented in Ref. [20].

Fig. 3. Model results for the triplet of twist-2 valence down quark distributions,
at Q2

0 = 0.16 GeV2. The spin-independent and helicity results are taken from
earlier work presented in Ref. [20].

commute, there can be no preferential polarization direction
and therefore the helicity and transversity distributions must be
equal. This is true only at the model scale as the helicity and
transversity distributions evolve differently under DGLAP evo-
lution.

The first experimental extraction of the transversity distribu-
tions was achieved only recently, and is published in Ref. [21].
The authors combined semi-inclusive DIS data from HERMES
and COMPASS with e+e− annihilation data from BELLE to si-
multaneously extract the transversity distributions and Collins
functions. Their results for the transversity u- and d-quark dis-
tributions at Q2 = 2.4 GeV2 are presented in Fig. 4 as the
shaded regions, which represent a one-sigma confidence in-
terval. Included in this figure are our valence results at Q2 =
2.4 GeV2 and the empirical Soffer bound at the same scale ob-
tained from an evolution of the GRV parametrizations given
in Refs. [35,36]. A direct comparison between our results and
those of Ref. [21] should be valid for x > 0.2 where transver-
sity anti-quark distributions are expected to be small. We find
that our results lie slightly outside the one-sigma error bounds
of the empirical parametrizations for x ! 0.3. On the same
figure we illustrate our results for the helicity distributions at

Fig. 4. The shaded areas are the empirical results of Ref. [21], with a one-sigma
confidence interval. The dot-dashed line is the GRV Soffer bound [35,36] and
the solid lines are our results for the transversity distributions. The dotted
curves are our helicity distributions taken from Ref. [20]. All results are at
Q2 = 2.4 GeV2.

Q2 = 2.4 GeV2. At this scale our helicity and transversity dis-
tributions remain very similar for x ! 0.4, however the differing
Q2 evolution has resulted in a substantial suppression for the
transversity distributions at smaller x, when compared with the
results at the model scale. The helicity distributions given in
Fig. 4 are in excellent agreement with the empirical parame-
trizations [20].

The first moments of the transversity valence distributions
are related to the nucleon’s isovector tensor charge, gT , via [9]

(15)

1∫

0

dx
[
!T uv

(
x,Q2) −!T dv

(
x,Q2)] = gT

(
Q2).

The nucleon’s isoscalar tensor charge, g0
T , is defined as the

sum of the valence transversity moments. For these moments
we obtain !T uv = 1.04 and !T dv = −0.24, giving a nu-
cleon isovector tensor charge of gT = 1.28 and a isoscalar
charge of g0

T = 0.80, at Q2 = 0.16 GeV2. At the GRV scale
of Q2 = 0.4 GeV2 we obtain !T uv = 0.69, !T dv = −0.16,
gT = 0.85 and g0

T = 0.53.3 It is well known that the first mo-
ments of the helicity distributions give the quark spin content
of the nucleon. However, the first moments of the transversity
distributions are not equivalent to the quark spin in the trans-
verse direction, since the expectation value of γ 1γ5 is not equal
to that of Σ⊥ = γ 0γ 1γ5. That is, the isoscalar tensor charge
cannot be interpreted as a transverse spin sum [9,10].

The paper of Anselmino et al. does not give explicit values
for the transversity moments, however if we integrate their para-
metrizations and accurately determine the errors from Fig. 7 in
Ref. [21], we find !T u = 0.46+0.36

−0.28 and !T d = −0.19+0.30
−0.23 at

3 These values are obtained using the NLO result [3]

(16)

!T q
(
Q2)

=
[
αs (Q

2)

αs (Q
2
0)

] 4
27

[
1 − 337

486π

[
αs

(
Q2

0
)
− αs

(
Q2)]]

!T q
(
Q2

0
)
.
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The normalization of the vertex function follows
from the definition given in Eq. (12), we obtain

(18)ΓN(p, s) =
√

−ZN
MN

p−
Γ (p, s),

where

(19)ZN = p−
MN

−1
Γ (p) ∂ΠN(p)

∂p+ Γ (p)
.

As with any non-renormalizable theory a regular-
ization prescription must be specified to fully define
the model. We choose the proper-time regularization
scheme [8,14–16], where loop integrals of products of
propagators are evaluated by introducing Feynman pa-
rameters, Wick rotating and making the denominator
replacement

(20)
1

Xn
→ 1

(n − 1)!

1/(ΛIR)2∫

1/(ΛUV)2

dτ τn−1e−τX,

where ΛIR and ΛUV are, respectively, ultraviolet and
infrared cutoffs. The former has the effect of elim-
inating unphysical thresholds for hadron decay into
quarks, hence simulating an important aspect of con-
finement [15].

4. Results

The parameters of the model areΛIR,ΛUV,m,Gπ ,
Gs and Ga . The infrared scale is expected to be of or-
der ΛQCD and we set it to ΛIR = 0.28 GeV. This is
slightly larger than our previous work [3], because our
studies of the saturation properties of nuclear matter
favour this [9]. The parameters m, ΛUV and Gπ are
determined by requiring M = 400 MeV via the gap
equation, fπ = 93 MeV from the familiar one loop
pion decay diagram andmπ = 140 MeV from the pole
of the qq̄ t-matrix in the pion channel. This gives m =
15.3MeV,ΛUV = 0.66 GeV andGπ = 17.81 GeV−2.
The couplings Gs and Ga are determined by repro-
ducing the nucleon mass MN = 940 MeV as the so-
lution of Eq. (13) and satisfying the Bjorken sum rule
within our model, where gA = 1.267. We obtain Gs =
8.41 GeV−2 andGa = 1.36 GeV−2. With these model
parameters the diquark masses are Ms = 0.65 GeV

Fig. 2. Spin-independent valence u and d distributions multiplied by
Bjorken x. There are three curves for each quark flavour, with the
lower curve of each type representing the d distribution. The dotted
line is the model prediction at the NJL scale of Q20 = 0.16 GeV2
and the solid line is the result after QCD evolution to the scale
Q2 = 5.0 GeV2. The dashed line is the empirical parametrization
of Ref. [18], at the scale Q2 = 5.0 GeV2.

and Ma = 1.2 GeV and the coefficients in the nu-
cleon vertex function, Eq. (17), are (α1,α2,α3) =
(−0.35,−0.0088,0.47).
To compare the predictions of the model with ex-

perimental data as well as the empirical parameteriza-
tions, it is necessary to determine the model scale,Q2

0.
We do this by optimizing Q2

0 such that the spin-
independent distribution, uv(x), best reproduces the
empirical parameterization after Q2 evolution. We
find a model scale of Q2

0 = 0.16 GeV2, which is typi-
cal of valence dominated models [12,13,17].
Results for the spin-independent and spin-depen-

dent valence u and d distributions are presented in
Figs. 2 and 3, respectively. We show the predictions
at the model scale and after QCD evolution2 to Q2 =
5 GeV2, where they are compared to empirical para-
meterizations. We find excellent agreement between
the model results and the parameterizations. In com-
parison with the pure scalar model [3,22], the agree-
ment has improved substantially, especially for the
spin-dependent case.

2 We utilize the computer program of Ref. [20] for the spin-
independent case and of Ref. [21] for the spin-dependent case. We
choose DGLAP evolution with Nf = 3, ΛQCD = 250 MeV in the
MS renormalization scheme up to NLO.
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Fig. 3. Spin-dependent valence u and d distributions multiplied by
Bjorken x. The curves are as in Fig. 2, with empirical parameteriza-
tions taken from Ref. [19].

Our model results for the first polarized moments
are!uv = 0.924 and!dv = −0.343 which agree with
the values!uv = 0.926±0.014 and!dv = −0.341±
0.018 determined from the axial coupling constants
of octet baryons discussed in Ref. [23]. This em-
phasizes the importance of including axial-vector di-
quark correlations, since the pure scalar model would
give a vanishing !dv and a somewhat smaller !uv .
The spin sum in our model is !§ = 0.581, which
is smaller than the result of the pure scalar model,
but still somewhat larger than the accepted value of
!§= 0.213± 0.138 [19]. This discrepancy primarily
reflects the absence of the U (1) axial anomaly [24,25].
The behaviour of structure function and hence

quark distribution ratios at large x has been an area
of considerable debate [26,27] and is one of the re-
gions where perturbative QCD (pQCD) offers firm
predictions [28]. Experimentally, the ratio d(x)/u(x)

is surprisingly poorly known [29]. In the limit x → 1
it is thought to lie somewhere between 0, the predic-
tion based on scalar diquark dominance [30] and 1/5,
the pQCD result [28]. Analysis in Ref. [26] favours
the pQCD prediction. The same predictions also hold
for the spin-dependent ratio, !d(x)/!u(x), as x ap-
proaches 1.
In Fig. 4 we plot our results for the ratios dv(x)/

uv(x) and !dv(x)/!uv(x), together with the ratios
of the empirical distributions. The x → 1 limit of
the spin-independent ratio is in agreement with the
pQCD result. The spin-dependent ratio, however, ap-
proaches ∼ −1/16, the opposite sign to the pQCD

Fig. 4. Mixed flavour ratios for spin-independent and
spin-dependent distributions. There are two curves for each
ratio, with the lower curves the polarized result. The curves are
as in Fig. 2, with spin-independent parameterizations taken from
Ref. [18] and the spin-dependent from Ref. [19].

prediction. Although the empirical parameterizations
are constrained to give 0 for these ratios as x → 1, we
note that the systematic errors in both empirical ratios
are very large in the region x ! 0.5 [19,32–34].
It is important to note that the pQCD predictions

for the mixed flavour ratios are somewhat model de-
pendent, as assumptions have to be made about the
relative strengths of the u and d contributions to the
nucleon wavefunction. A more rigorous pQCD pre-
diction, relying only on helicity conservation, is pos-
sible for the single flavour ratios !u(x)/u(x) and
!d(x)/d(x). Perturbative QCD predicts that both
these ratios should approach 1 for large x, which
would require a change of sign in the !d distribution.
In Fig. 5 we plot our results for the ratios (!q +

!q̄)/(q + q̄), where q ∈ (u, d). Since we wish to com-
pare these ratios directly to recent experimental data,
we include sea quark distributions generated through
the Q2 evolution. In the x → 1 limit our model ratios
approach ≈ 0.8 for the u-quark and ≈ −0.25 for the
d-quark. This seeming contradiction to pQCD has also
been suggested by recent experiments by the Jefferson
Lab Hall A Collaboration [27,35], with our predictions
consistent with their experimental results. This data is
also shown in Fig. 5.
In Fig. 6 we give our results for the spin-dependent

structure functions g1p(x) and g1n(x). The parameter-
izations of Ref. [32] are also included as the shaded
areas, which indicate the empirical uncertainties. Our

• Quark-diquark description of Nucleon using relativistic Faddeev approach

Nucleon in the NJL model

15 /35

● Nucleon has 3 quarks – need to solve relativistic 3-body problem
✦ very difficult to solve
✦ only include processes where 2-quarks interact at any one time
✦ quark-diquark approximation

● Solve relativistic Faddeev equation for a quark-diquark bound state.

P

k
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P − k
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● Nucleon quark distributions ⇐⇒ Feynman diagram calculation
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k k
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✦ [q(x),∆q(x)] ➞ X = δ
(

x − k+

p+

)

[γ+, γ+γ5]

• PDFs from Feynman diagrams
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sity distribution requires that the target change helicity by two
units of angular momentum and this is not possible for spin- 1

2
targets [3,4,7].

These results imply that the transversity distributions are
valence quark dominated and evolve as non-singlets under
DGLAP evolution, where the angular momentum generated by
the DGLAP kernels is not shared between the quark and gluon
sectors. These features of the transversity distributions make
them particularly amenable to a quark model treatment.

In this Letter we calculate the transversity distributions for
the proton using a Nambu–Jona-Lasinio model [13,14]. This
model is attractive because it is covariant and has a trans-
parent description of spontaneous chiral symmetry breaking.
Confinement—in the sense that there exists no threshold for
nucleon decay into quarks—is also implemented via the reg-
ularization procedure [15,16]. We construct the nucleon as a
bound state solution of the relativistic Faddeev equation [17],
in the quark–diquark approximation [18,19], where both scalar
and axial-vector diquark channels are included. We compare
our transversity results to spin-independent and helicity quark
distributions calculated in the same approach [20]. Particular at-
tention is also paid to a comparison of our transversity results
with the recent, and to date the only, experimental extraction of
the transversity distributions by Anselmino et al., presented in
Ref. [21].

2. Transversity quark distributions

The transversity distributions render a probability interpre-
tation analogous to the other two leading twist distributions. In
a transversely polarized hadron they represent the number den-
sity of quarks in an eigenstate of the transverse Pauli–Lubanski
operator, /S⊥γ5, with eigenvalue + 1

2 , minus the number density
of quarks with eigenvalue − 1

2 , [9] that is

(1)"T q(x) = q↑(x) − q↓(x).

In a helicity basis the helicity distributions are expressed as

(2)"q(x) = q+(x) − q−(x),

where q+(x) is the number density of quarks with helicity par-
allel to the hadron helicity and q−(x) is the quark number
density with helicity anti-aligned. The spin-independent distri-
butions in each basis are given by

(3)q(x) = q↑(x) + q↓(x) = q+(x) + q−(x).

The leading twist quark distribution functions are defined
by light-cone Fourier transforms of connected matrix elements
of particular quark field bilinears. For example, the twist-2
transversity distribution is defined by

"T q(x) = p+
∫

dξ−

2π
eixp+ξ−

(4)× 〈p, s|ψ̄q(0)γ+γ 1γ5ψq

(
ξ−)

|p, s〉c,

Fig. 1. Feynman diagrams representing the transversity quark distributions in
the nucleon, needed in the evaluation of Eq. (5). The single line represents the
quark propagator and the double line the diquark t -matrix. The shaded oval
denotes the quark–diquark vertex function and the operator insertion has the

form γ+γ 1γ5δ(x − k+
p+ ) 1

2 (1 ± τz).

where ψq is a quark field of flavour q and x is the Bjorken
scaling variable.1 In Eq. (4) the target polarization is in the
x-direction, with the z-direction defined by the photon 3-
momentum.

The evaluation of the quark distributions is facilitated by ex-
pressing Eq. (4) in the form [22,23]

(5)"T q(x) = −i

∫
d4k

(2π)4 δ

(
x − k+

p+

)
Tr

[
γ+γ 1γ5M(p,k)

]
,

where M(p,k) is the quark two-point function in a nucleon.
The quark distributions can then be expressed in terms of Feyn-
man diagrams for any model where the nucleon is represented
by a bound state of quarks. The diagrams we consider are given
in Fig. 1. In our pure valence quark model there should also be a
third diagram, the so-called quark exchange term [18], however
this diagram does not contribute within the static approximation
used here [17,19].

In the Feynman diagrams of Fig. 1 the single line represents
a constituent quark propagator and the double line a diquark
t -matrix. The diagram on the left is referred to as the quark di-
agram and on the right we have the diquark diagram, where we
include both scalar and axial-vector diquarks. Separating the
isospin coefficients, the u- and d-quark transversity distribu-
tions can be expressed as

(6)

"T uv(x) = "T f s
q/N (x) + 1

2
"T f s

q(D)/N(x) + 1
3
"T f a

q/N (x)

+ 5
6
"T f a

q(D)/N(x) + 1

2
√

3
"T f m

q(D)/N(x),

(7)

"T dv(x) = 1
2
"T f s

q(D)/N(x) + 2
3
"T f a

q/N(x)

+ 1
6
"T f a

q(D)/N(x) − 1

2
√

3
"T f m

q(D)/N(x),

where each term represents a particular Feynman diagram in
Fig. 1. The superscripts s, a and m refer to the scalar, axial-
vector or mixing terms, respectively. The subscript q/N implies
a quark diagram and q(D)/N a diquark diagram. Because the
scalar diquark has spin zero, we have "T f s

q(D)/N(x) = 0 and

1 The formal expressions for the spin-independent and helicity distributions
can be obtained from Eq. (4) via the operator replacements γ+γ 1γ5 → γ+
and γ+γ 1γ5 → γ+γ5, respectively. The nucleon state is normalized accord-
ing to the non-covariant light-cone normalization, namely 〈p, s|ψ̄uγ

+ψu +
ψ̄dγ

+ψd |p, s〉c = 3.
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What happens for finite number of 
emitted hadrons?



✦Using the probabilistic interpretation of fragmentation funcs. 
to include the effect of multiple hadron emissions.

MONTE-CARLO (MC) APPROACH

10
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dhq (z)

• Sample the emitted hadron type and z 
according to input splitting.

• CONSERVE: Momentum and Quark 
Flavor in each step.

• Repeat for decay chains with the same 
initial quark.

H.M., Thomas, Bentz, PRD. 83:07400; PRD.83:114010, 2011.



DEPENDENCE ON NUMBER OF
 EMITTED HADRONS

‣Restrict the number of emitted hadrons,             in MC.
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‣We reproduce the splitting function and the full solution perfectly.
‣The low z region is saturated with just a few emissions.
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• Calculate quark splittings to vector mesons, Nucleon Anti-
Nucleon: 

MORE CHANNELS

dPh!h1,h2
(z1) =

(
C

h1h2
h
8� dz1 if z1z2 m2

h � z2m2
h1 � z1m2

h2 � 0; z1 + z2 = 1,

0 otherwise.

• Add the decay of the resonances:

• Decay cross-section in light-front variables:

13

dhq (z)

h = ⇢0, ⇢±,K⇤0,K
⇤0
,K⇤±,�, N, N̄

H.M., Thomas, Bentz, PRD. 83:074003, 2011
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Results: Fragmentations to All Hadrons
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TRANSVERSE MOMENTUM DEPENDENCE



‣ TMD splittings: 

‣Conserve transverse momenta at each link.

‣Calculate the Number Density

INCLUDING THE TRANSVERSE MOMENTUM
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TMD FRAGMENTATION FUNCTIONS
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COMPARISON WITH GAUSSIAN ANSATZ

• Average TM:
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• Gaussian ansatz assumes:



AVERAGE  TRANSVERSE MOMENTA VS Z
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FRAGMENTATION
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TWO HADRON CORRELATIONS:
DIHADRON FRAGMENTATION FUNCTIONS
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ACCESS TO TRANSVERSITY PDF FROM DFF

• In two hadron production from 
polarized target the cross section 
factorizes collinearly - no TMD!

• Allows clean access to transversity.
• Unpolarized and Interference Dihadron 

FFs are needed!
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l l’

q

FIG. 1: Angles involved in the measurement of the transverse single-spin asymmetry in deep-inelastic production of two hadrons
in the current region.

When the target is transversely polarized, we can define the following cross section combinations 3

d6σUU =
d6σ↑ + d6σ↓

2
=

∑

q

α2e2
q

π y Q2

1 − y + y2/2 + y2 γ2/4

1 + γ2
f q
1 (x)Dq

1,oo(z, M2
h), (16)

d6σUT =
d6σ↑ − d6σ↓

2
= −

∑

q

α2e2
q

4 y Q2

1 − y − y2 γ2/4

1 + γ2
sin(φR + φS)hq

1(x)
|&R|
Mh

H<)q
1,ot(z, M2

h), (17)

where α is the fine structure constant, γ = 2Mx/Q, and M is the mass of the target. These expressions are valid
up to leading twist only. Subleading contributions are described in Ref. [28]. In particular, they give rise to a term
proportional to cosφR in dσUU and a term proportional to sinφS in dσUT . Corrections at order αS were partially
studied in Ref. [4], but further work is required.

We can define the asymmetry amplitude

A
sin(φR+φS)
UT (x, y, z, M2

h) ≡
1

sin(φR + φS)

d6σUT

d6σUU

= −
1−y−y2 γ2/4
x y2 (1+γ2)

1−y+y2/2+y2 γ2/4
x y2 (1+γ2)

π |&R|
4 Mh

∑

q e2
q hq

1(x) H<)q
1,ot(z, M2

h)
∑

q e2
q f q

1 (x) Dq
1,oo(z, M2

h)
. (18)

Note that we avoided simplifying the prefactors because numerator and denominator are usually integrated separately
over some of the variables.

III. FRAGMENTATION FUNCTIONS IN A SPECTATOR MODEL

We aim at describing the process q → π+π−X at invariant mass Mh ! 1.3 GeV. To have an idea of the prominent
channels contributing to this process, we examined the output of the PYTHIA event generator [53] tuned for HER-
MES [54], which well reproduces the measured events at HERMES. Further details concerning the event generator’s
output will be discussed in the next section. Fig. 2 shows the number of counted dihadron pairs in bins of Mh (200
bins from 0.3 to 1.3 GeV). The total amount of events is 2667889.

A few prominent channels contribute to this process:

1. q → π+π−X1: fragmentation into an “incoherent” π+π− pair that we will call, in the following, “background”;

2. q → ρ X2 → π+π−X2: fragmentation into a ρ resonance decaying into π+π−, responsible for a peak at Mh ∼
770 MeV (14.81%);

3. q → ω X3 → π+π−X3: fragmentation into a ω resonance decaying into π+π−, responsible for a small peak at
Mh ∼ 782 MeV (0.31%);

3 The definition of the angles in Eqs. (14,15) is consistent with the so-called Trento conventions [58] and it is the origin of the minus sign
in Eq. (17) with respect to Eq. (43) of Ref. [55] (compare φR and φS in Fig. 1 with the analogue ones in Fig. 2 of Ref. [55]).

M. Radici, et al: PRD 65, 074031 (2002).

A. Bacchetta and M. Radici, PRD 74, 114007 (2006).

• Empirical Model for       have been fitted to PYTHIA simulations.Dq
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FIG. 4: Semi-inclusive dihadron counts from the PYTHIA event generator [53] tuned for HERMES [54] and results of the fit
(a) as a function of Mh, (b) as a function of z. Solid line: p-wave contribution; dashed line: s-wave contribution; dotted line:
sum of the two. The contributions of the η and K0 have been excluded.

which the Monte Carlo generator is actually tuned. The agreement would be improved further if the contribution of
the ω were extended at higher invariant masses by leaving the narrow-width approximation for the ω resonance and
smearing the step function in Eq. (28). Note that the interference is in this case constructive because the signs of the
couplings fρ and f ′

ω have been taken equal. If the two couplings were taken opposite, then a destructive interference
would take place and the model would underestimate the p-wave data at around 0.6 GeV. The agreement with the
total spectrum would then be worsened. Also the fω coupling has been taken to have the same sign of fρ to avoid
destructive interference patterns. It is difficult with the present poor knowledge to make any conclusive statement
about ρ-ω interference in semi-inclusive dihadron production. However, we can at least conclude that in our model
the best agreement with the event generator is achieved when the three couplings fρ, fω and f ′

ω have the same sign.

V. PREDICTIONS FOR POLARIZED FRAGMENTATION FUNCTIONS AND TRANSVERSE-SPIN
ASYMMETRY

Using the parameters obtained from the fit we can plot the results for the fragmentation functions D1,ll, H<)
1,ot, and

D1,ol. The function D1,ll is a pure p-wave function. It depends on |F p|2, the modulus square of Eq. (28), and has
a behavior very similar to Dp

1,oo, the p-wave part of D1,oo. In Fig. 5 (a) we plot the ratio between D1,ll and D1,oo,
integrated separately over 0.2 < z < 0.8. In Fig. 5 (b) we plot the same ratio but with the two functions multiplied
by 2Mh and integrated over 0.3 GeV < Mh < 1.3 GeV. In the same figures, the dotted lines represent the positivity
bound [55]

−
3

2
Dp

1,oo ≤ D1,ll ≤ 3Dp
1,oo. (36)

The functions D1,ol and H<)
1,ot arise from the interference of s and p waves, i.e. from the interferences of channels 1-2,

1-3, and 1-4, proportional to the product (fs fρ), (fs fω), (fs f ′
ω), respectively. Since the relative sign of fs and the

p-wave couplings is not fixed by the fit, we can only predict these functions modulo a sign. For the plots, we assume
that the p-wave couplings have a sign opposite to fs (as suggested by the sign of preliminary HERMES data [48]).

In Fig. 6 (a) we plot the ratio between −|#R|/Mh H<)
1,ot and D1,oo, integrated separately over 0.2 < z < 0.8. In Fig. 6

(b) we plot the same ratio but with the two functions multiplied by 2Mh and integrated over 0.3 GeV < Mh < 1.3 GeV.
In the same figures, the dotted lines represent the positivity bound [55]

|#R|
Mh

H<)
1,ot ≤

√

3

8
Ds

1,oo

(

Dp
1,oo −

1

3
D1,ll

)

. (37)

As is evident, there are two main contributions:

• the interference between channel 1 (s-wave background) and the imaginary part of 2 (ρ resonance), with a shape
peaked at the ρ mass, i.e. roughly proportional to the imaginary part of the ρ resonance in Eq. (28);
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Experiments:
BELLE,
HERMES,
COMPASS.
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UNPOLARIZED DIHADRON FRAGMENTATIONS

• The probability density for observing two hadrons:

23

P1 = (z1k
�, P+

1 ,P 1,?), P 2
1 = M2

h1

P2 = (z2k
�, P+

2 ,P 2,?), P 2
2 = M2

h2

z = z1 + z2 M2
h = (P1 + P2)

2

Dh1h2
q (z,M2

h) �z �M2
h =

⌦
Nh1h2

q (z, z +�z;M2
h ,M

2
h +�M2

h)
↵

• The corresponding number density:

• In MC simulations record all the pairs in every decay chain. 

z1z2M
2
h � (z1 + z2)(z2M

2
h1 + z1M

2
h2) � 0

• Kinematic Constraint.

H.M. Thomas, Bentz, PRD.88:094022, 2013.
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THE EFFECT OF VECTOR MESONS (VM)
• A naive assumption: VMs should have modest contribution due to 

relatively small production probability 
• But: Combinatorial factors enhance VM contribution significantly!
• Let’s consider only two hadron emission

24

u ! d+ ⇡+ ! u+ ⇡� + ⇡+

⇡�⇡0

u ! u+ ⇢0 ! u+ ⇢0 + ⇢0

⇡+⇡�
⇡+⇡�

Direct:

VM:

...

P (⇡+)/P (⇢+) ⇡ 1.7

PDir(⇡
+⇡�)/PVM (⇡+⇡�) ⇡ 1

4

u ! d+ ⇡+ ! u+ ⇢� + ⇡+



2- AND 3-BODY DECAYS
The      spectrum of pseudoscalars is strongly affected by VM decays.M2

h

• We include only the 2-body decays         . 

• Both 2- and 3-body decays of         . 

⇢,K⇤

!,�

q

p 1

p 2

p 3

k
q

p 1

p 2

“Isobar” Model
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2- AND 3-BODY DECAYS

26

�V (s) =
m2

V

s
�V

✓
q(s)

q(m2
V )

◆3

DV (s) = m2
V � s� i

p
s�V (s)

Relative Momentum of 
daughters in their CM frame.

Achasov et al. (SND), PRD 68, 052006, (2003).

• Resonance propagator:

• 3-body decay amplitude (ignore small width):

• Simulate 2- and 3-body phase space in LC.

The      spectrum of pseudoscalars is strongly affected by VM decays.M2
h

• 2-body decay amplitude: M(p1, p2) =
gh1h2
V ✏µ(p2µ � p1µ)

DV (q2)

M(p1, p2, p3) = "µ↵��✏
µp↵1 p

�
2p

�
3

X

i=0,±

gV ⇢i⇡ g⇢i⇡⇡

D⇢i(v
2
i )

• We include only the 2-body decays         . 

• Both 2- and 3-body decays of         . 

⇢,K⇤

!,�



RESULTS FOR PION DFF
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u ! ⇡�⇡+

Direct Full
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RESULTS FOR DFFS
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PYTHIA SIMULATIONS
• Only Hadronize. Allow the same resonance decays as NJL-jet.
• Setup hard process with back to back        along z axis.q q̄

• Assign hadrons with positive       to     fragmentation.pz q
Eq = 10 GeV
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PYTHIA RESULTS FOR u ! ⇡�⇡+

30

Full
Direct
VM Only

u π - π+

∫
1 4m

2 D
π-

 π
+

u
(z

, M
2 h
) d

M
2 h

0

1

2

3

z
0 0.2 0.4 0.6 0.8 1.0

Full
Direct
VM Only

u π - π+

∫
0.

8

0.
2

 D
π-

 π
+

u
(z

, M
2 h
) d

z

0

0.5

1.0

1.5

M2
h  (GeV2)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Full
Direct
VM Only

u π - π+

∫
1 0.
5 D

π-
 π

+

u
(z

, M
2 h
) d

z

0

0.1

0.2

0.3

0.4

M2
h  (GeV2)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4



EVOLUTION OF DFF

31

4

0.4 0.6 0.8 1.0 1.2
Mh (GeV)

−0.01

0.01

0.03

0.05

A
U

Tsin
(φ

R
+φ

S)s
in
θ

0.05 0.1 0.15
x

0.2 0.4 0.6 0.8 1.0
z

FIG. 1: The spin asymmetry for the semi-inclusive production of a pion pair in deep-inelastic scattering on a transversely
polarized proton, as a function of the invariant mass Mh of the pion pair, of the light-cone momentum fraction x of the initial
parton, of the energy fraction z carried by the pion pair with respect to the fragmenting parton. Data from Ref. [40]. The
uncertainty band is a fit to the data based on the DiFF spectator model of Ref. [38] and on the h1 parametrization of Ref. [48].

which is connected to the pair invariant mass by [9]

R2
T =

(P1T − P2T )2

4
=

z1z2

z1 + z2

[

M2
h

z1 + z2
−

M2
1

z1
−

M2
2

z2

]

. (5)

The further dependence on the scale Q2 of the process is described by usual DGLAP evolution equations; at LL, they
read [9]

d

dlogQ2
Dq(z1, z2, R

2
T , Q2) =

αs(Q2)

2π

∫ 1

z1+z2

du

u2
Dq′

(z1

u
,
z2

u
, R2

T , Q2
)

Pq′q(u) , (6)

where P (u) are the usual leading-order splitting functions [49]. A similar equation holds for H!

q involving the splitting
functions δP (u) for transversely polarized partons [50, 51] (see also the Appendix of Ref. [9], for convenience).

The same strategy can be applied to study evolution of single components of extended DiFF in the expansion in
relative partial waves of the pion pair. In fact, Eq. (6) can be rewritten as

d

dlogQ2
Dq(z, ζ, M2

h , Q2) =
αs(Q2)

2π

∫ 1

z

du

u
Dq′

( z

u
, ζ, M2

h , Q2
)

Pq′q(u) . (7)

Note that the evolution kernel affects only the dependence on z, leaving untouched the dependence on ζ. That is, it
affects the dependence on the fractional momentum of the pion pair with respect to the hard fragmenting parton, but
not the dependence on the nonperturbative processes that make the fractional momentum split inside the pair itself.
The net effect is that extended DiFF display evolution equations very similar to the single-hadron fragmentation case.
Using the above identity ζ = 2 cos θ|R|/Mh, we can again expand both sides of Eq. (7) in terms of Legendre functions
of cos θ and apply the evolution kernel to each member of the expansion. By integrating in d cos θ both sides we come
to the final result

d

dlogQ2
D1,q(z, M2

h , Q2) =
αs(Q2)

2π

∫ 1

z

du

u
D1,q′

( z

u
, M2

h , Q2
)

Pq′q(u) , (8)

that involves the DGLAP evolution of the single diagonal component D1,q = Ds
1,q + Dp

1,q related to the pure s and

p relative partial waves of the pion pair. Analogously, we can get an evolution equation similar to Eq. (8) for H!sp
1,q

provided that P (u) is replaced by δP (u).
Equation (8) shows that also the dependence on the pair invariant mass Mh is not affected by the evolution kernel,

as is reasonable, since Mh is a scale much lower than Q2. However, in order to get the Mh dependence at a different
scale Q′ 2 "= Q2 it is important to completely integrate away the z dependence. Usually, experimental phase spaces are
limited by the geometry of the apparatus and, in this case, the integration in dz is performed in the interval [zmin, 1]
with zmin "= 0. In Fig. 2, we show D1,u(Mh) for the up quark at the HERMES scale Q2 = 2.5 GeV2 (dot-dashed
line) and at the BELLE scale of Q2 = 100 GeV2 (solid line). In the left panel, results are obtained using zmin = 0.02,

At leading order: 
Bacchetta et. al., Phys.Rev. D79, 034029 (2009).
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TRANSVERSELY POLARIZED QUARK FRAGMENTATION:
COLLINS EFFECT AND TWO-HADRON CORRELATIONS

32



COLLINS FRAGMENTATION FUNCTION

• Chiral-ODD: Needs to be coupled with another 
chiral-odd quantity to be observed.

• Collins Effect: 

Azimuthal Modulation of 
Transversely Polarized 
Quark’ Fragmentation 
Function.
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COLLINS FRAGMENTATION FUNCTION FROM NJL-JET

•Model Calculated Elementary Collins Function as Input

• Extend the NJL-jet Model to Include the Quark’s Spins.
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H.M.,Bentz, Thomas, PRD.86:034025, 2012.
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• Spin flip probability: PSF

A. Bacchetta et. al., PLB659, 234 (2008).



INTEGRATED POLARIZED FRAGMENTATIONS

• Integrate Polarized Fragmentations over 
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COLLINS EFFECT - MK2
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MK2 Model Assumptions:
1. Allow for Collins Effect only in a SINGLE emission vertex -           scaling 

of the resulting Collins function. 
2.  Use constant values for         .PSF
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H.M., Kotzinian, Thomas, PLB731 208-216 (2014).
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COLLINS EFFECT - MK2
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TWO-HADRON FRAGMENTATION

• IFFS are Chiral-ODD: Need to be coupled with another 
chiral-odd quantity to be observed (e.g. transversity).

‣Kinematic Variables:

37

A. Bianconi, et al: PRD 62, 034008 (2000). M. Radici, et al: PRD 65, 074031 (2002).
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InterferenceInterference

‣The relevant terms of the quark correlator at leading order for a 
Transversely Polarized Quark:

k! and the integration over k" implied by the definition of !
in Eq. "3#, we deduce that the actual number of independent
components of the three 4-vectors k ,P1 ,P2 is five "cf. $12%#.
They can conveniently be chosen as the fraction of quark
momentum carried by the hadron pair, z, the subfraction in
which this momentum is further shared inside the pair, & , and
the ‘‘geometry’’ of the pair in the momentum space, namely,
the ‘‘opening’’ of the pair momenta, R! T

2 , the relative position
of the jet axis and the hadron pair axis, k!T

2 , and the relative
position of hadron pair plane and the plane formed by the jet
axis and the hadron pair axis, k!T•R! T "see Fig. 2#.
Both DF and FF can be deduced from suitable projections

of the corresponding quark-quark correlators. In particular,
by defining

! [']"z ,& ,k!T
2 ,R! T

2 ,k!T•R! T#

(
1
4z! d k"Tr$'!"k ,P1 ,P2#%"k!#Ph

!/z , "7#

we can deduce, at leading twist,

! [)!]#D1"zh ,& ,k!T
2 ,R! T

2 ,k!T•R! T# "8a#

! [)!)5]#
*T
i jRTikT j
M 1M 2
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"
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i jkT j

M 1"M 2
H1
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2 ,R! T

2 ,k!T•R! T#. "8c#

The leading-twist projections give a nice probabilistic inter-
pretation of FF related to the matrix ' used. Hence, D1 is the
probability for a unpolarized quark to fragment into the un-
polarized hadron pair, G1

! is the probability difference for a
longitudinally polarized quark with opposite chiralities to

fragment into the pair, both H1
! and H1

" give the same prob-
ability difference but for a transversely polarized fragment-
ing quark. A different interpretation for H1

! and H1
" comes

only from the possible origin for a non-vanishing probability
difference, which is induced by the direction of kT and RT ,
respectively. G1

! ,H1
! ,H1

" are all naive T-odd and H1
! ,H1

"

are further chiral odd. H1
! represents a sort of generalization

of the Collins effect, while H1
" originates from a genuine

new effect, because it relates the transverse polarization of
the fragmenting quark to the orbital angular motion of the
transverse component of the pair relative momentum R! T via
the new angle , , defined by

sin,#
S! T!•P! 2$P! 1

"S! T! ""P! 2$P! 1"
#

S! T!•P! h$R!

"S! T! ""P! h$R! "

(
S! T!•P! h$R! T

"S! T! ""P! h$R! T"

#cos# ,ST!
!

-

2 !,RT$#sin",ST",RT#, "9#

where we have used the condition P! hT#0 and ,ST (,ST!
),

,RT are the azimuthal angles of the initial "final# quark trans-
verse polarization and of R! T with respect to the scattering
plane, respectively "see also Fig. 2#.

B. Isolating transversity from the SSA

Usually, the analysis of experimental observables is better
accomplished in the frame where the target momentum P
and the momentum transfer q are collinear and with no trans-
verse components. Using a different notation, we have P!!

#q!!#0 and P! h!.0. An appropriate transverse Lorentz
boost transforms this frame to the previous one where P! T
#P! hT#0 and q! T#!P! h! /z $12%. However, the difference
between the components of vectors in each frame is sup-
pressed like O(1/Q). Since we are here considering expres-
sions for the observables at leading twist only, this difference
can be safely neglected.
By using Eq. "5#, the complete cross section at leading

twist for the two-hadron inclusive DIS of an unpolarized
beam on a transversely polarized target, where two unpolar-
ized hadrons are detected in the same quark current jet, is
given by
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FIG. 2. The kinematics for the final state where a quark frag-
ments into two leading hadrons inside the same current jet.
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task suggests that a more convenient way to model occur-
rence and properties of ‘‘T odd’’ FF is to look at residual
interactions between two hadrons in the same jet, consider-
ing the remnant of the jet as a spectator and summing over
all its possible configurations. Therefore, in the following the
formalism for two-hadron semi-inclusive production and FF
will be addressed.

III. QUARK-QUARK CORRELATION FUNCTION FOR
TWO-HADRON PRODUCTION

In the field-theoretical description of hard processes the
soft parts connecting quark and gluon lines to hadrons are
defined as certain matrix elements of non-local operators in-
volving the quark and gluon fields themselves !17–19". In
analogy with semi-inclusive hard processes involving one
detected hadron in the final state !2", the simplest matrix
element for the hadronization into two hadrons is the quark-
quark correlation function describing the decay of a quark
with momentum k into two hadrons P1 ,P2 #see Fig. 3$:
namely,

% i j#k;P1 ,P2$!X
X

! d4&

#2'$4

"eik•&(0") i#&$a2
†#P2$a1

†#P1$"X*

"(X"a1#P1$a2#P2$) j#0 $"0*, #9$

where the sum runs over all the possible intermediate states
involving the two final hadrons P1 ,P2. For the Fourier trans-
form only the two space-time points 0 and & matter, i.e., the
positions of quark creation and annihilation, respectively.
Their relative distance & is the conjugate variable to the
quark momentum k.
We choose for convenience the frame where the total pair

momentum Ph!P1#P2 has no transverse component. The
constraint to reproduce on-shell hadrons with fixed mass
(P1

2!M 1
2 ,P2

2!M 2
2) reduces to seven the number of indepen-

dent degrees of freedom. As shown in Appendix A #where
also the light-cone components of a 4-vector are defined$,
they can conveniently be reexpressed in terms of the light-
cone component of the hadron pair momentum, Ph

$ , of the
light-cone fraction of the quark momentum carried by the
hadron pair, zh!Ph

$/k$!z1#z2, of the fraction of hadron

pair momentum carried by each individual hadron, +
!z1 /zh!1$z2 /zh , and of the four independent invariants
that can be formed by means of the momenta k ,P1 ,P2 at
fixed masses M 1 ,M 2, i.e.,

,h!k2, -h!2k•#P1#P2$.2k•Ph ,

-d!2k•#P1$P2$.4k•R , M h
2!#P1#P2$2.Ph

2 ,
#10$

where we define the vector R!(P1$P2)/2 for later use.
By generalizing the Collins-Soper light-cone formalism

!18" for fragmentation into multiple hadrons !12,11", the
cross section for two-hadron semi-inclusive emission can be
expressed in terms of specific Dirac projections of
%(zh ,+ ,Ph

$ ,,h ,-h ,M h
2 ,-d) after integrating over the #hard-

scale suppressed$ light-cone component k# and, conse-
quently, taking & as light-like !2", i.e.,
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1
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!
1
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! dk#! dk$0# k$$
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$

zh
$Tr!%/" . #11$

The function % [/] now depends on five variables, apart from
the Lorentz structure of the Dirac matrix / . In order to make
this more explicit and to reexpress the set of variables in a
more convenient way, let us rewrite the integrations in Eq.
#11$ in a covariant way using

2Ph
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d-h

dk#
, 2k#!

d,h

dk$
, #12$

and the relation

1
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#
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which leads to the result
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where the dependence on the transverse quark momentum k! T
2

through -h is made explicit by means of Eqs. #A6a$ and
#A7$.
Using Eq. #A6$ makes it possible to reexpress % [/] as a

function of zh ,+ ,k! T
2 and R! T

2 ,k! T•R! T , where R! T is #half of$ the
transverse momentum between the two hadrons in the con-

FIG. 3. Quark-quark correlation function for the fragmentation
of a quark into a pair of hadrons.
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where M is the target mass. The kinematics, also depicted in
Fig. 1, represents a nucleon with momentum P(P2!M 2)
and a virtual hard photon with momentum q that hits a quark
carrying a fraction p#!xP# of the parent hadron momen-
tum. We describe a 4-vector a as &a",a#,a! T* , in terms of its

light-cone components a%!(a0%a3)/!2 and a transverse
bidimensional vector a! T , such that for two 4-vectors a ,b we
have a•b!a#b"#a"b#"a! T•b! T . Because of momentum
conservation in the hard vertex, the scattered quark has mo-
mentum k!p#q , and it fragments into two unpolarized
hadrons, which carry a fraction (P1#P2)"+Ph

"!zk" of
the ‘‘parent quark’’ momentum, and the rest of the jet.
The quark-quark correlator ' describes the nonperturba-

tive processes that make the parton p emerge from the spin-
1/2 target, and it is symbolized by the lower shaded blob in
Fig. 1. Using Lorentz invariance, Hermiticity and parity in-
variance, the partly integrated ' can be parametrized at lead-
ing twist in terms of DF as
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x ,p! T and the polarization state of the target is fully specified
by the light-cone helicity /!MS#/P# and the transverse
component S! T of the target spin. Similarly, the correlator ) ,
symbolized by the upper shaded blob in Fig. 1, represents the
fragmentation of the quark into the two detected hadrons and
the rest of the current jet and can be parametrized as &12*
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where R+(P1"P2)/2 is the relative momentum of the had-
ron pair.
For convenience, we will choose a frame where, besides

P! T!0, we have also P! hT!0. By defining the light-cone mo-
mentum fraction 0!P1

"/Ph
" , we can parametrize the final-

state momenta as
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From the definition of the invariant mass of the hadron pair,
i.e. Mh

2+Ph
2!2Ph

#Ph
" , and the on-shell condition for the

two hadrons themselves, P1
2!M 1

2 ,P2
2!M 2

2, we deduce the
relation
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which in turn puts a constraint on the invariant mass from the
positivity requirement R! T
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After having given all the details of the kinematics, we
can specify the actual dependence of the quark-quark cor-
relator ) and of the FF. From the frame choice P! hT!0, the
on-shell condition for both hadrons, Eq. $5%, the constraint on
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TWO-HADRON FRAGMENTATION

kT = �PT /zh

k = (k�, k+,0)

✦Transformation to frame kT = 0

✦ Integrate over one or other momentum:
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A. Bacchetta, M. Radici: PRD 69, 074026 (2004).
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RECENT COMPASS RESULTS
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POLARIZED QUARK DIFF IN QUARK-JET.

• Use the NJL-jet Model including Collins effect (Mk 2) to study DiFFs.

40

H.M., Kotzinian, Thomas, PLB731 208-216 (2014).
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E
.

• Choose a constant Spin flip probability:PSF

• Simple model to start with:
  Only pions and extreme ansatz for the
  Collins term in elementary function.

dh/q"(z,p?) = dh/q1 (z, p2?)(1� 0.9 sin')
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ANALYZING POWERS
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✦Use the spectator model for Collins 
function.

✦Include both pion and kaon channels.

IMPROVED MODEL FOR 
COLLINS EFFECT
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IMPROVED MODEL RESULTS
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CONCLUSIONS: NJL-jet
• Multi-hadron emissions are essential to complete description of 

both Favored and Unfavored fragmentation functions!

• The NJL-Jet model provides a robust and extendable framework for 
microscopic description of various fragmentation phenomena using 
MC simulations: TMD, Collins, DiHadron.

• NJL-Jet MC helps us to test and understand important aspects of 
various processes using a specific underlying quark model:  
‣ z dependence of         .
‣ Effect of  VM decays on Dihadron FFs. 
‣ The role of the Collins mechanism in IFFs.

• Further developments of the model are underway:
‣ Including vector mesons in polarized fragmentations.
‣ Exploring the target fragmentation.
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CHALLENGES IN EXTRACTING 
SIVERS PDF FROM SIDIS



SIVERS PDF
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D. Sivers, Phys.Rev. D41 (1990).

✦ Proposed by Dennis Sivers in 
1990 to explain the single spin 
asymmetry in                       .pp" ! ⇡ +X

✦ Correlation of      and STkT

✦ Naively T-odd, gauge-link should be included in 
the definition.

f?SIDIS
1T = �f?DY

1T

✦ Accessible in Polarized SIDIS, Drell-Yan.

The Confined Motion of Partons Inside
the Nucleon
Semi-inclusive DIS (SIDIS) measurements
have two natural momentum scales: the
large momentum transfer from the electron
beam needed to achieve the desired spatial
resolution, and the momentum of the pro-
duced hadrons perpendicular to the direction
of the momentum transfer, which prefers a
small value sensitive to the motion of con-
fined partons. Remarkable theoretical ad-
vances over the past decade have led to a
rigorous framework where information on the
confined motion of the partons inside a fast-
moving nucleon is matched to transverse-
momentum dependent parton distributions
(TMDs). In particular, TMDs are sensitive
to correlations between the motion of par-
tons and their spin, as well as the spin of the
parent nucleon. These correlations can arise
from spin-orbit coupling among the partons,
about which very little is known to date.
TMDs thus allow us to investigate the full
three-dimensional dynamics of the proton,
going well beyond the information about lon-
gitudional momentum contained in conven-
tional parton distributions. With both elec-

tron and nucleon beams polarized at collider
energies, the EIC will dramatically advance
our knowledge of the motion of confined glu-
ons and sea quarks in ways not achievable at
any existing or proposed facility.

Figure 1.3 (Left) shows the transverse-
momentum distribution of up quarks inside
a proton moving in the z direction (out of the
page) with its spin polarized in the y direc-
tion. The color code indicates the probabil-
ity of finding the up quarks. The anisotropy
in transverse momentum is described by the
Sivers distribution function, which is induced
by the correlation between the proton’s spin
direction and the motion of its quarks and
gluons. While the figure is based on a pre-
liminary extraction of this distribution from
current experimental data, nothing is known
about the spin and momentum correlations
of the gluons and sea quarks. The achiev-
able statistical precision of the quark Sivers
function from EIC kinematics is also shown
in Fig. 1.3 (Right). Currently no data exist
for extracting such a picture in the gluon-
dominated region in the proton. The EIC
will be crucial to initiate and realize such a
program.
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Figure 1.3: Left: The transverse-momentum distribution of an up quark with longitudinal
momentum fraction x = 0.1 in a transversely polarized proton moving in the z-direction, while
polarized in the y-direction. The color code indicates the probability of finding the up quarks.
Right: The transverse-momentum profile of the up quark Sivers function at five x values
accessible to the EIC, and corresponding statistical uncertainties.
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Sivers Effect in PYTHIA and Simulations 
for SIDIS(/DY/PP)

mPYTHIA 6.4



‣Use PYTHIA 6.4 (and LEPTO earlier) (F77-yuk).
‣Incorporate dynamical hadronization mechanism: one, 
two,... hadron FFs.
‣Sivers effect modulates quark TM’s azimuthal angle:  
relatively easy to include in MC generators.
‣Use Sivers PDF extraction from Torino group.
‣Event generators allow to study exp. kinematics effects.
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EVENT GENERATORS + SIVERS EFFECT
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Kotzinian, H.M., Thomas: PRL.113, 062003 ; PRD.90, 074006 ; 1407.6572 (2014); 

❖ Does it work?



‣Is this justified at COMPASS energies?

LO APPROXIMATION FOR SSA

52

‣Fits for Sivers PDF from HERMES and COMPASS data utilize 
LO DIS-only expressions for SSAs.

‣Test using mPYTHIA: turn on non-DIS effects (VMD, GVMD, 
“direct”) and parton showering (QCD+QED).

Asinð!h"!SÞ
UT ¼ 2

R
d!Sd!h½d"" " d"#& sinð!h "!SÞR

d!Sd!h½d"" þ d"#& (

(34)

This transverse single spin asymmetry embeds the azi-
muthal modulation triggered by the correlation between
the nucleon spin and the quark intrinsic transverse

momentum. The ‘‘weighting’’ factor sinð!h "!SÞ in
Eq. (34) is appropriately chosen to single out, among
the various azimuthal dependent terms appearing in
½d"" " d"#&, only the contribution of the Sivers mecha-
nism [18,19]. By properly taking into account all intrin-
sic motions this transverse single spin asymmetry can be
written as [1]

Asinð!h"!SÞ
UT ¼

P
q

R
d!Sd!hd

2k?!
Nf̂q=p"ðx; k?; QÞ sinð’"!SÞ d"̂

‘q!‘q

dQ2 D̂h
qðz; p?; QÞ sinð!h "!SÞ

P
q

R
d!Sd!hd

2k?f̂q=pðx; k?; QÞ d"̂‘q!‘q

dQ2 D̂h
qðz; p?; QÞ

( (35)

With respect to the leptonic plane, !S and !h are the
azimuthal angles identifying the transverse directions of
the proton spin S and of the outgoing hadron h respec-
tively, while ’ defines the direction of the incoming
(and outgoing) quark transverse momentum, k? ¼
k?ðcos’; sin’; 0Þ; d"̂‘q!‘q=dQ2 is the unpolarized cross
section for the elementary scattering ‘q ! ‘q.

The aim of our paper is to analyze the available polar-
ized SIDIS data from the HERMES and COMPASS
Collaborations in order to understand whether or not they
show signs of the TMD evolution proposed in Ref. [9] and
described in Sec. I A. Our general strategy is that of adopt-
ing the TMD evolution in the extraction of the Sivers
functions, with the same parametrization and input func-
tions as in Refs. [5,13], and see if that can improve the
quality of the fits. In doing so we will make use of the
HERMES reanalysis of SIDIS experimental data on Sivers
asymmetries for pion and kaon production and the newest
SIDIS COMPASS data off a proton target, which cover a
wider range of Q2 values, thus giving a better opportunity
to check the TMD evolution.

In particular we perform three different data fits:
(i) a fit (TMD fit) in which we adopt the TMD-evolution

equation discussed in Secs. I A and IB, Eqs. (23)–(25)
and (8)–(10);

(ii) a second fit (TMD analytical fit) in which we apply
the same TMD evolution, but using the analytical
approximation discussed in Sec. I C, Eqs. (27), (30),
and (32);

(iii) a fit (DGLAP fit) in which we follow our previous
work, as done so far in Ref. [5,13], using the
DGLAP evolution equation only in the collinear
part of the TMDs.

As a result of the fit we will have explicit expressions of all
the Sivers functions and their parameters. However, the
goal of the paper is not that of obtaining a new extraction of
the Sivers distributions, although we will show, for com-
ment and illustration purposes, the Sivers functions for u
and d valence quarks, with the relative parameters. The
procedure followed here aims at testing the effect of the
TMD evolution, as compared with the simple DGLAP

evolution so far adopted, in fitting the TMD SIDIS data.
If it turns out, as it will, that this improves the quality of the
fit, then a new extraction of the Sivers distributions, en-
tirely guided by the TMD evolution, will be necessary.
That will require a different approach from the very begin-
ning, with different input functions and parametrizations.
Here, we parametrize the Sivers function at the initial

scaleQ0 ¼ 1 GeV, as in Ref. [5,13], in the following form:

!Nf̂q=p"ðx; k?; Q0Þ ¼ 2N qðxÞhðk?Þf̂q=pðx; k?; Q0Þ;
(36)

with

N qðxÞ ¼ Nqx
#qð1" xÞ$q

ð#q þ $qÞð#qþ$qÞ

#
#q
q $

$q
q

; (37)

hðk?Þ ¼
ffiffiffiffiffi
2e

p k?
M1

e"k2?=M
2
1 ; (38)

where f̂q=pðx; k?; Q0Þ is defined in Eq. (15) andNq, #q, $q

and M1 (GeV) are (scale-independent) free parameters to
be determined by fitting the experimental data. Since
hðk?Þ ) 1 for any k? and jN qðxÞj ) 1 for any x (notice
that we allow the constant parameterNq to vary only inside
the range ½"1; 1&), the positivity bound for the Sivers
function,

j!Nf̂q=p"ðx; k?Þj
2f̂q=pðx; k?Þ

) 1; (39)

is automatically fulfilled. Similarly to PDFs, the FFs at
the initial scale are parametrized with a Gaussian shape,
Eq. (17).
As in Refs. [5,20], the average values of k? and p? are

fixed as

hk2?i ¼ 0:25 GeV2 hp2
?i ¼ 0:20 GeV2: (40)

We take the unpolarized distributions fq=pðx;Q2
0Þ from

Ref. [21] and the unpolarized fragmentation functions
Dh=qðz;Q2

0Þ from Ref. [22], with Q2
0 ¼ 1:0 GeV. As in

Ref. [5], we adopt 11 free parameters,

STRATEGY TOWARDS THE EXTRACTION OF THE SIVERS . . . PHYSICAL REVIEW D 86, 014028 (2012)

014028-7

M. Anselmino et. al: PRD 86, 014028 (2012).

H.M et al., arXiv:1502.02669 (2015).
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LO APPROXIMATION FOR SSA
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H.M et al., arXiv:1502.02669 (2015).
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‣Current Sivers PDF extractions may be underestimated.
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• How reliable are our SSA predictions for other 
experiments?

Can We Still Use These Parametrizations?

53

• Construct Ratios of Full (non-DIS + showers) to LO DIS results for 
multiplicities and Sivers SSAs at COMPASS and EIC.

• The Ratios are very close between COMPASS and EIC: 

• We can reliably estimate SSAs if we use only LO DIS terms with the 
current parametrization of Sivers PDFs.

H.M et al., arXiv:1502.02669 (2015).
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Sivers SSAs
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❖  Exploring large x at CLAS 12 and small x at EIC .

✦ Significant (measurable?) SSAs!
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• LEPTO and PYTHIA MC event generators have been modified 
to predict Sivers SSAs for both one and two hadrons:

‣ mLEPTO for COMPASS: dihadron SSA ≅ single hadron SSA.

‣ CLAS12, SoLID and EIC predictions: Measurable SSAs.

‣ Non-DIS processes and showers should be considered in the 
extractions of the Sivers PDF .
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CONCLUSIONS II: SIVERS



Thanks!



BACKUP SLIDES
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Hadron Multiplicities 

Unfavored FFs NOT well known!

  

Comparison to parameterisations

● The existence of discrepancies 

   are evident (especially for K)

● Data can be used to improve 
    our knowledge on FFs (also 

    good for Δs) and also on poorly
    known PDFs (like s(x)) 

● It will contribute significantly 
    to our knowledge of the
    hadronisation process

‣Preliminary from COMPASS
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FIG. 9. Comparison of the vector-meson-corrected mul-
tiplicities measured on the proton for various hadrons with
LO calculations using CTEQ6L parton distributions [45] and
three compilations (see text) of fragmentation functions. Also
shown are the values obtained from the HERMES Lund
Monte Carlo. The statistical error bars on the experimen-
tal points are too small to be visible.

charge. The multiplicities in this LO approximation are
a reasonable starting point for comparing the HERMES
results with predictions based on fragmentation functions
resulting from global QCD analyses of all relevant data.

A comparison of the multiplicities measured by HER-
MES for SIDIS on the proton and deuteron with LO pre-
dictions is presented in Figs. 9 and 10. The multiplicities
are calculated from Eq. 8 (though integrated only over
the accepted range in x

B

of 0.023 to 0.600) using val-
ues for the FFs taken from three widely used analyses,
that of de Florian et al. (DSS) [22], that of Hirai et
al. (HKNS) [12], and that of Kretzer [9], together with
parton distributions taken from CTEQ6L [45]. For pos-
itively charged pions and kaons, the results for a proton
target using FFs from the analysis of DSS are in reason-
able agreement with the HERMES results. For negative
charges, the discrepancies between data and the results
based on FFs from DSS are substantial, particularly for
K

� where the curve predicted lies below the observed
multiplicity over most of the measured range of z. For
⇡

� the results from the DSS analysis agree with mea-
surement at low z. For both ⇡

� and K

�, fragmenta-
tion is less a↵ected by u-quark dominance. Uncertainties
in the less abundant production by strange and anti-u
quarks may have a larger impact on the predictions than
for the positively charged hadrons. Alternatively, next-
to-leading-order (NLO) processes may be proportionally
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FIG. 10. As in Fig. 9 but for deuterons.

more important for ⇡

� and particularly K

�, and the
discrepancies observed here may signal the importance
of calculating multiplicities at NLO. For kaons the DSS
results give a better representation of the data than the
Kretzer and HKNS curves. This is to be expected, since
the DSS analysis included a preliminary version of the
HERMES proton data in its database. The Kretzer and
HKNS results are in substantial disagreement with the
multiplicities measured forK�. The results on deuterons
are in general in somewhat better agreement with the
various predictions, in particular for pions. However, the
discrepancy between the measured K

� multiplicities and
the various predictions is also apparent here. In Figs. 9
and 10 the multiplicities obtained from the HERMES
Lund Monte Carlo, in which the fragmentation parame-
ters have been tuned for HERMES kinematic conditions
[20], are also shown. Inclusion of the data reported here
in future global analyses should result in higher precision
in the extraction of FFs, particularly those describing
less abundant fragmentation processes.

VI. SUMMARY

HERMES has measured the multiplicity of charge-
separated pions and kaons as a function of z, P

h?

, x
B

and Q

2 produced by SIDIS o↵ a hydrogen and a deu-
terium target. This high statistics data set, which re-
sult from scattering by pure gas targets of protons and
deuterons, provides unique information on the fragmen-
tation of quarks into final state hadrons and will con-
tribute valuable input for the extraction of fragmentation
functions using QCD fits. The comparison of the results

‣Also results from HERMES
Phys. Rev. D 87, 074029 (2013)Talk by C.Franco at CIPANP 2012.
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Strangeness Effect in Pion
Ito et al. Phys.Rev.D80:074008,2009
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Results for Kaon
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NJL: NUCLEON PDFS - TMD RESULTS
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THE TREATMENT OF VM DECAYS: COMPARISON TO PYTHIA.
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�V (s) =
m2

V

s
�V

✓
q(s)

q(m2
V )

◆3

• Constant decay width of  VM.

• 3-body decay amplitude:

• 2-body decay amplitude: non-
relativistic Breit-Wigner:

‣ Point-like coupling (PYTHIA).

‣ “Isobar” model (HERWIG, NJL-jet).
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ANGULAR CORRELATIONS: 
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u ! ⇡+⇡�

COMPASS Preliminary: 
F. Bradamante - COMO 2013.

Unpolarized

3D Structure of Nucleons and Nuclei, Como,June 12, 2013 Franco Bradamante 

introduction 

correlations  among  the  “standard”  azimuthal  angles 

same with 
unpolarised 
Lepto 

ϕோ 

ϕ௛ି 

ϕ௛ା 

ϕ௛ା 
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ANGULAR CORRELATIONS: u ! ⇡+⇡�

M2
h =

(z1 + z2)(z2M2
h1 + z1M2

h2) + (z2P1? � z1P2?)2

z1z2



• NJL provides microscopic description of  TMD PDFs and FFs!

TMDS FROM SIDIS e N     e h X

• Access to nucleon’s transverse structure.

• Cross-section factorizes: P 2
T ⌧ Q2

PT = P? + zkT

65

Z
d2P?D(z, P 2

?) = D(z)

Distribution

Fragmentation

d�

lN!l0hX

dxdQ
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dzd
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X

q

f

q
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2
T , Q

2)⌦ d�
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h
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2
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Z
d
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2
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• Transverse Momentum Dependent 
(TMD) PDFs and FFs:



THE TRANSVERSE MOMENTA OF 
HADRONS IN SIDIS

• Use TMD quark distribution functions from the NJL model .

k ’ z

xy
p h

k T

P

PT

k T
k

q Nucleon

q
Q

Q’ Q’’

p

• Evaluate the cross-section using MC simulation.

• Use NJL-Jet hadronization model.
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UNPOLARIZED DIHADRON FRAGMENTATIONS

• The probability density for observing two hadrons:

67

• First Explorations within NJL-jet model in Integral Eq. formalism.

q Q Q’ Q’’

h 1
(z 1
)

h 2
(z 2
)

momentum. They describe the quark structure of the nu-
cleon (the other two being unpolarized and helicity quark
distribution functions) and these functions enter into asym-
metries with chiral-odd versions of a special type of DFF
known as interference fragmentation functions [78–82].
Interference fragmentation functions are DFFs with a
dependence on the polarization of the fragmenting quark.
In Refs. [83–85], it was suggested that DFFs may be useful
in extracting transversity distributions by considering the
SIDIS production of two hadrons with small invariant
mass. Transversity distribution functions are not a focus
of this paper, but are presented as motivation for further
investigation into DFFs.

This work focuses on performing QCD evolution of
the DFFs from the NJL-jet model momentum scale of
Q2

0 ¼ 0:2 GeV2 to a typical experimental momentum scale
of Q2 ¼ 4 GeV2. In Sec. II we present a brief summary of
fragmentation function equations from which the model
scale solutions were obtained and used as input for the
evolution equations of the DFFs. Section III describes the
method for solving the evolution equations for single had-
ron fragmentation functions (SFFs), which are needed for
the evolution of the DFFs. It also serves as a simple version
of the method used to solve the DFF evolution equations,
while the method for solving the evolution equations for
the DFFs is described in Sec. IV. A comparison of the
model scale and evolved scale DFFs is presented in Sec. V.
Section VI shows how the evolution code works on data
from Ref. [76] as well as comparing our solutions to that
data. Our data is evolved to a range of values of Q2 in this
section to display how the up quark and gluon DFFs
change for larger values of Q2.

II. SINGLE HADRON AND DIHADRON
FRAGMENTATION FUNCTIONS FROM

THE NJL-JET MODEL

In Ref. [74], integral equations for the single hadron and
dihadron fragmentation functions from the NJL-jet model
are described, and the method employed to solve them at
the model scale of Q2

0 ¼ 0:2 GeV2 is presented. SFFs
appear in the cross section for SIDIS experiments and
thus play an important part in the theoretical understanding
of these experiments. In the NJL-jet model the SFFs,
Dh

qðzÞ, which correspond to the probability of producing
a hadron h with light-cone momentum fraction z from a
fragmenting quark q, are given by [62]

Dh
qðzÞ ¼ d̂hqðzÞ þ

X

Q

Z 1

z

dy

y
d̂Qq

!
z

y

"
Dh

QðyÞ: (1)

The first term on the right-hand side of Eq. (1) is the
renormalized elementary quark fragmentation function,
which corresponds to the process where the detected
hadron is the only emitted hadron. We refer to this term
as the driving function. The second term corresponds to the

probability of emitting a hadron after the first emission step
in the quark cascade and these terms have a sizable effect
at low values of z, while vanishing for higher z values.
To solve the second term we use d̂Qq ðzÞ ¼ d̂hqð1% zÞjh¼q !Q

to write all functions in terms of their relation to the
emitted hadron h.
Dihadron fragmentation functions are another important

tool in the theoretical understanding of the structure of
hadrons. In the NJL-jet model, the DFF are given by

Dh1;h2
q ðz1; z2Þ ¼ d̂h1q ðz1Þ

Dh2
q1ð z2

1%z1
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1% z1
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& d̂Qq ðz1=!1ÞDh1;h2
Q ð!1;!2Þ; (2)

where the first term corresponds to the probability of pro-
ducing hadron h1 from the quark q at the first emission step
in the cascade, followed by hadron h2 produced either
directly afterwards or further down in the quark decay
chain, while the second term is similar to the first one,
except for h1 $ h2. These two terms constitute the driving
function of the DFFs, similar to the first term in Eq. (1).
The third term on the right-hand side of Eq. (2) corresponds
to the probability of having both the detected hadrons

FIG. 1 (color online). #þ#% dihadron fragmentation function
for the u quark at the (a) model scale (Q2

0 ¼ 0:2 GeV2) and
(b) the evolved scale (Q2 ¼ 4 GeV2).
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momentum. They describe the quark structure of the nu-
cleon (the other two being unpolarized and helicity quark
distribution functions) and these functions enter into asym-
metries with chiral-odd versions of a special type of DFF
known as interference fragmentation functions [78–82].
Interference fragmentation functions are DFFs with a
dependence on the polarization of the fragmenting quark.
In Refs. [83–85], it was suggested that DFFs may be useful
in extracting transversity distributions by considering the
SIDIS production of two hadrons with small invariant
mass. Transversity distribution functions are not a focus
of this paper, but are presented as motivation for further
investigation into DFFs.

This work focuses on performing QCD evolution of
the DFFs from the NJL-jet model momentum scale of
Q2

0 ¼ 0:2 GeV2 to a typical experimental momentum scale
of Q2 ¼ 4 GeV2. In Sec. II we present a brief summary of
fragmentation function equations from which the model
scale solutions were obtained and used as input for the
evolution equations of the DFFs. Section III describes the
method for solving the evolution equations for single had-
ron fragmentation functions (SFFs), which are needed for
the evolution of the DFFs. It also serves as a simple version
of the method used to solve the DFF evolution equations,
while the method for solving the evolution equations for
the DFFs is described in Sec. IV. A comparison of the
model scale and evolved scale DFFs is presented in Sec. V.
Section VI shows how the evolution code works on data
from Ref. [76] as well as comparing our solutions to that
data. Our data is evolved to a range of values of Q2 in this
section to display how the up quark and gluon DFFs
change for larger values of Q2.

II. SINGLE HADRON AND DIHADRON
FRAGMENTATION FUNCTIONS FROM

THE NJL-JET MODEL

In Ref. [74], integral equations for the single hadron and
dihadron fragmentation functions from the NJL-jet model
are described, and the method employed to solve them at
the model scale of Q2

0 ¼ 0:2 GeV2 is presented. SFFs
appear in the cross section for SIDIS experiments and
thus play an important part in the theoretical understanding
of these experiments. In the NJL-jet model the SFFs,
Dh

qðzÞ, which correspond to the probability of producing
a hadron h with light-cone momentum fraction z from a
fragmenting quark q, are given by [62]

Dh
qðzÞ ¼ d̂hqðzÞ þ
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The first term on the right-hand side of Eq. (1) is the
renormalized elementary quark fragmentation function,
which corresponds to the process where the detected
hadron is the only emitted hadron. We refer to this term
as the driving function. The second term corresponds to the

probability of emitting a hadron after the first emission step
in the quark cascade and these terms have a sizable effect
at low values of z, while vanishing for higher z values.
To solve the second term we use d̂Qq ðzÞ ¼ d̂hqð1% zÞjh¼q !Q

to write all functions in terms of their relation to the
emitted hadron h.
Dihadron fragmentation functions are another important

tool in the theoretical understanding of the structure of
hadrons. In the NJL-jet model, the DFF are given by

Dh1;h2
q ðz1; z2Þ ¼ d̂h1q ðz1Þ

Dh2
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Q ð!1;!2Þ; (2)

where the first term corresponds to the probability of pro-
ducing hadron h1 from the quark q at the first emission step
in the cascade, followed by hadron h2 produced either
directly afterwards or further down in the quark decay
chain, while the second term is similar to the first one,
except for h1 $ h2. These two terms constitute the driving
function of the DFFs, similar to the first term in Eq. (1).
The third term on the right-hand side of Eq. (2) corresponds
to the probability of having both the detected hadrons

FIG. 1 (color online). #þ#% dihadron fragmentation function
for the u quark at the (a) model scale (Q2

0 ¼ 0:2 GeV2) and
(b) the evolved scale (Q2 ¼ 4 GeV2).
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Model Scale Evolved to Q2 = 4 GeV2
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