Could A Fixed-Target Experiment at the LHC (AFTER@LHC) be part of COMPASS future?

Jean-Philippe Lansberg
IPN Orsay, Université Paris-Sud

COMPASS Collaboration Meeting, September 20, 2013

thanks to M. Anselmino (Torino), R. Arnaldi (Torino), S.J. Brodsky (SLAC), V. Chambert (IPNO), J.P. Didelez (IPNO), E.G. Ferreiro (USC), F. Fleuret (LLR), B. Genolini (IPNO), C. Hadjidakis (IPNO), C. Lorcé (IPNO), A. Rakotozafindrabe (CEA), P. Rosier (IPNO), I. Schienbein (LPSC), E. Scomparin (Torino), U.I. Uggerhøj (Aarhus) and R. Ulrich (KIT)
Part I

Why a new fixed-target experiment for High-Energy Physics now?
Decisive advantages of Fixed-target experiments

- Fixed-target experiments offer specific **advantages** that are still nowadays **difficult to challenge by collider experiments**
Decisive advantages of Fixed-target experiments

- Fixed-target experiments offer specific **advantages** that are still nowadays **difficult to challenge by collider experiments**

- They exhibit 4 decisive features,
 - accessing the high Feynman x_F domain ($x_F \equiv \frac{p_z}{p_{z_{\text{max}}}}$)
 - achieving **high luminosities** with dense targets,
 - **varying** the atomic mass of the target almost at will,
 - **polarising** the target.
Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment, without affecting the LHC performance with an extracted beam line using a bent crystal with the possibility of polarising the target without target-species limitation with an outstanding luminosity, yet without pile-up with virtually no limit on particle-species studies (except top quark) with modern detection techniques.
9. A variety of important research lines are at the interface between particle and nuclear physics requiring dedicated experiments; Council will seek to work with NuPECC in areas of mutual interest, and maintain the capability to perform fixed target experiments at CERN.

pg. 37 of the Strategy Brochure
k. A variety of research lines at the boundary between particle and nuclear physics require dedicated experiments. *The CERN Laboratory should maintain its capability to perform unique experiments. CERN should continue to work with NuPECC on topics of mutual interest.*
Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment,
Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment,

- without affecting the LHC performance
- with an extracted beam line using a bent crystal
Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment, without affecting the LHC performance, with an extracted beam line using a bent crystal, with the possibility of polarising the target, without target-species limitation.
Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment,

- without affecting the LHC performance
- with an extracted beam line using a bent crystal
- with the possibility of polarising the target
- without target-species limitation
- with an outstanding luminosity, yet without pile-up
- with virtually no limit on particle-species studies (except top quark)
Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment,

- without affecting the LHC performance
- with an extracted beam line using a bent crystal
- with the possibility of polarising the target
- without target-species limitation
- with an outstanding luminosity, yet without pile-up
- with virtually no limit on particle-species studies (except top quark)
- with modern detection techniques
Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment,

- without affecting the LHC performance
- with an extracted beam line using a bent crystal
- with the possibility of polarising the target
- without target-species limitation
- with an outstanding luminosity, yet without pile-up
- with virtually no limit on particle-species studies (except top quark)
- with modern detection techniques

AFTER@LHC would definitely be a unique experiment
Part II

A fixed-target experiment using the LHC beam(s): AFTER@LHC
Generalities

- *pp* or *pA* collisions with a 7 TeV *p* on a fixed target occur at a CM energy
 \[\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV} \]
Generalities

- **pp** or **pA** collisions with a 7 TeV **p** on a fixed target occur at a CM energy
 \[\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV} \]

- In a symmetric collider mode, \(\sqrt{s} = 2E_p \), i.e. much larger

Benefit of the fixed target mode: boost:
\[\gamma_{\text{Lab}} = \sqrt{s}^2 m_p \approx 60 \]

Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
\[(p_z^{CM}, E_{\gamma}^{CM} = p_T^{CM}) \]
\[(E_{\text{Lab}}^{z, p}, E_{\text{Lab}}^{p}) = (\gamma^{\gamma} \beta^{\gamma} \gamma^{\beta} \gamma^{\beta} \gamma) (p_T^{0}) \]
\[p_z^{LRab} \approx 60 p_T^{!} \]

[A 67 MeV \(\gamma \) from a \(\pi^0 \) at rest in the CM can easily be detected.]

Angle in the Lab. frame:
\[\tan \theta = \frac{p_T^{CM}}{p_z^{LRab}} \Rightarrow \theta \approx 1^\circ. \]

[Rapidity shift:
\[\Delta y = \tanh^{-1} \beta \approx 4.8 \]

The entire forward CM hemisphere (\(y_{CM} > 0 \)) within \(0^\circ \leq \theta_{LRab} \leq 1^\circ \) \([y_{CM} = 0 \Rightarrow y_{LRab} \approx 4.8]\)

Good thing: small forward detector \equiv large acceptance

Bad thing: high multiplicity \Rightarrow absorber \Rightarrow physics limitation

J.P. Lansberg (IPNO, Paris-Sud U.)
Generalities

- *pp* or *pA* collisions with a **7 TeV** *p*⁺ on a fixed target occur at a CM energy
 \[\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV} \]

- In a symmetric collider mode, \(\sqrt{s} = 2E_p \), *i.e.* much larger

- Benefit of the fixed target mode: **boost**:
 \[\gamma_{CM} = \frac{\sqrt{s}}{2m_p} \approx 60 \]
Generalities

- *pp* or *pA* collisions with a 7 TeV *p* on a fixed target occur at a CM energy
 \[\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV} \]

- In a symmetric collider mode, \(\sqrt{s} = 2E_p \), i.e. much larger

- Benefit of the fixed target mode: boost: \(\gamma_{CM} = \frac{\sqrt{s}}{2m_p} \approx 60 \)

 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 \((p_{z,CM} = 0, E_{CM}^\gamma = p_T) \)
A bit of kinematics with the 7 TeV proton beam

Generalities

- \(pp\) or \(pA\) collisions with a 7 TeV \(p^+\) on a fixed target occur at a CM energy
 \[\sqrt{s} = \sqrt{2m_N E_p} \approx 115\text{ GeV}\]

- In a symmetric collider mode, \(\sqrt{s} = 2E_p\), i.e. much larger

- Benefit of the fixed target mode: boost: \(\gamma_{CM}^L = \frac{\sqrt{s}}{2m_p} \approx 60\)

 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 \[
 \begin{pmatrix}
 E_{Lab} \\
 p_{z,Lab}
 \end{pmatrix} = \begin{pmatrix} \gamma & \gamma \beta \\
 \gamma \beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\
 0
 \end{pmatrix}
 \]
 \(p_{z,CM} = 0, \ E_{CM}^\gamma = p_T\)
Generalities

- \(pp \) or \(pA \) collisions with a 7 TeV proton beam on a fixed target occur at a CM energy
 \[\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV} \]

- In a symmetric collider mode, \(\sqrt{s} = 2E_p \), i.e. much larger

- Benefit of the fixed target mode: boost: \(\gamma_{CM}^{\text{Lab}} = \frac{\sqrt{s}}{2m_p} \approx 60 \)

 Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:

 \[
 \begin{pmatrix}
 E_{\text{Lab}} \\
 p_{z,\text{Lab}}
 \end{pmatrix} =
 \begin{pmatrix}
 \gamma & \gamma \beta \\
 \gamma \beta & \gamma
 \end{pmatrix}
 \begin{pmatrix}
 p_T \\
 0
 \end{pmatrix}
 \]

 \(p_{z,\text{Lab}} \approx 60p_T \) ! [A 67 MeV \(\gamma \) from a \(\pi^0 \) at rest in the CM can easily be detected.]
Generalities

- pp or pA collisions with a $7\text{ TeV } p^+$ on a fixed target occur at a CM energy
 \[\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV} \]

- In a symmetric collider mode, \(\sqrt{s} = 2E_p \), i.e. much larger

- Benefit of the fixed target mode: boost: \(\gamma_{CM} = \frac{\sqrt{s}}{2m_p} \simeq 60 \)

 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 \[
 \begin{pmatrix}
 E_{Lab} \\
 p_{z,Lab}
 \end{pmatrix} = \begin{pmatrix}
 \gamma & \gamma \beta \\
 \gamma \beta & \gamma
 \end{pmatrix} \begin{pmatrix}
 p_T \\
 0
 \end{pmatrix} \\
 (p_{z,CM} = 0, E_{CM}^\gamma = p_T)
 \]

 - $p_{z,Lab} \simeq 60p_T$! [A 67 MeV γ from a π^0 at rest in the CM can easily be detected.]

 - Angle in the Lab. frame: \(\tan \theta = \frac{p_T}{p_{z,Lab}} = \frac{1}{\gamma \beta} \Rightarrow \theta \simeq 1^\circ. \)

 [Rapidity shift: \(\Delta y = tanh^{-1} \beta \simeq 4.8 \)]
Generalities

- *pp* or *pA* collisions with a 7 TeV *p* on a fixed target occur at a CM energy

 \[\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV} \]

- In a symmetric collider mode, \(\sqrt{s} = 2E_p \), i.e. much larger

- Benefit of the fixed target mode: boost: \(\gamma_{CM} = \frac{\sqrt{s}}{2m_p} \approx 60 \)

 Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:

 \[
 \begin{pmatrix}
 E_{Lab} \\
 p_{z,Lab}
 \end{pmatrix} = \begin{pmatrix}
 \gamma & \gamma \beta \\
 \gamma \beta & \gamma
 \end{pmatrix} \begin{pmatrix}
 p_T \\
 0
 \end{pmatrix}
 \]

 \[p_{z,Lab} \approx 60p_T ! \quad [A \, 67 \text{ MeV } \gamma \text{ from a } \pi^0 \text{ at rest in the CM can easily be detected.}] \]

 Angle in the Lab. frame: \(\tan \theta = \frac{p_T}{p_{z,Lab}} = \frac{1}{\gamma \beta} \Rightarrow \theta \approx 1°. \)

 [Rapidity shift: \(\Delta y = \tanh^{-1} \beta \approx 4.8 \)]

- The entire forward CM hemisphere \((y_{CM} > 0) \) within \(0° \leq \theta_{Lab} \leq 1° \)

 \[y_{CM} = 0 \Rightarrow y_{Lab} \approx 4.8 \]
Generalities

- *pp* or *pA* collisions with a **7 TeV** *p*⁺ on a fixed target occur at a CM energy

\[\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV} \]

- In a symmetric collider mode, \(\sqrt{s} = 2E_p \), i.e. much larger

- Benefit of the fixed target mode: **boost**: \(\gamma_{CM} = \frac{\sqrt{s}}{2m_p} \approx 60 \)

- Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:

\[
\begin{pmatrix}
E_{Lab} \\
p_{z,Lab}
\end{pmatrix} = \begin{pmatrix}
\gamma & \gamma \beta \\
\gamma \beta & \gamma
\end{pmatrix} \begin{pmatrix}
p_T \\
0
\end{pmatrix} = \begin{pmatrix}
p_T \\
0
\end{pmatrix}
\]

- \(p_{z,Lab} \approx 60p_T \) ![A 67 MeV \(\gamma \) from a \(\pi^0 \) at rest in the CM can easily be detected.]

- Angle in the Lab. frame: \(\tan \theta = \frac{p_T}{p_{z,Lab}} = \frac{1}{\gamma \beta} \Rightarrow \theta \approx 1° \).

 [Rapidity shift: \(\Delta y = \tanh^{-1} \beta \approx 4.8 \)]

- The entire forward CM hemisphere (\(y_{CM} > 0 \)) within \(0° \leq \theta_{Lab} \leq 1° \)

 [\(y_{CM} = 0 \Rightarrow y_{Lab} \approx 4.8 \)]

- **Good thing**: small forward detector \(\equiv \) large acceptance

- **Bad thing**: high multiplicity \(\Rightarrow \) absorber \(\Rightarrow \) physics limitation
Backward physics?

- Let’s adopt a novel strategy and look at larger angles.
Backward physics?

- Let’s adopt a novel strategy and look at larger angles
- Advantages:
 - reduced multiplicities at large(r) angles
 - access to partons with momentum fraction $x \rightarrow 1$ in the target
 - last, but not least, the beam pipe is in practice not a geometrical constrain at $\theta_{CM} \sim 180^\circ$
Let’s adopt a novel strategy and look at larger angles

Advantages:
- reduced multiplicities at large(r) angles
- access to partons with momentum fraction $x \rightarrow 1$ in the target
- last, but not least, the beam pipe is in practice not a geometrical constrain at $\theta_{CM} \sim 180^\circ$

$\gamma_1 \sim \gamma_2$

Hadron center-of-mass system

Target rest frame
Backward physics?

- Let’s adopt a novel strategy and look at larger angles.
- Advantages:
 - reduced multiplicities at large(r) angles
 - access to partons with momentum fraction $x \to 1$ in the target
 - last, but not least, the beam pipe is in practice not a geometrical constrain at $\theta_{CM} \sim 180^\circ$

In the Hadron center-of-mass system, $x_1 \sim x_2$.

In the Target rest frame, $x_1 \ll x_2$.
Backward physics?

- Let’s adopt a **novel strategy** and look at **larger angles**
- **Advantages:**
 - reduced multiplicities at large(r) angles
 - **access to partons with momentum fraction** \(x \rightarrow 1 \) **in the target**
 - last, but not least, the beam pipe is in practice not a geometrical constrain at \(\theta_{CM} \approx 180^\circ \)

\[
\begin{align*}
 x_1 &\approx x_2 \\
 x_1 &\ll x_2
\end{align*}
\]

`backward physics = large-x_2 physics`
First systematic access to the target-rapidity region

\((x_F \rightarrow -1) \)
First systematic access to the target-rapidity region ($x_F \rightarrow -1$)

J/ψ suppression in pA collisions

- x_F systematically studied at fixed target experiments up to $+1$
First systematic access to the target-rapidity region

\(x_F \to -1 \)

\(J/\psi \) suppression in \(pA \) collisions

- \(x_F \) systematically studied at fixed target experiments up to +1
- Hera-B was the only one to really explore \(x_F < 0 \), up to -0.3
First systematic access to the target-rapidity region
\((x_F \rightarrow -1)\)

- \(x_F\) systematically studied at fixed target experiments up to +1
- Hera-B was the only one to really explore \(x_F < 0\), up to -0.3
- PHENIX @ RHIC: \(-0.1 < x_F < 0.1\) \([\text{could be wider with } \Upsilon, \text{ but low stat.}]\)
- CMS/ATLAS: \(|x_F| < 5 \cdot 10^{-3}\); LHCb: \(5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}\)
First systematic access to the target-rapidity region

\((x_F \rightarrow -1)\)

J/ψ suppression in pA collisions

- \(x_F\) systematically studied at fixed target experiments up to +1
- Hera-B was the only one to really explore \(x_F < 0\), up to -0.3
- PHENIX @ RHIC: \(-0.1 < x_F < 0.1\) [could be wider with Υ, but low stat.]
- CMS/ATLAS: \(|x_F| < 5 \cdot 10^{-3}\); LHCb: \(5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}\)
The target-rapidity region: the uncharted territory

First systematic access to the target-rapidity region

($x_F \rightarrow -1$)

J/ψ suppression in pA collisions

- x_F systematically studied at fixed target experiments up to +1
- Hera-B was the only one to really explore $x_F < 0$, up to -0.3
- PHENIX @ RHIC: $-0.1 < x_F < 0.1$ [could be wider with Υ, but low stat.]
- CMS/ATLAS: $|x_F| < 5 \cdot 10^{-3}$; LHCb: $5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}$
- If we measure $\Upsilon(b\bar{b})$ at $y_{\text{cms}} \simeq -2.5 \Rightarrow x_F \simeq \frac{2m_{\Upsilon}}{\sqrt{s}} \sinh(y_{\text{cms}}) \simeq -1$
The beam extraction

★ The LHC beam may be extracted using “Strong crystalline field”
without any decrease in performance of the LHC!

The beam extraction

★ The LHC beam may be extracted using “Strong crystalline field” without any decrease in performance of the LHC!

The beam extraction

★ The LHC beam may be extracted using “Strong crystalline field” without any decrease in performance of the LHC!

★ Illustration for collimation

A solid state primary collimator-scatterer

Bent-crystal as primary collimator
The beam extraction

★ The LHC beam may be extracted using “Strong crystalline field” without any decrease in performance of the LHC!

★ Illustration for collimation

A solid state primary collimator-scatterer
Bent-crystal as primary collimator

★ Tests will be performed on the LHC beam:
LUA9 proposal approved by the LHCC
Luminosities

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \, p^+ s^{-1}$
Luminosities

- **Expected proton flux** $\Phi_{\text{beam}} = 5 \times 10^8 \, p^+ s^{-1}$
- **Instantaneous Luminosity**:

$$\mathcal{L} = \Phi_{\text{beam}} \times N_{\text{target}} = N_{\text{beam}} \times (\rho \times \ell \times N_A)/A$$

[\ell: \text{target thickness (for instance 1cm)}]
Luminosities

- **Expected proton flux** $\Phi_{beam} = 5 \times 10^8 p^+ s^{-1}$

- **Instantaneous Luminosity:**

 $$\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times N_A)/A$$

 [ℓ: target thickness (for instance 1 cm)]

- **Integrated luminosity:** $\int dt \mathcal{L}$ over 10^7 s for p^+ and 10^6 for Pb

 [the so-called LHC years]
Luminosities

- **Expected proton flux** $\Phi_{\text{beam}} = 5 \times 10^8 \ p^+ \ s^{-1}$
- **Instantaneous Luminosity**:

$$\mathcal{L} = \Phi_{\text{beam}} \times N_{\text{target}} = N_{\text{beam}} \times (\rho \times \ell \times N_A) / A$$

 [ℓ: target thickness (for instance 1cm)]

- **Integrated luminosity**: $\int dt \mathcal{L}$ over 10^7 s for p^+ and 10^6 for Pb

 [the so-called LHC years]

<table>
<thead>
<tr>
<th>Target</th>
<th>ρ (g.cm$^{-3}$)</th>
<th>A</th>
<th>\mathcal{L} (µb$^{-1}$s$^{-1}$)</th>
<th>$\int \mathcal{L}$ (pb$^{-1}$yr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol. H$_2$</td>
<td>0.09</td>
<td>1</td>
<td>26</td>
<td>260</td>
</tr>
<tr>
<td>Liq. H$_2$</td>
<td>0.07</td>
<td>1</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>Liq. D$_2$</td>
<td>0.16</td>
<td>2</td>
<td>24</td>
<td>240</td>
</tr>
<tr>
<td>Be</td>
<td>1.85</td>
<td>9</td>
<td>62</td>
<td>620</td>
</tr>
<tr>
<td>Cu</td>
<td>8.96</td>
<td>64</td>
<td>42</td>
<td>420</td>
</tr>
<tr>
<td>W</td>
<td>19.1</td>
<td>185</td>
<td>31</td>
<td>310</td>
</tr>
<tr>
<td>Pb</td>
<td>11.35</td>
<td>207</td>
<td>16</td>
<td>160</td>
</tr>
</tbody>
</table>
1 meter-long liquid H_2 & D_2 targets can be used (see NA51, ...)

This gives:

$$L_{H_2/D_2} \approx 20 \text{ fb}^{-1}$$

Recycling the LHC beam loss, one gets a luminosity comparable to the LHC itself!

PHENIX lumi in their decadal plan

- Run14pp $12 \text{ pb}^{-1} @ \sqrt{s_{NN}} = 200 \text{ GeV}$
- Run14 $dAu 0.15 \text{ pb}^{-1} @ \sqrt{s_{NN}} = 200 \text{ GeV}$

AFTER vs PHENIX@RHIC: 3 orders of magnitude larger

Lumi for Pb runs in the backup slides (roughly 10 times that planned for the LHC)
1 meter-long liquid H_2 & D_2 targets can be used (see NA51, . . .)

This gives: $\mathcal{L}_{H_2/D_2} \sim 20 \text{ fb}^{-1} \text{ y}^{-1}$
Luminosities

- 1 meter-long liquid H_2 & D_2 targets can be used (see NA51, ...).
- This gives: $\mathcal{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} \text{ y}^{-1}$
- Recycling the LHC beam loss, one gets a luminosity comparable to the LHC itself!
1 meter-long liquid H_2 & D_2 targets can be used (see NA51, ...)

This gives: $\mathcal{L}_{H_2/D_2} \approx 20 \text{ fb}^{-1} \text{ y}^{-1}$

Recycling the LHC beam loss, one gets a luminosity comparable to the LHC itself!

PHENIX lumi in their decadal plan
- Run14pp 12 pb$^{-1}$ @ $\sqrt{s_{NN}} = 200$ GeV
- Run14dAu 0.15 pb$^{-1}$ @ $\sqrt{s_{NN}} = 200$ GeV
Luminosities

- 1 meter-long liquid H_2 & D_2 targets can be used (see NA51, . . .)
- This gives: $\mathcal{L}_{H_2/D_2} \sim 20 \text{ fb}^{-1} \text{ y}^{-1}$
- Recycling the LHC beam loss, one gets a luminosity comparable to the LHC itself!

PHENIX lumi in their decadal plan
- Run14pp $12 \text{ pb}^{-1} @ \sqrt{s_{NN}} = 200 \text{ GeV}$
- Run14dAu $0.15 \text{ pb}^{-1} @ \sqrt{s_{NN}} = 200 \text{ GeV}$

AFTER vs PHENIX@RHIC:
3 orders of magnitude larger
Luminosities

- 1 meter-long liquid H_2 & D_2 targets can be used (see NA51, . . .)
- This gives: $\mathcal{L}_{H_2/D_2} \approx 20 \text{ fb}^{-1} \text{ y}^{-1}$
- Recycling the LHC beam loss, one gets a luminosity comparable to the LHC itself!

- PHENIX lumi in their decadal plan
 - Run14pp 12 pb$^{-1}$ @ $\sqrt{s_{NN}} = 200$ GeV
 - Run14dAu 0.15 pb$^{-1}$ @ $\sqrt{s_{NN}} = 200$ GeV
- AFTER vs PHENIX@RHIC: 3 orders of magnitude larger
- Lumi for Pb runs in the backup slides (roughly 10 times that planned for the LHC)
A few figures on the (extracted) proton beam

- Beam loss: $10^9 \ p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss)

A few figures on the (extracted) proton beam

- Beam loss: $10^9 \, p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 \, p^+ s^{-1}$ (1/2 the beam loss)
- Number of p^+: 2808 bunches of $1.15 \times 10^{11} \, p^+ = 3.2 \times 10^{14} \, p^+$
A few figures on the (extracted) proton beam

- Beam loss: $10^9 \, p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 \, p^+ s^{-1}$ (1/2 the beam loss)
- Number of p^+: 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5 \, \text{km.s}^{-1}/27 \, \text{km} \simeq 11 \, \text{kHz}$
A few figures on the (extracted) proton beam

- Beam loss: $10^9 \, p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 \, p^+ s^{-1}$ (1/2 the beam loss)
- Number of p^+: 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5 \, \text{km.s}^{-1}/27 \, \text{km} \approx 11 \, \text{kHz}$
- Extracted “mini” bunches:
 - the crystal sees $2808 \times 11000 \, \text{s}^{-1} \approx 3.10^7 \, \text{bunches s}^{-1}$
 - one extracts $5.10^8/3.10^7 \approx 15 p^+$ from each bunch at each pass
- Provided that the probability of interaction with the target is below 5%, no pile-up!

A few figures on the (extracted) proton beam

- Beam loss: $10^9 \, p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 \, p^+ s^{-1}$ (1/2 the beam loss)
- Number of p^+: 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5 \, \text{km.s}^{-1}/27 \, \text{km} \approx 11 \, \text{kHz}$
- Extracted “mini” bunches:
 - the crystal sees $2808 \times 11000 \, \text{s}^{-1} \approx 3.10^7 \, \text{bunches} \, \text{s}^{-1}$
 - one extracts $5.10^8 / 3.10^7 \approx 15 p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - $5 \times 10^8 p^+ \times 3600 \, \text{s h}^{-1} \times 10 \, \text{h} = 1.8 \times 10^{13} p^+ \, \text{fill}^{-1}$
 - This means $1.8 \times 10^{13} / 3.2 \times 10^{14} \approx 5.6\%$ of the p^+ in the beam
 - These protons are lost anyway!
A few figures on the (extracted) proton beam

- Beam loss: $10^9 \, p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 \, p^+ s^{-1}$ (1/2 the beam loss)
- Number of p^+: 2808 bunches of $1.15 \times 10^{11} \, p^+ = 3.2 \times 10^{14} \, p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5 \, \text{km.s}^{-1}/27 \, \text{km} \approx 11 \, \text{kHz}$
- Extracted “mini” bunches:
 - the crystal sees $2808 \times 11000 \, s^{-1} \approx 3.10^7$ bunches s$^{-1}$
 - one extracts $5.10^8/3.10^7 \approx 15p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - $5 \times 10^8 \, p^+ \times 3600 \, \text{s h}^{-1} \times 10 \, \text{h} = 1.8 \times 10^{13} \, p^+ \, \text{fill}^{-1}$
 - This means $1.8 \times 10^{13}/3.2 \times 10^{14} \approx 5.6\%$ of the p^+ in the beam
 - These protons are lost anyway!
- similar figures for the Pb-beam extraction

The fixed-target experiment at the LHC
Part III

AFTER: flagship measurements
Key studies: gluons in the proton

- **Gluon distribution** at mid, high and ultra-high x_B in the proton.
Key studies: gluons in the proton

- **Gluon distribution** at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties
Key studies: gluons in the proton

- **Gluon distribution** at mid, high and ultra-high x_B in the proton
- Not easily accessible in DIS
- Very large uncertainties

Accessible thanks gluon sensitive probes,
Key studies: gluons in the proton

- **Gluon distribution** at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties

Accessible thanks gluon sensitive probes,
- **quarkonia**
 see recent study by D. Diakonov et al., JHEP 1302 (2013) 069
Key studies: gluons in the proton

- **Gluon distribution** at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties

Accessible thanks gluon sensitive probes,

- **quarkonia**
 - see a recent study by D. Diakonov *et al.*, JHEP 1302 (2013) 069

- **Isolated photon**
Gluon and heavy-quark distributions

Key studies: gluons in the proton

- **Gluon distribution** at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties

Accessible thanks gluon sensitive probes,

- **quarkonia**
 - see a recent study by D. Diakonov *et al.*, JHEP 1302 (2013) 069

- **Isolated photon**

- **jets** ($P_T \in [20, 40]$ GeV)
Key studies: gluons in the proton

- **Gluon distribution** at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties

Accessible thanks gluon sensitive probes,

- **quarkonia**
 - see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

- **Isolated photon**

- **jets** ($P_T \in [20, 40] \text{ GeV}$)

Multiple probes needed to **check factorisation**
Key studies: gluons in the neutron

Gluon PDF for the neutron unknown

Gluon ($\mu = 100 \text{ GeV}$)
Key studies: gluons in the neutron

Gluon PDF for the neutron unknown
possible experimental probes
- heavy quarkonia
- isolated photons
- jets
Key studies: gluons in the neutron

Gluon PDF for the neutron unknown
possible experimental probes
- heavy quarkonia
- isolated photons
- jets

Pioneer measurement by E866
- using $\Upsilon \rightarrow Q^2 \approx 100 \text{ GeV}^2$
- outcome: $g_n(x) \simeq g_p(x)$
Key studies: gluons in the neutron

Gluon PDF for the neutron unknown
possible experimental probes
- heavy quarkonia
- isolated photons
- jets

Pioneer measurement by E866
- using $\Upsilon \rightarrow Q^2 \simeq 100 \text{ GeV}^2$
- outcome: $g_n(x) \simeq g_p(x)$

could be extended with AFTER
- using J/ψ, ..., $C = +1$ onia, ...
- wider x range & lower Q^2
Key studies: gluons in the neutron

Gluon PDF for the neutron unknown
possible experimental probes
- heavy quarkonia
- isolated photons
- jets

Pioneer measurement by E866
- using $\Upsilon \rightarrow Q^2 \approx 100$ GeV2
- outcome: $g_n(x) \approx g_p(x)$

could be extended with AFTER
- using J/ψ, ..., $C = +1$ onia, ...
- wider x range & lower Q^2

<table>
<thead>
<tr>
<th>target</th>
<th>yearly lumi</th>
<th>$\mathcal{B} \frac{dN_{J/\psi}}{dy}$</th>
<th>$\mathcal{B} \frac{dN_{\Upsilon}}{dy}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1m Liq. H$_2$</td>
<td>20 fb$^{-1}$</td>
<td>4.0×10^8</td>
<td>9.0×10^5</td>
</tr>
<tr>
<td>1m Liq. D$_2$</td>
<td>24 fb$^{-1}$</td>
<td>9.6×10^8</td>
<td>1.9×10^6</td>
</tr>
</tbody>
</table>
Key studies

- Heavy-quark distributions (at high x_B)
Key studies

- Heavy-quark distributions (at high x_B)
- Pin down intrinsic charm, ... at last

3 sets from CTEQ6c
(Pumplin et al.)
Key studies

- **Heavy-quark distributions (at high x_B)**
 - Pin down intrinsic charm, ... at last
- **Total open charm and beauty cross section** (aim: down to $P_T \to 0$)

3 sets from CTEQ6c (Pumplin *et al.*)
Gluon and heavy-quark distributions

Key studies

- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \to 0$)

requires

3 sets from CTEQ6c (Pumplin et al.)
Key studies

- **Heavy-quark distributions** (at high x_B)
 - Pin down *intrinsic* charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \to 0$) requires
 - several complementary measurements
Key studies

- **Heavy-quark distributions (at high x_B)**
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$)

- requires
 - several complementary measurements
 - good coverage in the target-rapidity region

- 3 sets from CTEQ6c (Pumplin *et al.*)

J.P. Lansberg (IPNO, Paris-Sud U.) A Fixed-Target Experiment at the LHC September 20, 2013 16 / 27
Key studies

- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$) requires
 - several complementary measurements
 - good coverage in the target-rapidity region
 - high luminosity to reach large x_B

3 sets from CTEQ6c (Pumplin et al.)
Key studies

- **Heavy-quark distributions (at high x_B)**
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \to 0$)
 - requires several complementary measurements
 - good coverage in the target-rapidity region
 - high luminosity to reach large x_B

3 sets from CTEQ6c (Pumplin et al.)
Key studies: gluon contribution to the proton spin

- Gluon Sivers effect: correlation between the gluon transverse momentum & the proton spin

F. Yuan, PRD 78 (2008) 014024

J.W. Qiu, et al., PRL 107 (2011) 062001

The target-rapidity region corresponds to high x^\uparrow where the k_T-spin correlation is the largest.

In general, one can carry out an extensive spin-physics program.
Key studies: gluon contribution to the proton spin

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
- **Transverse single spin asymmetries** using gluon sensitive probes
Key studies: gluon contribution to the proton spin

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
- Transverse single spin asymmetries using gluon sensitive probes
- Quarkonia (J/ψ, Υ, χ_c, \ldots)

F. Yuan, PRD 78 (2008) 014024
Key studies: gluon contribution to the proton spin

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin

- Transverse single spin asymmetries

- Quarkonia (\(J/\psi, \Upsilon, \chi_c, \ldots\))

- \(B\) & \(D\) meson production

F. Yuan, PRD 78 (2008) 014024
Key studies: gluon contribution to the proton spin

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin

- Transverse single spin asymmetries using gluon sensitive probes

- Quarkonia (J/ψ, Υ, χ_c, \ldots)

- B & D meson production

- γ, γ-jet, $\gamma - \gamma$

F. Yuan, PRD 78 (2008) 014024

J.W. Qiu, et al., PRL 107 (2011) 062001
Key studies: gluon contribution to the proton spin

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
- Transverse single spin asymmetries using gluon sensitive probes
- Quarkonia (J/ψ, Υ, χ_c, ...)
- B & D meson production
- γ, γ-jet, $\gamma - \gamma$

The target-rapidity region corresponds to high x^\uparrow where the k_T-spin correlation is the largest

- F. Yuan, PRD 78 (2008) 014024
- J.W. Qiu, et al., PRL 107 (2011) 062001
Key studies: gluon contribution to the proton spin

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
- Transverse single spin asymmetries using gluon sensitive probes
- quarkonia (J/ψ, Υ, χ_c, ...)
- B & D meson production
- γ, γ-jet, $\gamma - \gamma$

the target-rapidity region corresponds to high x^\uparrow
where the k_T-spin correlation is the largest

In general, one can carry out an extensive spin-physics program

F. Yuan, PRD 78 (2008) 014024
J.W. Qiu, et al., PRL 107 (2011) 062001
Key studies: gluon contribution to the proton spin

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
- Transverse single spin asymmetries using gluon sensitive probes
- Quarkonia (J/ψ, Υ, χ_c, ...)
- B & D meson production

F. Yuan, PRD 78 (2008) 014024
AFTER@LHC: A dilepton observatory?

Region in x probed by dilepton production as function of $M_{\ell\ell}$.
Gluon contribution to the proton spin

AFTER@LHC: A dilepton observatory?

- Region in x probed by dilepton production as function of $M_{\ell\ell}$
- Above $c\bar{c}$: $x \in [10^{-3}, 1]$
- Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

"backward" region

"sea-quark asymetries via p and d studies"

- at large(est) x: backward ("easy")
- at small(est) x: forward (need to stop the (extracted) beam)

"To do: to look at the rates to see how competitive this will be"

"Interesting to check the negligible $\cos^2\phi$ dependence in pd compared to π induced DY"
AFTER@LHC: A dilepton observatory?

→ Region in x probed by dilepton production as function of M_{ll}
→ Above $c\bar{c}$: $x \in [10^{-3}, 1]$
→ Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

Note: $x_{\text{target}} \equiv x_2 > x_{\text{projectile}} \equiv x_1$ ("backward" region)

→ To do: to look at the rates to see how competitive this will be
→ Interesting to check the negligible cos$^2\phi$ dependence in $p\bar{d}$ compared to π induced DY

J.P. Lansberg (IPNO, Paris-Sud U.)
A Fixed-Target Experiment at the LHC
September 20, 2013 18 / 27
AFTER@LHC: A dilepton observatory?

Region in x probed by dilepton production as function of $M_{\ell\ell}$

- Above $c\bar{c}$: $x \in [10^{-3}, 1]$
- Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

Note: $x_{target} (\equiv x_2) > x_{projectile} (\equiv x_1)$

“backward” region
AFTER@LHC: A dilepton observatory?

→ Region in x probed by dilepton production as function of $M_{\ell\ell}$
→ Above $c\bar{c}$: $x \in [10^{-3}, 1]$
→ Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

Note: $x_{\text{target}} (\equiv x_2) > x_{\text{projectile}} (\equiv x_1)$
“backward” region

→ sea-quark asymmetries
 via p and d studies
- at large(est) x: backward (“easy”)
- at small(est) x: forward (need to stop the (extracted) beam)
AFTER@LHC: A dilepton observatory?

- Region in x probed by dilepton production as function of M_{ll}
 - Above $c\bar{c}$: $x \in [10^{-3}, 1]$
 - Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

Note: $x_{\text{target}} \equiv x_2 > x_{\text{projectile}} \equiv x_1$

- "backward" region

- sea-quark asymmetries via p and d studies
 - at large(est) x: backward ("easy")
 - at small(est) x: forward (need to stop the (extracted) beam)

- To do: to look at the rates to see how competitive this will be
Gluon contribution to the proton spin

SSA in Drell-Yan studies with AFTER@LHC

→ Relevant parameters for the future planned polarized DY experiments.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>particles</th>
<th>energy (GeV)</th>
<th>√s (GeV)</th>
<th>x_p</th>
<th>L (nb⁻¹s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER</td>
<td>p+p↑</td>
<td>7000</td>
<td>115</td>
<td>0.01 ÷ 0.9</td>
<td>1</td>
</tr>
<tr>
<td>COMPASS</td>
<td>π± + p↑</td>
<td>160</td>
<td>17.4</td>
<td>0.2 ÷ 0.3</td>
<td>2</td>
</tr>
<tr>
<td>COMPASS (low mass)</td>
<td>π± + p↑</td>
<td>160</td>
<td>17.4</td>
<td>~ 0.05</td>
<td>2</td>
</tr>
<tr>
<td>RHIC</td>
<td>p↑ + p</td>
<td>collider</td>
<td>500</td>
<td>0.05 ÷ 0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>J–PARC</td>
<td>p↑ + p</td>
<td>50</td>
<td>10</td>
<td>0.5 ÷ 0.9</td>
<td>1000</td>
</tr>
<tr>
<td>PANDA (low mass)</td>
<td>p + p↑</td>
<td>15</td>
<td>5.5</td>
<td>0.2 ÷ 0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>PAX</td>
<td>p↑ + p̅</td>
<td>collider</td>
<td>14</td>
<td>0.1 ÷ 0.9</td>
<td>0.002</td>
</tr>
<tr>
<td>NICA</td>
<td>p↑ + p</td>
<td>collider</td>
<td>20</td>
<td>0.1 ÷ 0.8</td>
<td>0.001</td>
</tr>
<tr>
<td>RHIC</td>
<td>p↑ + p</td>
<td>250</td>
<td>22</td>
<td>0.2 ÷ 0.5</td>
<td>2</td>
</tr>
<tr>
<td>Int. Target 1</td>
<td>p↑ + p</td>
<td>250</td>
<td>22</td>
<td>0.2 ÷ 0.5</td>
<td>60</td>
</tr>
<tr>
<td>RHIC</td>
<td>p↑ + p</td>
<td>250</td>
<td>22</td>
<td>0.2 ÷ 0.5</td>
<td>60</td>
</tr>
</tbody>
</table>

→ For AFTER, the numbers correspond to a 50 cm polarized H target.
→ ℓ⁺ℓ⁻ angular distribution: separation Sivers vs. Boer-Mulders effects
SSA in Drell-Yan studies with AFTER@LHC

- Relevant parameters for the future **planned polarized** DY experiments.

Experiment particles energy (GeV)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>PARTICLE</th>
<th>Energy (GeV)</th>
<th>p↑L (nb⁻¹s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER</td>
<td>p+p</td>
<td>7000</td>
<td>0.01÷0.09</td>
</tr>
<tr>
<td>COMPASS (low mass)</td>
<td>π±+p</td>
<td>160</td>
<td>0.2 ÷ 0.3</td>
</tr>
<tr>
<td>RHIC Int. Target 1</td>
<td>p+p</td>
<td>250</td>
<td>2 ÷ 60</td>
</tr>
<tr>
<td>J–PARC</td>
<td>p+p</td>
<td>50</td>
<td>1000</td>
</tr>
<tr>
<td>RHIC Int. Target 2</td>
<td>p+p</td>
<td>250</td>
<td>2 ÷ 60</td>
</tr>
</tbody>
</table>

°FOR AFTER, the numbers correspond to a 50 cm polarized H target.

ℓ⁺ℓ⁻ angular distribution: separation Sivers vs. Boer-Mulders effects

M. Anselmino, ECT*, Feb. 2013 (Courtesy U. d’Alessio)
pA studies: large-\(x\) gluon content of the nucleus
pA studies: large-x gluon content of the nucleus

- Large-x gluon nPDF: unknown
- Gluon EMC effect?

![Graph showing EMC gluon (min., quark-like, strong) and EPS09 LO fit range with data points at RHIC.](Image)
pA studies: large-x gluon content of the nucleus

- Large-x gluon nPDF: unknown
- Gluon EMC effect?
- Hint from γ data at RHIC
pA studies: large-\(x\) gluon content of the nucleus

- Large-\(x\) gluon nPDF: unknown
- Gluon EMC effect?
- Hint from \(\Upsilon\) data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC:
pA studies: large-x gluon content of the nucleus

- Large-x gluon nPDF: unknown
- Gluon EMC effect?
- Hint from γ data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC:
- DIS contribution expected for low x mainly projected contribution of LHeC:
pA studies: large-x gluon content of the nucleus

- Large-x gluon nPDF: unknown
- Gluon EMC effect?
- Hint from γ data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC:
 - DIS contribution expected for low x mainly projected contribution of LHeC:
 - AFTER allows for extensive studies of gluon sensitive probes in pA
 - Unique potential for gluons at x > 0.1
Synergies with COMPASS

COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia. Unique access to π-induced J/ψ production → last study by NA3 30 years ago!!!

A modern measurement of such a cross section is highly desirable. Can be extended in 2 ways:

- with polarised target to study the Sivers effect (quark or gluon: theory should tell)
- with different nuclear targets → synergies with AFTER

A Fixed-Target Experiment at the LHC
Synergies with COMPASS

COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia.
Synergies with COMPASS

- COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia

- Unique access to π-induced J/ψ production → last study by NA3 30 years ago!!!
 Please do not overlook this ...
Synergies with COMPASS

- COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia.

- Unique access to π-induced J/ψ production → last study by NA3 30 years ago!!!
 please do not overlook this ...

- A modern measurement of such a cross section is highly desirable.
Synergies with COMPASS

- COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia.

- Unique access to π-induced J/ψ production → last study by NA3 30 years ago!!!

 please do not overlook this ...

- A modern measurement of such a cross section is highly desirable.

- Can be extended in 2 ways:
 - with polarised target to study the Sivers effect (quark or gluon: theory should tell)
 - with different nuclear targets → synergies with AFTER
Synergies with COMPASS

- COMPASS can also definitely contribute to the understanding of **nuclear matter effect on quarkonia**

- Unique access to π-induced J/ψ production → last study by NA3 30 years ago!!!

 please do not overlook this ...

- A modern measurement of such a cross section is highly desirable

- Can be extended in 2 ways:
 - with **polarised target** to study the Sivers effect

 (quark or gluon: theory should tell)
Synergies with COMPASS

- COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia.

- Unique access to π-induced J/ψ production → last study by NA3 30 years ago!!!

 please do not overlook this ...

- A modern measurement of such a cross section is highly desirable.

- Can be extended in 2 ways:
 - with polarised target to study the Sivers effect (quark or gluon: theory should tell)
 - with different nuclear targets
Synergies with COMPASS

- COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia.

- Unique access to π-induced J/ψ production → last study by NA3 30 years ago!!!

 please do not overlook this ...

- A modern measurement of such a cross section is highly desirable.

- Can be extended in 2 ways:
 - with polarised target to study the Sivers effect
 (quark or gluon: theory should tell)
 - with different nuclear targets

→ synergies with AFTER
More with AFTER: photoproduction and “beyond” DY

- $\gamma + p$ interaction via ultra-peripheral collisions
More with AFTER: photoproduction and “beyond” DY

- $\gamma + p$ interaction via **ultra-peripheral collisions**
 - $\gamma_{\text{lab}}^{\text{beam}} \approx 7000 \ (E_p = 7000 \text{ GeV})$
 - $E_{\gamma,\text{lab}}^{\text{max}} \approx \gamma_{\text{lab}}^{\text{beam}} \times 30 \text{ MeV} \ (1/R_{\text{Pb}} \approx 30 \text{ MeV})$
 - $\sqrt{s_{\gamma p}} = \sqrt{2 m_p E_\gamma}$ up to 20 GeV
 - No pile-up

Fracture functions via Drell-Yan pair production + identified hadron

$L. \ Trentadue, G. \ Veneziano, PLB 323 (1994) 201$

F. Ceccopieri, L. Trentadue, PLB 668 (2008) 319

privileged region for the identified hadron: either the projectile- or target-rapidity region

the fixed-target mode is ideal for such studies

good prospects for fracture-function studies both with AFTER & COMPASS
More with AFTER: photoproduction and “beyond” DY

- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}} \sim 7000$ ($E_p = 7000$ GeV)
 - $E_{\gamma,\text{lab}}^{\text{max}} \sim \gamma_{\text{lab}}^\text{beam} \times 30$ MeV ($1/R_{\text{Pb}} \sim 30$ MeV)
 - $\sqrt{s_{\gamma p}} = \sqrt{2m_pE_\gamma}$ up to 20 GeV
 - No pile-up

- Fracture functions

References:
- L. Trentadue, G. Veneziano, PLB 323 (1994) 201
- F. Ceccopieri, L. Trentadue, PLB 668 (2008) 319
Gluons in nuclei

More with AFTER: photoproduction and “beyond” DY

- $\gamma + p$ interaction via **ultra-peripheral collisions**
 - $\gamma_{\text{lab}}^{\text{beam}} \sim 7000 \ (E_p = 7000 \text{ GeV})$
 - $E_{\gamma,\text{lab}}^{\text{max}} \sim \gamma_{\text{lab}}^{\text{beam}} \times 30 \text{ MeV} \ (1/R_{\text{Pb}} \sim 30 \text{ MeV})$
 - $\sqrt{s_{\gamma p}} = \sqrt{2m_pE_\gamma}$ up to 20 GeV
 - No pile-up

- **Fracture functions**
 - via Drell-Yan pair production
 - + identified hadron

Fracture Fct.
PDF
k_1
γ^*
k_2
Q^2
observed hadron
L. Trentadue, G. Veneziano, PLB 323 (1994) 201
F. Ceccopieri, L. Trentadue, PLB 668 (2008) 319

J.P. Lansberg (IPNO, Paris-Sud U.)
A Fixed-Target Experiment at the LHC
September 20, 2013
22 / 27
More with AFTER: photoproduction and “beyond” DY

- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}}^{\text{beam}} \sim 7000$ ($E_p = 7000$ GeV)
 - $E_{\gamma,\text{lab}}^{\text{max}} \sim \gamma_{\text{lab}}^{\text{beam}} \times 30$ MeV ($1/R_{\text{Pb}} \sim 30$ MeV)
 - $\sqrt{s_{\gamma p}} = \sqrt{2m_pE_\gamma}$ up to 20 GeV
 - No pile-up

- Fracture functions
 - via Drell-Yan pair production
 + identified hadron

- privileged region for the identified hadron: either the projectile- or target-rapidity region

L. Trentadue, G. Veneziano, PLB 323 (1994) 201
F. Ceccopieri, L. Trentadue, PLB 668 (2008) 319
More with AFTER: photoproduction and “beyond” DY

- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}}^{\text{beam}} \sim 7000$ ($E_p = 7000$ GeV)
 - $E_{\gamma,\text{lab}}^{\text{max}} \sim \gamma_{\text{lab}}^{\text{beam}} \times 30$ MeV ($1/R_{\text{Pb}} \sim 30$ MeV)
 - $\sqrt{s_{\gamma p}} = \sqrt{2m_pE_{\gamma}}$ up to 20 GeV
 - No pile-up

- Fracture functions
 - via Drell-Yan pair production
 + identified hadron

- privileged region for the identified hadron: either the projectile- or target-rapidity region

- the fixed-target mode is ideal for such studies
Gluons in nuclei

More with AFTER: photoproduction and “beyond” DY

- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}}^{\text{beam}} \approx 7000$ ($E_p = 7000$ GeV)
 - $E_{\gamma,\text{lab}}^{\text{max}} \approx \gamma_{\text{lab}}^{\text{beam}} \times 30$ MeV ($1/R_{\text{Pb}} \approx 30$ MeV)
 - $\sqrt{s_{\gamma p}} = \sqrt{2m_p E_{\gamma}}$ up to 20 GeV
 - No pile-up

- Fracture functions
 - via Drell-Yan pair production
 - + identified hadron

- privileged region for the identified hadron: either the projectile- or target-rapidity region

- the fixed-target mode is ideal for such studies

- good prospects for fracture-function studies both with AFTER & COMPASS

L. Trentadue, G. Veneziano, PLB 323 (1994) 201
F. Ceccopieri, L. Trentadue, PLB 668 (2008) 319
Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodskya, F. Fleuretb, C. Hadjidakisc, J.P. Lansbergc,*

a SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France
c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

1. Introduction
2. Key numbers and features
3. Nucleon partonic structure
 3.1. Drell–Yan
 3.2. Gluons in the proton at large x
 3.2.1. Quarkonia
 3.2.2. Jets
 3.2.3. Direct/isolated photons
 3.3. Gluons in the deuterion and in the neutron
 3.4. Charm and bottom in the proton
 3.4.1. Open-charm production
 3.4.2. $J/\psi + D$ meson production
 3.4.3. Heavy-quark plus photon production
4. Spin physics
 4.1. Transverse SSA and DY
 4.2. Quarkonium and heavy-quark transverse SSA
 4.3. Transverse SSA and photon
 4.4. Spin asymmetries with a final state polarization
5. Nuclear matter
 5.1. Quark nPDF: Drell–Yan in pA and $p\bar{p}$
 5.2. Gluon nPDF
 5.2.1. Isolated photons and photon–jet correlations
 5.2.2. Precision quarkonium and heavy-flavour studies
 5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus
6. Deconfinement in heavy-ion collisions
 6.1. Quarkonium studies
 6.2. Jet quenching
 6.3. Direct photon
 6.4. Deconfinement and the target rest frame
 6.5. Nuclear-matter baseline
7. W and Z boson production in pp, pd and $p\bar{p}$ collisions
 7.1. First measurements in pA
 7.2. W/Z production in pp and pd
8. Exclusive, semi-exclusive and backward reactions
 8.1. Ultra-peripheral collisions
 8.2. Hard diffractive reactions
 8.3. Heavy-hadron (diffractive) production at $x_F \to -1$
 8.4. Very backward physics
 8.5. Direct hadron production
9. Further potentials of a high-energy fixed-target set-up...
 9.1. D and B physics
 9.2. Secondary beams
 9.3. Forward studies in relation with cosmic shower
Conclusions
Acknowledgments
References
Part IV

Conclusion and outlooks
Conclusion

• Both \(p \) and \(Pb \) LHC beams can be extracted without disturbing the other experiments.

Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.

This allows for high luminosity \(pp, pA, \) and \(PbA \) collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{NN} = 72 \text{ GeV}$.

Example: precision quarkonium studies taking advantage of high luminosity (reach in $y, PT, \text{ small BR channels}$)

target versatility (nuclear effects, strongly limited at colliders)

modern detection techniques (e.g. γ detection with high multiplicity)

This would likely prepare the ground for $g(x, Q^2)$ extraction.

A wealth of possible measurements: DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams).

LHC long shutdown (LS2 ? in 2018) needed to install the extraction system.

Very good complementarity with electron-ion programs.
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.

Example: precision quarkonium studies taking advantage of high luminosity (reach in y, P_T, small BR channels), target versatility (nuclear effects, strongly limited at colliders), modern detection techniques (e.g. γ detection with high multiplicity).

This would likely prepare the ground for $g(x, Q^2)$ extraction.

A wealth of possible measurements: DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams).

LHC long shutdown (LS2 ? in 2018) needed to install the extraction system.

Very good complementarity with electron-ion programs.
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
- **Example:** precision quarkonium studies taking advantage of...
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
- **Example**: precision quarkonium studies taking advantage of:
 - high luminosity (reach in y, P_T, small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
- **Example**: precision quarkonium studies taking advantage of:
 - high luminosity (reach in y, P_T, small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction.
Both p and Pb LHC beams can be extracted without disturbing the other experiments.

Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec

This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV

Example: precision quarkonium studies taking advantage of

- high luminosity (reach in y, P_T, small BR channels)
- target versatility (nuclear effects, strongly limited at colliders)
- modern detection techniques (e.g. γ detection with high multiplicity)

This would likely prepare the ground for $g(x, Q^2)$ extraction

A wealth of possible measurements:
DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)
Both p and Pb LHC beams can be extracted without disturbing the other experiments.

Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.

This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.

Example: precision quarkonium studies taking advantage of
- high luminosity (reach in y, P_T, small BR channels)
- target versatility (nuclear effects, strongly limited at colliders)
- modern detection techniques (e.g. γ detection with high multiplicity)

This would likely prepare the ground for $g(x, Q^2)$ extraction.

A wealth of possible measurements:
- DY, Open b/c, jet correlation, UPC...
 (not mentioning secondary beams)
- LHC long shutdown (LS2 ? in 2018) needed
 to install the extraction system.
Both \(p \) and \(Pb \) LHC beams can be extracted without disturbing the other experiments.

Extracting a few per cent of the beam \(\rightarrow 5 \times 10^8 \) protons per sec.

This allows for high luminosity \(pp, pA \) and \(PbA \) collisions at \(\sqrt{s} = 115 \) GeV and \(\sqrt{s_{NN}} = 72 \) GeV.

Example: precision quarkonium studies taking advantage of:
- high luminosity (reach in \(y, P_T \), small BR channels)
- target versatility (nuclear effects, strongly limited at colliders)
- modern detection techniques (e.g. \(\gamma \) detection with high multiplicity)

This would likely prepare the ground for \(g(x, Q^2) \) extraction.

A wealth of possible measurements:
- \(DY, Open \ b/c, jet \) correlation, UPC... (not mentioning secondary beams)
- LHC long shutdown (LS2 ? in 2018) needed to install the extraction system.

Very good complementarity with electron-ion programs.
Outlooks

- First physics paper Physics Reports 522 (2013) 239

We are looking for more partners to
- do first simulations (we are getting ready for fast simulations)
- think about possible designs
- think about the optimal detector technologies
- enlarge the physics case (cosmic rays, flavour physics, ...)

Outlooks

- First physics paper *Physics Reports* 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013
 slides at http://indico.in2p3.fr/event/AFTER@ECTstar

We are looking for more partners to:
- do first simulations (we are getting ready for fast simulations)
- think about possible designs
- think about the optimal detector technologies
- enlarge the physics case (cosmic rays, flavour physics, ...)

Outlooks

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013
 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in Les Houches on 12-17 January 2014
 http://indico.in2p3.fr/event/AFTER@LesHouches
 and 3-day workshop in Orsay with LUA9 on November 18-20, 2013
 http://indico.in2p3.fr/event/LUA9-AFTER-1113
Outlooks

- First physics paper *Physics Reports* 522 (2013) 239

- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013
 slides at http://indico.in2p3.fr/event/AFTER@ECTstar

- Workshop in *Les Houches* on 12-17 January 2014
 http://indico.in2p3.fr/event/AFTER@LesHouches
 and 3-day workshop in Orsay with LUA9 on November 18-20, 2013

- We are looking for more partners to
Outlooks

- First physics paper *Physics Reports* 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013
 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in *Les Houches* on 12-17 January 2014
 http://indico.in2p3.fr/event/AFTER@LesHouches
 and 3-day workshop in Orsay with LUA9 on November 18-20, 2013
- We are looking for more partners to
 - do first simulations (we are getting ready for fast simulations)
Outlooks

- First physics paper *Physics Reports* 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013
 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in *Les Houches* on 12-17 January 2014
 http://indico.in2p3.fr/event/AFTER@LesHouches
 and 3-day workshop in Orsay with LUA9 on November 18-20, 2013
 http://indico.in2p3.fr/event/LUA9-AFTER-1113
- We are looking for more partners to
 - do first simulations (we are getting ready for fast simulations)
 - think about possible designs
Outlooks

- First physics paper *Physics Reports* 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013
 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in Les Houches on 12-17 January 2014
 http://indico.in2p3.fr/event/AFTER@LesHouches
 and 3-day workshop in Orsay with LUA9 on November 18-20, 2013
- We are looking for more partners to
 - do first simulations (we are getting ready for fast simulations)
 - think about possible designs
 - think about the optimal detector technologies
 - enlarge the physics case (cosmic rays, flavour physics, ...)

J.P. Lansberg (IPNO, Paris-Sud U.)
Outlooks

- First physics paper *Physics Reports* 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013
 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in *Les Houches* on 12-17 January 2014
 http://indico.in2p3.fr/event/AFTER@LesHouches
 and 3-day workshop in Orsay with LUA9 on November 18-20, 2013
- We are looking for **more partners** to
 - do first simulations (we are getting ready for fast simulations)
 - think about **possible designs**
 - think about the optimal detector technologies
 - enlarge the physics case (cosmic rays, flavour physics, ...)
Synergies with COMPASS

- Single Spin Asymmetries with J/ψ: quark vs. gluon Sivers
Synergies with COMPASS

- Single Spin Asymmetries with J/ψ: quark vs. gluon Sivers
- In general, heavy-flavour production
Synergies with COMPASS

- **Single Spin Asymmetries** with J/ψ: quark vs. gluon Sivers
- In general, heavy-flavour production
- COMPASS expertise on secondary beams:
 “Secondary beams from 7 TeV primary protons?”
Synergies with COMPASS

- Single Spin Asymmetries with J/ψ: quark vs. gluon Sivers
- In general, heavy-flavour production
- COMPASS expertise on secondary beams:
 “Secondary beams from 7 TeV primary protons?”
- COMPASS expertise on polarised targets
Synergies with COMPASS

- **Single Spin Asymmetries** with J/ψ: quark vs. gluon Sivers

- In general, heavy-flavour production

- COMPASS expertise on **secondary beams**:

 “Secondary beams from 7 TeV primary protons ?”

- COMPASS expertise on **polarised targets**

- Study of UPC with AFTER as a prolongation of some lepton-induced-process studies with COMPASS ?

 First look at Bethe-Heitler and Timelike Compton Scattering with L. Szymanowski and J. Wagner
Synergies with COMPASS

- Single Spin Asymmetries with J/ψ: quark vs. gluon Sivers
- In general, heavy-flavour production
- COMPASS expertise on secondary beams:
 “Secondary beams from 7 TeV primary protons?”
- COMPASS expertise on polarised targets
- Study of UPC with AFTER as a prolongation of some lepton-induced-process studies with COMPASS?
 First look at Bethe-Heitler and Timelike Compton Scattering with L. Szymanowski and J. Wagner
- The case of fracture-function studies in Drell-Yan + hadron
Part V

Backup slides
The beam extraction

- Inter-crystalline fields are huge

![Graph and diagram showing deflection efficiency and angle for Ge (110), 450 GeV protons.]

The channeling efficiency is high for a deflection of a few mrad. One can extract a significant part of the beam loss (10^9 $p^+ - s^{-1}$).

Simple and robust way to extract the most energetic beam ever:

J.P. Lansberg (IPNO, Paris-Sud U.)
A Fixed-Target Experiment at the LHC
September 20, 2013
The beam extraction

- Inter-crystalline fields are huge

- The channeling efficiency is high for a deflection of a few mrad
The beam extraction

- Inter-crystalline fields are huge

- The channeling efficiency is high for a deflection of a few mrad
- One can extract a significant part of the beam loss \(10^9 p^+ s^{-1}\)
The beam extraction

- Inter-crystalline fields are huge

The channeling efficiency is high for a deflection of a few mrad
One can extract a significant part of the beam loss \((10^9 p^+ s^{-1})\)
Simple and robust way to extract the most energetic beam ever:
Beam extraction

Beam extraction @ LHC

... there are extremely promising possibilities to extract 7 TeV protons from the circulating beam by means of a bent crystal.

... The idea is to put a bent, single crystal of either Si or Ge (W would perform slightly better but needs substantial improvements in crystal quality) at a distance of $\sim 7\sigma$ to the beam where it can intercept and deflect part of the beam halo by an angle similar to the one the foreseen dump kicking system will apply to the circulating beam.

... ions with the same momentum per charge as protons are deflected in a crystal with similar efficiencies
The beam extraction: news

Goal: assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders

Prototype crystal collimation system at SPS:
- local beam loss reduction (5÷20x reduction for proton beam)
- beam loss map show average loss reduction in the entire SPS ring
- halo extraction efficiency 70÷80% for protons (50÷70% for Pb)
The beam extraction: news

Goal: assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders

Prototype crystal collimation system at SPS:
- local beam loss reduction (5-20x reduction for proton beam)
- beam loss map show average loss reduction in the entire SPS ring
- halo extraction efficiency 70-80% for protons (50-70% for Pb)
The beam extraction: news

Goal: assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders.

Prototype crystal collimation system at SPS:
- local beam loss reduction (5-20x reduction for proton beam)
- beam loss map show average loss reduction in the entire SPS ring
- halo extraction efficiency 70-80% for protons (50-70% for Pb)

Towards an installation in the LHC: propose and install during LS1 a min. number of devices
- 2 crystals

Long term plan is ambitious: propose a collimation system based on bent crystals for the upgrade of the current LHC collimation system.
Luminosities

- Instantaneous Luminosity:
 \[\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times N_A)/A \]
 \[\Phi_{beam} = 2 \times 10^5 \text{ Pb s}^{-1}, \quad \ell = 1 \text{ cm (target thickness)} \]

- Integrated luminosity \(\int dt\mathcal{L} = \mathcal{L} \times 10^6 \text{ s for Pb} \)

- Expected luminosities with \(2 \times 10^5 \text{ Pb s}^{-1} \) extracted (1 cm-long target)

<table>
<thead>
<tr>
<th>Target</th>
<th>(\rho) (g.cm(^{-3}))</th>
<th>(A)</th>
<th>(\mathcal{L}) (mb(^{-1}).s(^{-1})) = (\int \mathcal{L}) (nb(^{-1}).yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol. H(_2)</td>
<td>0.09</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Liq. H(_2)</td>
<td>0.07</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Liq. D(_2)</td>
<td>0.16</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Be</td>
<td>1.85</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>Cu</td>
<td>8.96</td>
<td>64</td>
<td>17</td>
</tr>
<tr>
<td>W</td>
<td>19.1</td>
<td>185</td>
<td>13</td>
</tr>
<tr>
<td>Pb</td>
<td>11.35</td>
<td>207</td>
<td>7</td>
</tr>
</tbody>
</table>

- Planned lumi for PHENIX Run15AuAu 2.8 nb\(^{-1}\) (0.13 nb\(^{-1}\) at 62 GeV)

- Nominal LHC lumi for PbPb 0.5 nb\(^{-1}\)
Crystal resistance to irradiation

- **IHEP U-70** (Biryukov et al, NIMB 234, 23-30):
 - 70 GeV protons, 50 ms spills of 10^{14} protons every 9.6 s, several minutes irradiation
 - equivalent to 2 nominal LHC bunches for 500 turns every 10 s
 - 5 mm silicon crystal, channeling efficiency unchanged

- **SPS North Area - NA48** (Biino et al, CERN-SL-96-30-EA):
 - 450 GeV protons, 2.4 s spill of 5×10^{12} protons every 14.4 s, one year irradiation, 2.4×10^{20} protons/cm2 in total,
 - equivalent to several year of operation for a primary collimator in LHC
 - $10 \times 50 \times 0.9$ mm3 silicon crystal, 0.8×0.3 mm2 area irradiated, channeling efficiency reduced by 30%.

- **HRMT16-UA9CRY** (HiRadMat facility, November 2012):
 - 440 GeV protons, up to 288 bunches in 7.2 μs, 1.1×10^{11} protons per bunch (3×10^{13} protons in total)
 - energy deposition comparable to an asynchronous beam dump in LHC
 - 3 mm long silicon crystal, no damage to the crystal after accurate visual inspection, more tests planned to assess possible crystal lattice damage
 - accurate FLUKA simulation of energy deposition and residual dose

S. Montesano (CERN - EN/STI) @ ECT* Trento workshop, Physics at AFTER using the LHC beams (Feb. 2013)

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target Experiment at the LHC

September 20, 2013
The lead-ion beam

- Design LHC lead-beam energy: 2.76 TeV per nucleon
The lead-ion beam

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72$ GeV
The lead-ion beam

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \approx 72$ GeV
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)
The lead-ion beam

- Design LHC lead-beam energy: **2.76 TeV** per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \approx 72$ GeV
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)
- Example of motivations:

![Graph showing measured to expected J/ψ suppression vs. energy density.](image)

Fig. 7. Measured J/ψ production yields, normalised to the yields expected assuming that the only source of suppression is the ordinary absorption by the nuclear medium. The data is shown as a function of the energy density reached in the several collision systems.
A bit of kinematics with the 2.76 TeV lead-ion beam

The lead-ion beam

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \approx 72$ GeV
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)
- Example of motivations:
AFTER, among other things, a quarkonium observatory in \(pp \)

Interpolating the world data set:

<table>
<thead>
<tr>
<th>Target</th>
<th>(\int \mathcal{L}) (fb(^{-1}).yr(^{-1}))</th>
<th>(N(J/\Psi)) yr(^{-1}) = (A \mathcal{L} \mathcal{B} \sigma_\Psi)</th>
<th>(N(\Upsilon)) yr(^{-1}) = (A \mathcal{L} \mathcal{B} \sigma_\Upsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. (H_2)</td>
<td>20</td>
<td>(4.0 \times 10^8)</td>
<td>(8.0 \times 10^5)</td>
</tr>
<tr>
<td>1 m Liq. (D_2)</td>
<td>24</td>
<td>(9.6 \times 10^8)</td>
<td>(1.9 \times 10^6)</td>
</tr>
<tr>
<td>LHC pp 14 Tev (low pT)</td>
<td>0.05 (ALICE) (\times 2) LHCb</td>
<td>(3.6 \times 10^7)</td>
<td>(1.8 \times 10^5)</td>
</tr>
<tr>
<td>RHIC pp 200GeV</td>
<td>(1.2 \times 10^{-2})</td>
<td>(4.8 \times 10^5)</td>
<td>(1.2 \times 10^3)</td>
</tr>
</tbody>
</table>
AFTER, among other things, a quarkonium observatory in \textit{pp}

- Interpolating the world data set:

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Target} & \int \mathcal{L} \text{ (fb}^{-1} \text{.yr}^{-1}) & N(J/\Psi) \text{ yr}^{-1} & N(\Upsilon) \text{ yr}^{-1} \\
\hline
1 \text{ m Liq. } H_2 & 20 & 4.0 \times 10^8 & 8.0 \times 10^5 \\
1 \text{ m Liq. } D_2 & 24 & 9.6 \times 10^8 & 1.9 \times 10^6 \\
\text{LHC pp 14 Tev} \text{ (low pT)} & 0.05 \text{ (ALICE)} \text{ 2 LHCb} & 3.6 \times 10^7 & 1.8 \times 10^5 \\
\text{RHIC pp 200GeV} & 1.2 \times 10^{-2} & 4.8 \times 10^5 & 1.2 \times 10^3 \\
\hline
\end{array}
\]

- 1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC
AFTER, among other things, a quarkonium observatory in pp

- Interpolating the world data set:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\int \mathcal{L} \ (fb^{-1}yr^{-1})$</th>
<th>$N(J/\Psi) \ yr^{-1}$</th>
<th>$N(\Upsilon) \ yr^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H_2</td>
<td>20</td>
<td>$4.0 \ 10^8$</td>
<td>$8.0 \ 10^5$</td>
</tr>
<tr>
<td>1 m Liq. D_2</td>
<td>24</td>
<td>$9.6 \ 10^8$</td>
<td>$1.9 \ 10^6$</td>
</tr>
<tr>
<td>LHC pp 14 Tev (low pT)</td>
<td>0.05 (ALICE)</td>
<td>$3.6 \ 10^7$</td>
<td>$1.8 \ 10^5$</td>
</tr>
<tr>
<td></td>
<td>2 LHCb</td>
<td>$1.4 \ 10^9$</td>
<td>$7.2 \ 10^6$</td>
</tr>
<tr>
<td>RHIC pp 200GeV</td>
<td>$1.2 \ 10^{-2}$</td>
<td>$4.8 \ 10^5$</td>
<td>$1.2 \ 10^3$</td>
</tr>
</tbody>
</table>

- 1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of rapidity about 0
AFTER, among other things, a quarkonium observatory in pp

Interpolating the world data set:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\int \mathcal{L}$ (fb$^{-1}$ yr$^{-1}$)</th>
<th>$N(J/\Psi)$ yr$^{-1}$</th>
<th>$N(\Upsilon)$ yr$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H_2</td>
<td>20</td>
<td>4.0×10^8</td>
<td>8.0×10^5</td>
</tr>
<tr>
<td>1 m Liq. D_2</td>
<td>24</td>
<td>9.6×10^8</td>
<td>1.9×10^6</td>
</tr>
<tr>
<td>LHC pp 14 TeV (low pT)</td>
<td>0.05 (ALICE) 2 LHCb</td>
<td>3.6×10^7</td>
<td>1.8×10^5</td>
</tr>
<tr>
<td>RHIC pp 200 GeV</td>
<td>1.2×10^{-2}</td>
<td>4.8×10^5</td>
<td>1.2×10^3</td>
</tr>
</tbody>
</table>

- 1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of rapidity about 0
- Unique access in the backward region
AFTER, among other things, a quarkonium observatory in *pp*

- Interpolating the world data set:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\int \mathcal{L} \ (fb^{-1}.yr^{-1})$</th>
<th>$N(J/\Psi) \ yr^{-1}$</th>
<th>$N(\Upsilon) \ yr^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H$_2$</td>
<td>20</td>
<td>4.0 10^8</td>
<td>8.0 10^5</td>
</tr>
<tr>
<td>1 m Liq. D$_2$</td>
<td>24</td>
<td>9.6 10^8</td>
<td>1.9 10^6</td>
</tr>
<tr>
<td>LHC pp 14 Tev (low pT)</td>
<td>0.05 (ALICE)</td>
<td>3.6 10^7</td>
<td>1.8 10^5</td>
</tr>
<tr>
<td></td>
<td>2 LHCb</td>
<td>1.4 10^9</td>
<td>7.2 10^6</td>
</tr>
<tr>
<td>RHIC pp 200 GeV</td>
<td>1.2 10^{-2}</td>
<td>4.8 10^5</td>
<td>1.2 10^3</td>
</tr>
</tbody>
</table>

- 1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of rapidity about 0
- Unique access in the backward region
- Probe of the (very) large x in the target
Need for a quarkonium observatory

Many hopes were put in quarkonium studies to extract gluon PDF.
Need for a quarkonium observatory

- Many **hopes** were put in **quarkonium studies** to extract **gluon PDF**
 - in photo/lepto production (DIS)
 - but also **pp** collisions in **gg-fusion process**
 - mainly because of the presence of a natural “hard” scale: m_Q
 - and the good detectability of a dimuon pair
Need for a quarkonium observatory

Many hopes were put in quarkonium studies to extract gluon PDF in photo/lepto production (DIS)
but also \(pp \) collisions in \(gg \)-fusion process
mainly because of the presence of a natural “hard” scale: \(m_Q \)
and the good detectability of a dimuon pair
Need for a quarkonium observatory

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also pp collisions in gg-fusion process
 - mainly because of the presence of a natural “hard” scale: \(m_Q \)
 - and the good detectability of a dimuon pair

Production puzzle \(\rightarrow \) quarkonium not used anymore in global fits
Need for a quarkonium observatory

Many hopes were put in quarkonium studies to extract gluon PDF
- in photo/lepto production (DIS)
- but also pp collisions in gg-fusion process
- mainly because of the presence of a natural “hard” scale: \(m_Q \)
- and the good detectability of a dimuon pair

Production puzzle \(\rightarrow \) quarkonium not used anymore in global fits
With systematic studies, one would restore its status as gluon probe
Accessing the large x gluon with quarkonia

PYTHIA simulation
$\sigma(y) / \sigma(y=0.4)$
statistics for one month
5% acceptance considered

Statistical relative uncertainty
Large statistics allow to access very backward region

Gluon uncertainty from
MSTWPDF
- only for the gluon content of the target
- assuming
 \[x_g = \frac{M_{J/\Psi}/\sqrt{s}}{e^{-y_{CM}}} \]

J/Ψ
\[y_{CM} \sim 0 \rightarrow x_g = 0.03 \]
\[y_{CM} \sim -3.6 \rightarrow x_g = 1 \]

Y: larger x_g for same y_{CM}
\[y_{CM} \sim 0 \rightarrow x_g = 0.08 \]
\[y_{CM} \sim -2.4 \rightarrow x_g = 1 \]

⇒ Backward measurements allow to access large x gluon pdf
(x,Q^2) map of AFTER isolated-γ

p-p kinematics at fixed-target LHC:
To access x > 0.3 one needs isolated-γ with: p_T = x_T \sqrt{s/2} > 10-20 GeV/c

[D. d'E & J. Rojo, NPB 860 (2012) 311]
AFTER: also a quarkonium observatory in \(pA \)

| Target | \(A \) | \(\int L \) (fb\(^{-1}\).yr\(^{-1}\)) | \(N(J/\Psi) \) yr\(^{-1} \) \(
\begin{align*} & = ALB\sigma_{\Psi} \end{align*}
\) | \(N(\Upsilon) \) yr\(^{-1} \) \(
\begin{align*} & = ALB\sigma_{\Upsilon} \end{align*}
\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>1.1 (10^8)</td>
<td>2.2 (10^5)</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>5.3 (10^8)</td>
<td>1.1 (10^6)</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>1.1 (10^9)</td>
<td>2.3 (10^6)</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>6.7 (10^8)</td>
<td>1.3 (10^6)</td>
</tr>
<tr>
<td>LHC pPb 8.8 TeV</td>
<td>207</td>
<td>(10^{-4})</td>
<td>1.0 (10^7)</td>
<td>7.5 (10^4)</td>
</tr>
<tr>
<td>RHIC dAu 200GeV</td>
<td>198</td>
<td>1.5 (10^{-4})</td>
<td>2.4 (10^6)</td>
<td>5.9 (10^3)</td>
</tr>
<tr>
<td>RHIC dAu 62GeV</td>
<td>198</td>
<td>3.8 (10^{-6})</td>
<td>1.2 (10^4)</td>
<td>18</td>
</tr>
</tbody>
</table>

- In principle, one can get **300 times more** \(J/\psi \) – not counting the likely wider \(y \) coverage – than at RHIC, allowing for
In principle, one can get 300 times more J/ψ – not counting the likely wider γ coverage – than at RHIC, allowing for

- χ_c measurement in pA via $J/\psi + \gamma$ (extending Hera-B studies)
Heavy-flavour observatory in pA

AFTER: also a quarkonium observatory in pA

<table>
<thead>
<tr>
<th>Target</th>
<th>A</th>
<th>$\int L$ (fb$^{-1}$.yr$^{-1}$)</th>
<th>(N(J/\Psi)) yr$^{-1}$</th>
<th>(N(\Upsilon)) yr$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>1.1 10^8</td>
<td>2.2 10^5</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>5.3 10^8</td>
<td>1.1 10^6</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>1.1 10^9</td>
<td>2.3 10^6</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>6.7 10^8</td>
<td>1.3 10^6</td>
</tr>
<tr>
<td>LHC pPb 8.8 TeV</td>
<td>207</td>
<td>10^{-4}</td>
<td>1.0 10^7</td>
<td>7.5 10^4</td>
</tr>
<tr>
<td>RHIC dAu 200GeV</td>
<td>198</td>
<td>$1.5 10^{-4}$</td>
<td>2.4 10^6</td>
<td>5.9 10^3</td>
</tr>
<tr>
<td>RHIC dAu 62GeV</td>
<td>198</td>
<td>$3.8 10^{-6}$</td>
<td>1.2 10^4</td>
<td>18</td>
</tr>
</tbody>
</table>

- In principle, one can get **300 times more** \(J/\psi\) –not counting the likely wider \(y\) coverage– than at RHIC, allowing for
 - \(\chi_c\) measurement in \(pA\) via \(J/\psi + \gamma\) (extending Hera-B studies)
 - Polarisation measurement as the centrality, \(y\) or \(P_T\)
AFTER: also a quarkonium observatory in pA

<table>
<thead>
<tr>
<th>Target</th>
<th>A</th>
<th>$\int L \ (fb^{-1}.yr^{-1})$</th>
<th>$N(J/\Psi) \ yr^{-1}$</th>
<th>$N(\Upsilon) \ yr^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>1.1×10^8</td>
<td>2.2×10^5</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>5.3×10^8</td>
<td>1.1×10^6</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>1.1×10^9</td>
<td>2.3×10^6</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>6.7×10^8</td>
<td>1.3×10^6</td>
</tr>
<tr>
<td>LHC pPb 8.8 TeV</td>
<td>207</td>
<td>10^{-4}</td>
<td>1.0×10^7</td>
<td>7.5×10^4</td>
</tr>
<tr>
<td>RHIC dAu 200GeV</td>
<td>198</td>
<td>1.5×10^{-4}</td>
<td>2.4×10^6</td>
<td>5.9×10^3</td>
</tr>
<tr>
<td>RHIC dAu 62GeV</td>
<td>198</td>
<td>3.8×10^{-6}</td>
<td>1.2×10^4</td>
<td>18</td>
</tr>
</tbody>
</table>

- In principle, one can get **300 times more J/ψ** – not counting the likely wider y coverage – than at RHIC, allowing for:
 - χ_c measurement in pA via $J/\psi + \gamma$ (extending Hera-B studies)
 - Polarisation measurement as the centrality, y or P_T
 - Ratio ψ' over direct J/ψ measurement in pA
AFTER: also a quarkonium observatory in \(pA \)

<table>
<thead>
<tr>
<th>Target</th>
<th>A</th>
<th>(\int \mathcal{L} \ (fb^{-1}.yr^{-1}))</th>
<th>(N(J/\Psi) \ yr^{-1}) (= A \mathcal{L} \sigma_{\Psi})</th>
<th>(N(\Upsilon) \ yr^{-1}) (= A \mathcal{L} \sigma_{\Upsilon})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>1.1 (\times 10^{8})</td>
<td>2.2 (\times 10^{5})</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>5.3 (\times 10^{8})</td>
<td>1.1 (\times 10^{6})</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>1.1 (\times 10^{9})</td>
<td>2.3 (\times 10^{6})</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>6.7 (\times 10^{8})</td>
<td>1.3 (\times 10^{6})</td>
</tr>
<tr>
<td>LHC pPb 8.8 TeV</td>
<td>207</td>
<td>10^{-4}</td>
<td>1.0 (\times 10^{7})</td>
<td>7.5 (\times 10^{4})</td>
</tr>
<tr>
<td>RHIC dAu 200GeV</td>
<td>198</td>
<td>1.5 (\times 10^{-4})</td>
<td>2.4 (\times 10^{6})</td>
<td>5.9 (\times 10^{3})</td>
</tr>
<tr>
<td>RHIC dAu 62GeV</td>
<td>198</td>
<td>3.8 (\times 10^{-6})</td>
<td>1.2 (\times 10^{4})</td>
<td>18</td>
</tr>
</tbody>
</table>

In principle, one can get **300 times more** \(J/\psi \) –not counting the likely wider \(\gamma \) coverage– than at RHIC, allowing for:

- \(\chi_{c} \) measurement in \(pA \) via \(J/\psi + \gamma \) (extending Hera-B studies)
- Polarisation measurement as the centrality, \(\gamma \) or \(P_{T} \)
- Ratio \(\psi' \) over direct \(J/\psi \) measurement in \(pA \)
- not to mention ratio with **open charm, Drell-Yan**, etc ...
What for?

- The **target versatility** of a fixed-target experiment is undisputable

- A wide rapidity coverage is needed for:
 - A precise analysis of gluon nuclear PDF: $y, pT \leftrightarrow x$
 - A handle on formation time effects

- Strong need for cross checks from various measurements

- The backward kinematics is very useful for large-x target studies

- What is the amount of Intrinsic charm? Is it color filtered?

- Is there an EMC effect for gluon? (reminder: EMC region $0.3 < x < 0.7$)

- One should be careful with factorization breaking effects: This calls for multiple measurements to (in)validate factorization
What for?

- The target versatility of a fixed-target experiment is undisputable

- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
What for?

- The target versatility of a fixed-target experiment is undisputable.

- A wide rapidity coverage is needed for:
 - A precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - A handle on formation time effects

- Strong need for cross checks from various measurements.
What for?

- The **target versatility** of a fixed-target experiment is undisputable.

- A **wide rapidity coverage** is needed for:
 - A precise analysis of gluon nuclear PDF: \(y, p_T \leftrightarrow x_2 \)
 - A handle on formation time effects

- Strong need for **cross checks from various measurements**

- The **backward kinematics** is very useful for large-\(x_{\text{target}} \) studies
What for?

- The **target versatility** of a fixed-target experiment is undisputable.

- A **wide rapidity coverage** is needed for:
 - A precise analysis of **gluon nuclear PDF**: $y, p_T \leftrightarrow x_2$
 - A handle on **formation time effects**

- Strong need for **cross checks** from **various** measurements.

- The **backward kinematics** is very useful for **large-x_{target} studies**
 - What is the amount of Intrinsic charm? Is it color filtered?
What for?

- The **target versatility** of a fixed-target experiment is undisputable.

- A **wide rapidity coverage** is needed for:
 - A precise analysis of **gluon nuclear PDF**: $y, p_T \leftrightarrow x_2$
 - A handle on **formation time effects**

- Strong need for **cross checks** from various measurements.

- The **backward kinematics** is very useful for large-x_{target} studies:
 - What is the amount of Intrinsic charm? Is it color filtered?
 - Is there an EMC effect for gluon? (reminder: EMC region $0.3 < x < 0.7$)
What for?

- The **target versatility** of a fixed-target experiment is undisputable.

- A **wide rapidity coverage** is needed for:
 - a precise analysis of **gluon nuclear PDF**: $y, p_T \leftrightarrow x_2$
 - a handle on **formation time effects**

- Strong need for **cross checks** from various measurements.

- The **backward kinematics** is very useful for large-x_{target} studies:
 - What is the amount of Intrinsic charm? Is it color filtered?
 - **Is there an EMC effect for gluon?** (reminder: EMC region $0.3 < x < 0.7$)

- One should be careful with factorization breaking effects:
 - *This calls for multiple measurements to (in)validate factorization*
Precision heavy-flavour studies in Heavy-Ion Collisions

- Very precise pp and pA baselines (yields, A & y dependences)
Precision heavy-flavour studies in Heavy-Ion Collisions

- Very precise pp and pA baselines (yields, A & y dependences)
- Modern technologies to look for quarkonium excited states
Precision heavy-flavour studies in Heavy-Ion Collisions

- Very precise *pp* and *pA* baselines (yields, *A* & *y* dependences)
- Modern technologies to look for quarkonium excited states

HERA-B PRD 79 (2009) 012001, and ref. therein
Precision heavy-flavour studies in Heavy-Ion Collisions

- Very precise \(pp \) and \(pA \) baselines (yields, \(A \) & \(\gamma \) dependences)

- Modern technologies to look for quarkonium excited states

- Energy between SPS and RHIC: QGP should be formed w/o \(c\bar{c} \) recombination

HERA-B PRD 79 (2009) 012001, and ref. therein
Precision heavy-flavour studies in Heavy-Ion Collisions

- Very precise pp and pA baselines (yields, A & y dependences)

- Modern technologies to look for quarkonium excited states

- Energy between SPS and RHIC: QGP should be formed w/o $c\bar{c}$ recombination

- Open heavy-flavour measurement down to $P_T = 0$ thanks to the boost.

HERA-B PRD 79 (2009) 012001, and ref. therein
Precision heavy-flavour studies in Heavy-Ion Collisions

- Very precise pp and pA baselines (yields, A & y dependences)
- Modern technologies to look for quarkonium excited states
- Energy between SPS and RHIC: QGP should be formed w/o $c\bar{c}$ recombination
- Open heavy-flavour measurement down to $P_T = 0$ thanks to the boost.
- Real hope of being able to look at the quarkonium sequential suppression

HERA-B PRD 79 (2009) 012001, and ref. therein
AFTER: also an heavy-flavour observatory in \(PbA \)

- Luminosities and yields with the extracted 2.76 TeV Pb beam
 \((\sqrt{s_{NN}} = 72 \text{ GeV}) \)

<table>
<thead>
<tr>
<th>Target</th>
<th>A.B</th>
<th>(\int \mathcal{L}) (nb(^{-1}).yr(^{-1}))</th>
<th>(N(J/\Psi)) yr(^{-1}) (= AB L B \sigma_\Psi)</th>
<th>(N(\Upsilon)) yr(^{-1}) (= AB L B \sigma_\Upsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. (H_2)</td>
<td>207.1</td>
<td>800</td>
<td>(3.4 \times 10^6)</td>
<td>(6.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm Be</td>
<td>207.9</td>
<td>25</td>
<td>(9.1 \times 10^5)</td>
<td>(1.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm Cu</td>
<td>207.64</td>
<td>17</td>
<td>(4.3 \times 10^6)</td>
<td>(0.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm W</td>
<td>207.185</td>
<td>13</td>
<td>(9.7 \times 10^6)</td>
<td>(1.9 \times 10^4)</td>
</tr>
<tr>
<td>1 cm Pb</td>
<td>207.207</td>
<td>7</td>
<td>(5.7 \times 10^6)</td>
<td>(1.1 \times 10^4)</td>
</tr>
<tr>
<td>LHC PbPb 5.5 TeV</td>
<td>207.207</td>
<td>0.5</td>
<td>(7.3 \times 10^6)</td>
<td>(3.6 \times 10^4)</td>
</tr>
<tr>
<td>RHIC AuAu 200GeV</td>
<td>198.198</td>
<td>2.8</td>
<td>(4.4 \times 10^6)</td>
<td>(1.1 \times 10^4)</td>
</tr>
<tr>
<td>RHIC AuAu 62GeV</td>
<td>198.198</td>
<td>0.13</td>
<td>(4.0 \times 10^4)</td>
<td>(61)</td>
</tr>
</tbody>
</table>
Luminosities and yields with the extracted 2.76 TeV Pb beam ($\sqrt{s_{NN}} = 72$ GeV)

<table>
<thead>
<tr>
<th>Target</th>
<th>A.B</th>
<th>$\int L$ (nb$^{-1}$,yr$^{-1}$)</th>
<th>$N(J/\Psi)$ yr$^{-1}$ = AB$LB\sigma_{J/\Psi}$</th>
<th>$N(\Upsilon)$ yr$^{-1}$ = AB$LB\sigma_{\Upsilon}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H$_2$</td>
<td>207.1</td>
<td>800</td>
<td>3.4 106</td>
<td>6.9 103</td>
</tr>
<tr>
<td>1 cm Be</td>
<td>207.9</td>
<td>25</td>
<td>9.1 105</td>
<td>1.9 103</td>
</tr>
<tr>
<td>1 cm Cu</td>
<td>207.64</td>
<td>17</td>
<td>4.3 106</td>
<td>0.9 103</td>
</tr>
<tr>
<td>1 cm W</td>
<td>207.185</td>
<td>13</td>
<td>9.7 106</td>
<td>1.9 104</td>
</tr>
<tr>
<td>1 cm Pb</td>
<td>207.207</td>
<td>7</td>
<td>5.7 106</td>
<td>1.1 104</td>
</tr>
<tr>
<td>LHC PbPb 5.5 TeV</td>
<td>207.207</td>
<td>0.5</td>
<td>7.3 106</td>
<td>3.6 104</td>
</tr>
<tr>
<td>RHIC AuAu 200 GeV</td>
<td>198.198</td>
<td>2.8</td>
<td>4.4 106</td>
<td>1.1 104</td>
</tr>
<tr>
<td>RHIC AuAu 62 GeV</td>
<td>198.198</td>
<td>0.13</td>
<td>4.0 104</td>
<td>61</td>
</tr>
</tbody>
</table>

Yields similar to those of RHIC at 200 GeV, 100 times those of RHIC at 62 GeV
AFTER: also an heavy-flavour observatory in \(\text{PbA} \)

Luminosities and yields with the extracted 2.76 TeV \(\text{Pb} \) beam \((\sqrt{s_{\text{NN}}} = 72 \text{ GeV}) \)

<table>
<thead>
<tr>
<th>Target</th>
<th>A.B</th>
<th>(\int \mathcal{L}) (nb(^{-1}).yr(^{-1}))</th>
<th>(N(J/\Psi)) yr(^{-1})</th>
<th>(N(\Upsilon)) yr(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. (\text{H}_2)</td>
<td>207.1</td>
<td>800</td>
<td>(3.4 \times 10^6)</td>
<td>(6.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm Be</td>
<td>207.9</td>
<td>25</td>
<td>(9.1 \times 10^5)</td>
<td>(1.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm Cu</td>
<td>207.64</td>
<td>17</td>
<td>(4.3 \times 10^6)</td>
<td>(0.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm W</td>
<td>207.185</td>
<td>13</td>
<td>(9.7 \times 10^6)</td>
<td>(1.9 \times 10^4)</td>
</tr>
<tr>
<td>1 cm Pb</td>
<td>207.207</td>
<td>7</td>
<td>(5.7 \times 10^6)</td>
<td>(1.1 \times 10^4)</td>
</tr>
<tr>
<td>LHC (\text{PbPb}) 5.5 TeV</td>
<td>207.207</td>
<td>0.5</td>
<td>(7.3 \times 10^6)</td>
<td>(3.6 \times 10^4)</td>
</tr>
<tr>
<td>RHIC (\text{AuAu}) 200 GeV</td>
<td>198.198</td>
<td>2.8</td>
<td>(4.4 \times 10^6)</td>
<td>(1.1 \times 10^4)</td>
</tr>
<tr>
<td>RHIC (\text{AuAu}) 62 GeV</td>
<td>198.198</td>
<td>0.13</td>
<td>(4.0 \times 10^4)</td>
<td>61</td>
</tr>
</tbody>
</table>

Yields similar to those of RHIC at 200 GeV, 100 times those of RHIC at 62 GeV

Also very competitive compared to the LHC.
AFTER: also an heavy-flavour observatory in PbA

- Luminosities and yields with the extracted 2.76 TeV Pb beam ($\sqrt{s_{NN}} = 72$ GeV)

<table>
<thead>
<tr>
<th>Target</th>
<th>A.B</th>
<th>$\int L$ (nb$^{-1}$.yr$^{-1}$)</th>
<th>$N(J/\Psi)$ yr$^{-1}$</th>
<th>$N(\Upsilon)$ yr$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H$_2$</td>
<td>207.1</td>
<td>800</td>
<td>3.4×10^6</td>
<td>6.9×10^3</td>
</tr>
<tr>
<td>1 cm Be</td>
<td>207.9</td>
<td>25</td>
<td>9.1×10^5</td>
<td>1.9×10^3</td>
</tr>
<tr>
<td>1 cm Cu</td>
<td>207.64</td>
<td>17</td>
<td>4.3×10^6</td>
<td>0.9×10^3</td>
</tr>
<tr>
<td>1 cm W</td>
<td>207.185</td>
<td>13</td>
<td>9.7×10^6</td>
<td>1.9×10^4</td>
</tr>
<tr>
<td>1 cm Pb</td>
<td>207.207</td>
<td>7</td>
<td>5.7×10^6</td>
<td>1.1×10^4</td>
</tr>
<tr>
<td>LHC PbPb 5.5 TeV</td>
<td>207.207</td>
<td>0.5</td>
<td>7.3×10^6</td>
<td>3.6×10^4</td>
</tr>
<tr>
<td>RHIC AuAu 200GeV</td>
<td>198.198</td>
<td>2.8</td>
<td>4.4×10^6</td>
<td>1.1×10^4</td>
</tr>
<tr>
<td>RHIC AuAu 62GeV</td>
<td>198.198</td>
<td>0.13</td>
<td>4.0×10^4</td>
<td>61</td>
</tr>
</tbody>
</table>

Yields similar to those of RHIC at 200 GeV, 100 times those of RHIC at 62 GeV
Also very competitive compared to the LHC.

The same picture also holds for open heavy flavour
What for?

Observation of J/ψ sequential suppression *seems to be hindered* by

- the **Cold Nuclear Matter effects**: non trivial and

... not well understood
What for?

Observation of J/ψ sequential suppression seems to be hindered by

- the Cold Nuclear Matter effects: non trivial and
 ... not well understood

- the difficulty to observe directly the excited states
 which would melt before the ground states

- χ_c never studied in AA collisions
- $\psi(2S)$ not yet studied in AA collisions at RHIC
What for ?

Observation of J/ψ sequential suppression seems to be hindered by
- the Cold Nuclear Matter effects: non trivial and ... not well understood
- the difficulty to observe directly the excited states which would melt before the ground states
 - χ_c never studied in AA collisions
 - $\psi(2S)$ not yet studied in AA collisions at RHIC
- the possibilities for $c\bar{c}$ recombination
 - Open charm studies are difficult where recombination matters most i.e. at low P_T
 - Only indirect indications –from the y and P_T dependence of R_{AA}– that recombination may be at work
 - CNM effects may show a non-trivial y and P_T dependence ...
SPS and Hera-B

– J/ψ data in pA collisions

SPS and Hera-B

- *J/ψ* data in *pA* collisions

![Graph showing *J/ψ* data in *pA* collisions with data points from HERA-B, E866, NA50, NA60, and NA3.](image)

- *χc* data in *pA* collisions

![Graph showing *χc* data in *pA* collisions with data points from HERA-B, E866, NA50, NA60, and NA3.](image)

NA 3 Z.Phys. C20 (1983)

HERA-B PRD 79 (2009) 012001, and ref. therein
LHB

Our idea is not completely new

North-Holland

LHB, a fixed target experiment at LHC to measure CP violation in B mesons
Flavio Costantini

University of Pisa and INFN, Italy

A fixed target experiment at LHC to measure CP violation in B mesons is presented. A description of the proposed apparatus is given together with its sensitivity on the CP violation asymmetry measurement for the two benchmark decay channels $B^0 \rightarrow J/\psi + K^0_S$, $B^0 \rightarrow \pi^+ \pi^-$. The possibility of obtaining an extracted LHC beam hinges on channeling in a bent silicon crystal. Recent results on beam extraction efficiencies measured at CERN SPS based on this technique are presented.
LHB

Our idea is not completely new

1. Introduction

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10^8 protons/s allowing the production of as many as 10^{10} $\bar{B}B$ pairs per year, i.e. about two orders of magnitude more than what could be produced by an e^+e^- asymmetric B factory with 10^{34} cm$^{-2}$s$^{-1}$ luminosity [5].
1. Introduction

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10^8 protons/s allowing the production of as many as 10^{10} $B\bar{B}$ pairs per year, i.e. about two orders of magnitude more than what could be produced by an e^+e^- asymmetric B factory with 10^{34} cm$^{-2}$s$^{-1}$ luminosity [5].

B-factories: 1 ab$^{-1}$ means $10^9 B\bar{B}$ pairs
LHB

Our idea is not completely new

1. Introduction

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10^8 protons/s allowing the production of as many as 10^{10} $B\bar{B}$ pairs per year, i.e. about two orders of magnitude more than what could be produced by an e^+e^- asymmetric B factory with 10^{34} cm$^{-2}$s$^{-1}$ luminosity [5].

- B-factories: 1 ab$^{-1}$ means $10^9 B\bar{B}$ pairs
- For LHCb, typically 1 fb$^{-1}$ means $\approx 2 \times 10^{11} B\bar{B}$ pairs at 14 TeV
LHB

Our idea is not completely new

1. Introduction

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10^8 protons/s allowing the production of as many as 10^{10} $B\bar{B}$ pairs per year, i.e. about two orders of magnitude more than what could be produced by an e^+e^- asymmetric B factory with 10^{34} cm$^{-2}$s$^{-1}$ luminosity [5].

- B-factories: 1 ab$^{-1}$ means $10^9 B\bar{B}$ pairs
- For LHCb, typically 1 fb$^{-1}$ means $\approx 2 \times 10^{11} B\bar{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.
1. Introduction

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10^8 protons/s allowing the production of as many as 10^{10} $B\bar{B}$ pairs per year, i.e. about two orders of magnitude more than what could be produced by an e^+e^- asymmetric B factory with 10^{34} cm$^{-2}$s$^{-1}$ luminosity [5].

- B-factories: 1 ab$^{-1}$ means $10^9B\bar{B}$ pairs
- For LHCb, typically 1 fb$^{-1}$ means $\sim 2 \times 10^{11}B\bar{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.
- Nowadays, degradation is known to be $\sim 6\%$ per 10^{20} particles/cm2
- 10^{20} particles/cm2: one year of operation for realistic conditions
LHB

Our idea is not completely new

1. Introduction

...

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10^8 protons/s allowing the production of as many as 10^{10} $B\bar{B}$ pairs per year, i.e. about two orders of magnitude more than what could be produced by an e^+e^- asymmetric B factory with 10^{34} cm$^{-2}$s$^{-1}$ luminosity [5].

- B-factories: 1 ab$^{-1}$ means $10^9 B\bar{B}$ pairs
- For LHCb, typically 1 fb$^{-1}$ means $\approx 2 \times 10^{11} B\bar{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.
- Nowadays, degradation is known to be $\approx 6\%$ per 10^{20} particles/cm2
- 10^{20} particles/cm2: one year of operation for realistic conditions
- After a year, one simply moves the crystal by less than one mm ...
Key studies: W/Z production at threshold

- For the first time, one would study W/Z production in their threshold region ($m_{W/Z}/\sqrt{s_{AFTER}} \sim 1$).
Key studies: W/Z production at threshold

- For the first time, one would study W/Z production in their threshold region ($m_{W/Z}/\sqrt{s_{AFTER}} \sim 1$)
- Unique opportunity to measure QCD/threshold effects on W/Z production
Key studies: W/Z production at threshold

- For the first time, one would study W/Z production in their threshold region ($m_{W/Z}/\sqrt{s_{\text{AFTER}}} \sim 1$)

- Unique opportunity to measure QCD/threshold effects on W/Z production

- If W'/Z' exist, their production may share similar threshold corrections to that of W/Z, but at LHC energies ($m_{W'/Z'}/\sqrt{s_{\text{LHC}}} \sim 1$?)
Key studies: W/Z production at threshold

- For the first time, one would study W/Z production in their threshold region ($m_{W/Z}/\sqrt{s_{\text{after}}} \sim 1$)
- Unique opportunity to measure QCD/threshold effects on W/Z production
- If W'/Z' exist, their production may share similar threshold corrections to that of W/Z, but at LHC energies ($m_{W'/Z'}/\sqrt{s_{\text{LHC}}} \sim 1$?)
- Reconstructed rate are most likely between a few dozen to a few thousand / year
(Multiply) heavy baryons:
Further key studies?

(Multiply) heavy baryons:

\[\Lambda_b \rightarrow \Lambda J/\psi \]
Further key studies?

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
- $d\sigma(b)/dy|_{y=0} \gtrsim 100 \text{ nb}$

$(\Xi_{cc}, \Omega^{++}(ccc), ...)$ cross sections in the central region are being calculated with the MC generator GENXICC.
Further key studies?

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0} \geq 100$ nb
 - $N(b)/year \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$
Further key studies?

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0} \gtrsim 100$ nb

- $N(b)/year \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$

- $\mathcal{B}(b \rightarrow \Lambda_b) \times \mathcal{B}(\Lambda_b \rightarrow J/\psi \Lambda) = 5.8 \pm 0.8 \times 10^{-5}$

 ($\mathcal{B}(J/\psi \rightarrow \mu \mu) = 6\%$)
Further key studies?

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$

- $d\sigma(b)/dy|_{y=0} \gtrsim 100$ nb

- $N(b)/year \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$

- $\mathcal{B}(b \rightarrow \Lambda_b) \times \mathcal{B}(\Lambda_b \rightarrow J/\psi \Lambda) = 5.8 \pm 0.8 \times 10^{-5}$

 ($\mathcal{B}(J/\psi \rightarrow \mu \mu) = 6\%$)

- $15\,000 \, \Lambda_b \rightarrow J/\psi \Lambda \rightarrow \mu^+ \mu^- \Lambda$ events: enough to perform a polarisation measurement

 see e.g. LHCb arXiv:1302.5578 [hep-ex]
Further key studies?

(Multiply) heavy baryons:

- $\Lambda_b \to \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0} \gtrsim 100 \text{ nb}$

- $N(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$

- $B(b \to \Lambda_b) \times B(\Lambda_b \to J/\psi \Lambda) = 5.8 \pm 0.8 \times 10^{-5}$
 \hspace{1cm} ($B(J/\psi \to \mu \mu) = 6\%$)

- 15 000 $\Lambda_b \to J/\psi \Lambda \to \mu^+ \mu^- \Lambda$ events: enough to perform a polarisation measurement

- discovery potential? ($\Xi_{cc}, \Omega^{++}(ccc)$, ...)

They should also be calculated for $x \to -1$ where IQ could dominate

J.P. Lansberg (IPNO, Paris-Sud U.)
A Fixed-Target Experiment at the LHC
September 20, 2013 47 / 27
Further key studies?

(Multiply) heavy baryons:
- \(\Lambda_b \rightarrow \Lambda J/\psi \)
- \(d\sigma(b)/dy|_{y=0} \gtrsim 100 \text{ nb} \)
- \(\mathcal{N}(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9 \)
- \(\mathcal{B}(b \rightarrow \Lambda_b) \times \mathcal{B}(\Lambda_b \rightarrow J/\psi \Lambda) = 5.8 \pm 0.8 \times 10^{-5} \)
 \((\mathcal{B}(J/\psi \rightarrow \mu \mu) = 6\%) \)
- 15 000 \(\Lambda_b \rightarrow J/\psi \Lambda \rightarrow \mu^+ \mu^- \Lambda \) events: enough to perform a polarisation measurement

- discovery potential? (\(\Xi_{cc}, \Omega^{++}(ccc), \ldots \))
- \(\Xi_{cc}, \ldots \), cross sections in the central region are being calculated with the MC generator GENXICC

Further key studies?

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0} \gtrsim 100 \text{ nb}$

- $N(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$

- $\mathcal{B}(b \rightarrow \Lambda_b) \times \mathcal{B}(\Lambda_b \rightarrow J/\psi \Lambda) = 5.8 \pm 0.8 \times 10^{-5}$
 - $(\mathcal{B}(J/\psi \rightarrow \mu\mu) = 6\%)$

- 15 000 $\Lambda_b \rightarrow J/\psi \Lambda \rightarrow \mu^+\mu^-\Lambda$ events: enough to perform a polarisation measurement

- discovery potential? ($\Xi_{cc}, \Omega^{++}(ccc), \ldots$)
 - Ξ_{cc}, \ldots, cross sections in the central region are being calculated with the MC generator GENXICC

- they should also be calculated for $x_F \rightarrow -1$

 where IQ could dominate

see e.g. LHCb arXiv:1302.5578 [hep-ex]
Further key studies?

Isolated-\(\gamma\) in \(p(7\text{ TeV})-p(\text{rest}): \sqrt{s} \sim 115\text{ GeV}\)

- **p-p photon kinematics at fixed-target LHC (central rapidities):**

 To access \(x > 0.3\) one needs isolated-\(\gamma\) at: \(p_T = x_T \sqrt{s}/2 > 20\text{ GeV/c}\)

- **JETPHOX NLO**

 pQCD calculations:

 - p-p at \(\sqrt{s}=115\text{ GeV}\)
 - \(|y|<0.5, p_T>20\text{ GeV/c}\)
 - Isolation: \(R=0.4, E_T^{\text{had}}<5\text{ GeV}\)
 - \(\mathcal{L}\) (10 cm \(H_2\)-target) \(\sim 2\cdot10^3\text{ pb}^{-1}/\text{year}\)

 ![Graph showing the distribution of \(d\sigma/dp_T\) for isolated-\(\gamma\) events.]

 - (preliminary)

 - \(~1\text{ count}\)

PDF: CT10 52 eigenval. (90\% CL)

- Scales: \(\mu_i = p_T\)
- FF = BFG-II
- x-section uncertainties\(^{(a)}\) of \(\pm 150\%\)

\(^{(a)}\) \((68\%\text{CL})/(90\% \text{CL}) \sim 1.65\)
Dilute system

Non perturbative regime

$Q^2 = Q^2_s(x)$

log $(x-1)$

log (Q^2)

BNL-JIMWLK

$B_2(x)

log (Q^2)

Fixed Target @ LHC

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target Experiment at the LHC

September 20, 2013
log (\(x^{-1}\))

Non perturbative regime

\(Q^2 = Q^2_s(x)\)

BK-JIMWLK

Dilute system

Fixed Target @ LHC

x \rightarrow 1

Non perturbative regime

x \rightarrow 1

Drell-Yan

EMC effect

Fixed Target @ LHC

DGLAP

Nuclear fermi motion
Fixed Target @ LHC

Non perturbative regime

Dilute system

\(Q^2 = Q^2_s(x) \)

\(\log (x^{-1}) \)

\(x \rightarrow 1 \quad x \gg 1 \)

DGLAP

BFKL

saturation

BK-JIMWLK

Quarkonia

Drell-Yan

Nuclear fermi motion

EMC effect

log \((Q^2) \)
Overall

Non perturbative regime

BK-JIMWLK

DGLAP

Fixed Target @ LHC

Dilute system

Quarkonia

EMC effect

Nuclear fermi motion

W/Z

log \(x^{-1}\)

log \(Q^2\)

log \(x-1\)

x \to 1

x \gg 1

Fixed Target@LHC

J.P. Lansberg (IPNO, Paris-Sud U.)
J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target Experiment at the LHC

September 20, 2013 49 / 27